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D. Fournier and R. Le Tellier
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1. Introduction

The time-independent neutron transport equation derived from the Boltzmann equation with
a linear collision kernel models the neutron population in the six dimensional space defined

by�r ∈ D the space variable, �Ω ∈ S2 the direction of motion variable and E ∈ B =]EG+1, E1[
the energy variable. It represents the balance between the neutrons entering the hypervolume

d3rd2ΩdE about
(

�r, �Ω, E
)

by fission or scattering and those leaving by streaming or any kind

of interactions. The unknown is the so-called neutron flux φ(�r, �Ω, E) = v(E)n(�r, �Ω, E) with

n(�r, �Ω, E) the neutron density and v(E) the neutron velocity. The problem is defined in terms
of the neutron interaction properties of the different materials i.e. the cross sections.
The solution of this equation in a deterministic way proceeds by the successive discretization
of the three variables: energy, angle and space. The treatment of the energy variable invariably
consists in a multigroup discretization which considers the cross sections and the flux to be
constant within a group (i.e. a cell of the 1D energy mesh). A pre-homogenization of the cross
sections is performed at the library processing level using a spatially independent weighting
flux (e.g. 1/E spectrum in the epithermal range).
With a broad group structure (≈ 100 to 2000 energy groups), this prior homogenization is
unsufficient to take into account the case-specific, spatially-dependent, self-shielding effect i.e.
the flux local depression in the vicinity of resonances that largely affects the neutron balance.
As a consequence, a neutron transport calculation has to incorporate a so-called self-shielding
model to correct the group cross sections of resonant isotopes. This homogenization stage
of a neutron transport calculation is known to be a main source of errors for deterministic
methods; as a consequence, an important work has been carried out to improve it. An
optimized energy mesh structure (Mosca et al., 2011) in addition to an advanced self-shielding
model (Hébert, 2007) is incorporated in state-of-the-art transport codes.
A different treatment for the energy variable based on a finite element approach is the basis
of the present work. Such an avenue was proposed in the past by (Allen, 1986) but seldom
used in practice. Indeed, finite element methods are commonly based on polynomial function
bases which are not appropriate for non-smooth behavior.
Recently, two independent works by (Le Tellier et al., 2009) and (Yang et al., 2010) have
proposed wavelet-Galerkin methods to overcome this issue. In this chapter, after a review
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of these two approaches, we will focus on the development in this framework of adaptive
algorithms with a control (at least, partial) of the discretization error. Such algorithms have
been partially presented in a previous conference presentation by (Fournier & Le Tellier, 2009)
but this book chapter gives a more in-depth presentation and updated numerical results for
algorithms that may be of interest for other applications of wavelet-based finite elements.
Such algorithms are analyzed in a limited framework (the fine structure flux equation for
a single isotope diluted in a mixture of non-resonant isotopes in an infinite homogeneous
medium) but the relevant issues regarding their extension in the general case are discussed.

2. Wavelet-Galerkin based energy discretization of the neutron transport equation

2.1 Generalized weak multigroup neutron transport equation

As in (Allen, 1986), the transport equation is discretized starting from the Sobolev spaces

W1
2 (D × S2) = {φ ∈ L2(D× S2), all the weak derivatives of φ ∈ L2(D ×S2)} , (1)

W1†
2 (A) =

{

φ ∈ L2(A), φ ∈ W1
2 (D× S2)

}

. (2)

with A = D × S2 × B. In particular, the energy variable is discretized as follows. An energy
mesh consisting of G groups such that E1 > E2 · · · > EG+1 (Ig =]Eg+1, Eg[) is selected and the

finite-dimension space Wh(A) ⊂ W1†
2 (A) considered is

Wh(A) =

{

φ ∈ W1†
2 (A), φ(�r, �Ω, E) =

G

∑
g=1

ΠIg
(E) f gT(E)φg(�r, �Ω) with φg ∈

(

W1
2 (D× S2)

)Ng

}

,

(3)

where ΠIg
is the characteristic function of group g, f g ∈

(

L2(Ig)
)Ng is an orthonormal set

of wavelet functions on Ig and the group flux unknowns are the flux wavelet modes i.e.

φg(�r, �Ω) =
∫

Ig

dE f g(E)φ(�r, �Ω, E).

Within this framework, a Ritz-Galerkin procedure casts the transport equation (written with

isotropic scattering and an external source Q(�r, �Ω, E)) in a generalized (weak) multigroup
form: ∀g ∈ [1, G],

(

�Ω · �∇+ Σt
g(�r)

)

φg(�r, �Ω) =
1

4π

G

∑
g′=1

(

Σs
g←g′

(�r)
)

Φg′
(�r) + Qg(�r, �Ω), (4)

where Φg(�r) =
∫

S2

d2Ωφg(�r, �Ω) and the source vector is Qg(�r, �Ω) =
∫

Ig

dE f g(E)Q(�r, �Ω, E).

The matrices coupling the flux modes within a group are defined in terms of the total Σt(�r, E)
and scattering transfer Σs(�r, E′ → E) cross sections as

Σt
g(�r) =

∫

Ig

dE f g(E)Σt(�r, E) f gT(E), (5)

Σs
g(�r) =

∫

Ig

dE f g(E)
∫

Ig′
dE′Σs(�r, E′ → E) f gT(E′). (6)

Note that Eq. 5 introduces a coupling between the different modes within a group on the left

hand side of the transport equation i.e. a coupling of the angular flux projections φg(�r, �Ω) that
is not present for the standard multigroup approach.
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An Adaptive Energy Discretization of the Neutron Transport Equation based on a Wavelet Galerkin Method 3

Two different approaches by (Le Tellier et al., 2009) and (Yang et al., 2010) based on compactly
supported Daubechies wavelets (Daubechies, 1992) have been proposed so far to deal with
this coupling:

1. in (Yang et al., 2010), a dilation order is fixed and the basis consists in the translates of the
associated scaling function; in this case, Σt

g(�r) is a band matrix and the mode coupling is

limited in such a way that a Richardson iterative scheme can be employed to resolve this
coupling.

2. in (Le Tellier et al., 2009), both dilates and translates of the mother wavelet functions are
retained in the basis according to a thresholding procedure applied to the discrete wavelet
transform of either the total cross section Σt or an approximate flux. In this case, the basis
selection can be optimized but the modes are tightly coupled; a procedure based on a
change of basis through a matrix diagonalization have been proposed to explictly decouple
the equations.

This second approach proceeds as follows. Let us consider that the nuclear data are known

by their projections on a set of orthonormal functions
(

g
g
k

)

k∈[1,Ng]
in each group e.g.

Σt(�r, E) = Σ̂t
gT
(�r)gg(E). (7)

At this stage, gg is assumed to be spatially uniform. This condition is satisfied for example if
the same set of functions is considered for all the isotopes of a given configuration.

Considering the isomorphism between the Hilbert space Fg = span
(

g
g
1 . . . , g

g
Ng

)

and R
Ng , we

can construct an orthonormal basis ( f
g
n )n∈[1,Ng] of Fg in such a way that the different functions

f
g
n are Σt-orthogonal. Indeed,

Σ̃t
g
(�r) =

∫

Ig

dEgg(E)Σt(�r, E)ggT(E) (8)

is unitary similar to a diagonal matrix (see (Le Tellier et al., 2009) for more details) i.e.

Σ̃t
g
(�r) = Cg(�r)Σ

g
t (�r)C

gT(�r), (9)

with

• Cg(�r) = a unitary matrix containing the eigenvectors of Σ̃t
g
(�r),

• Σt
g(�r) = a diagonal matrix containing its eigenvalues.

Thus, f g(�r, E) = CgT(�r)gg(E).
The problem at this stage is that the diagonalization of this operator depends on the spatial
position through Σt(�r, E) i.e. f g(�r, E) depends on �r and in the general case the discretized
streaming operator is no longer diagonal. However, in most of the practical cases, the total
cross section is defined as a step function with respect to the space variable i.e. a set of uniform
media is defined and used to represent the spatial distribution of the nuclear data. Let us
consider that the spatial domain D is split into a set of non-overlapping uniform medium

domains i.e. D =
⋃

i

Di. The total cross section (along with the other nuclear data) is

represented as
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Σt(�r, E) = ∑
g

ΠIg
(E)∑

i

ΠDi
(�r)Σ̂ti

gT
(�r)gg(E), (10)

where ΠDi
is the characteristic function of Di and the flux is expanded as

φ(�r, �Ω, E) = ∑
g

ΠIg
(E)∑

i

ΠDi
(�r) f gT

i
(E)φ

g
i (�r, �Ω). (11)

For a given i, f g
i

is uniform on Di and is obtained by diagonalizing Σ̃ti
g

as previously

described.
For �r belonging to a uniform medium domain Di, Eq. 4 can be written without any
complication of the streaming term. In fact, this formulation of the transport equation is
similar to the standard multigroup form. In this case, the mode coupling only appears for
the conditions at the interface Γij between two uniform medium domains Di and Dj along

�Ω. The continuity of φ(�r, �Ω, E) at �r ∈ Γij implies directly the continuity of φg(�r, �Ω) in the
standard multigroup case:

φ
g
j (�r, �Ω) = φ

g
i (�r, �Ω), (12)

while, in our case, it translates into

φ
g
j (�r, �Ω) = C

gT
j C

g
i φ

g
i (�r, �Ω). (13)

When crossing an interface between two uniform media domain, a change of basis with
respect to the energy expansion has to be performed in order to maintain a diagonal group
transport operator over the whole domain.

2.2 Case of study

The numerical study of the proposed algorithms will be limited to the fine structure flux
equation for a single isotope diluted in a mixture of non-resonant isotopes in an infinite
homogeneous medium in such a way that only the energy variable has to be discretized. The
total cross section is written as Σ+

t + N∗σ∗
t (E) considering that Σ+

t is constant; ∗ refers to the

resonant isotope. Considering f g(E), the σ
∗g
t -orthogonal and orthonormal basis of Fg, the

weak form of the fine structure flux equation is written as

(

σt
∗g + σd

)

φg =
G

∑
g′=1

σs
∗g←g′

φg′
+ σd

∫

Ig

dE f g(E), (14)

In matrix-vector form, this linear system is summarized as

HΦ = SΦ + Q. (15)

We will also consider that the source-flux coupling in Eq. 15 is solved by a simple Richardson
iterative scheme under the form

HΦn+1 = SΦn + Q. (16)

H−1 will be denoted A in the remainder.

284 Discrete Wavelet Transforms: Algorithms and Applications

www.intechopen.com



An Adaptive Energy Discretization of the Neutron Transport Equation based on a Wavelet Galerkin Method 5

2.3 Wavelet-based elements

Let θ be some function in L2(R). We consider the translates and dilates of θ denoted θj,k such

that θj,k(x) = 2j/2θ(2jx − k)(j ∈ Z, k ∈ Z) and Vj = span
{

θj,k, k ∈ Z

}

the generated linear

spaces. θ is called the father wavelet or scaling function and is constructed in such a way that
{

Vj, j ∈ Z

}

is a multiresolution analysis (MRA) i.e.

•
{

θ0,k, k ∈ Z
}

is an orthonormal system in L2(R),

• Vj ⊂ Vj+1, ∀j ∈ Z,

•
⋃

j≥0

Vj is dense in L2(R).

Moreover, for convenience, we consider that θ is normalized in such a way that
∫

dxθ(x) = 1.

In this case, defining Wj by Vj+1 = Wj ⊕ Vj(j ∈ Z), we obtain L2(R) = V0 ⊕
∞
⊕

j=0

Wj. The next

step is to find a function γ ∈ W0 (γj,k is defined in a same way as θj,k) such that
{

γ0,k, k ∈ Z
}

is an orthonormal basis of W0. The existence of such a function is guaranteed but it is not
unique; in any case, it verifies

∫

dxγ(x) = 0 . This function is called the mother wavelet.

Consequently,
{

γj,k, k ∈ Z

}

is an orthonormal basis of Wj. Note that the mother wavelet is

always orthogonal to the father wavelet.
Within such a framework, any function φ ∈ L2(R) has a unique representation in terms of an
L2-convergent series: (see (Hardle et al., 1997))

φ(x) = ∑
k

α0,kθ0,k(x) +
∞

∑
j=0

∑
k

βj,kγj,k(x), (17)

where αj,k and βj,k correspond to the orthogonal projection of φ on θj,k and γj,k respectively.
In the present work, we consider for the basis functions gg in each group Ig a subset of
(

(

θ0,k

)

k ,
(

γj,k

)

j,k

)

obtained by the sampling, discrete wavelet transform and thresholding

of σ
∗g
t (E) or an approximate flux restricted to Ig. This is to be distinguished from the work

of (Yang et al., 2010) where the basis is composed of the scaling functions for a given dilation

order j i.e. gg =
(

θj,k

)

k
.

In the following, we restrict ourselves to compactly supported wavelets introduced by

(Daubechies, 1992) constructed starting from a function m0(ξ) = 1√
2 ∑

k

hke−ikξ where hk

are real-valued coefficients such that only a finite number M (the support length) of hk are
non-zero. In this context, the MRA obeys

θj−1,l = ∑
k

hk−2lθj,k, (18)

γj−1,l = ∑
k

gk−2lγj,k, (19)

and the decomposition of a sampled N−length signal is obtained efficiently by the discrete
wavelet transform (DWT) based on the cascade algorithm proposed in (Mallat, 1989).
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Following such a wavelet decomposition, the thresholding consists in replacing Eq. 17 by

φ(x) = ∑
k

α0,kθ0,k(x) +
J

∑
j=0

∑
k

β̃j,kγj,k(x), (20)

where (β̃j,k)j,k is obtained from (βj,k)j,k and #(β̃j,k)j,k ≪ #(βj,k)j,k

A natural criterion is to discard coefficients lower than a given cut-off ε i.e.

β̃j,k =

{

0 if |βj,k| ≤ ε maxj,k(βj,k),
βj,k otherwise.

(21)

This method is called hard thresholding. We refer the interested reader to (Le Tellier et al.,
2009) for a comparison of different wavelet filters and thresholding strategies in this context.

3. Adaptivity

In the context of Eq. 16, adaptive algorithms aim at improving the operators discretization
during the iterative process by dynamically selecting the basis functions and consequently,
optimizing the computational cost and control (at least partially) the error on the final solution.
The proposed algorithms aim at reducing the computational cost defined as the sum of the
supports size at each iteration:

cost =
nbIter

∑
i=1

(

#ΛA
i + #ΛS

i

)

, (22)

where ΛS
i (resp. ΛA

i ) represents the support of operator S (resp. A) at iteration i. Actually,
the computational cost required to solve Eq. 16 is directly linked to the size of the operators
manipulated: ΛS

i for the construction of matrix Si and ΛA
i the order of the system used for

iterations. It justifies the use of Eq. 22 as a measure of the algorithm computational cost.
Our work differs from the approach in (Cohen, 2003) where the goal was to minimize the
final support. Here, the purpose is to find a balance between the number of iterations and
the support size. In the following, two different algorithms are presented and tested. Both are
based on a decomposition of the error in terms of the Richardson iterations residual (δǫres) and
the errors due to the discretization of A and S operators (denoted δǫA and δǫS respectively):

∥

∥Φn+1 − Φ
∥

∥

∥

∥Φn+1
∥

∥

≤ 1

1 − ‖AS‖
(

δǫA + δǫS + δǫres
)

= NB. (23)

Sections 3.2 and 3.3 explicit this bound for both algorithms. The first version, inspired from
(Cohen, 2003), uses two levels of iterations: one in order to increase the support and one to
converge the residual. The single-loop algorithm is proposed as a simplification of the first
one and a way to correlate the errors on the operators and the residual is detailed.

3.1 Numerical cases of study

As ‖AS‖ plays an important role in both algorithms presented in Sections 3.2 and 3.3, tests
are performed on different isotopes and energy ranges (the energy mesh used for this study
contains 172 groups) as presented in Table 1.
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Isotope ‖AS‖ Energy range (eV) Energy groups
238U 0.26 6.16 - 7.52 88
56Fe 0.10 1018 - 1230 56
16O 0.01 273.2E3 - 498.9E3 26-29

Table 1. Numerical cases of study for the two adaptive algorithms

3.2 Two-loop algorithm

In this algorithm, an outer iteration loop (index j) is added. At a given iteration j, the following
system is solved:

Φn+1
j+1 = Aj+1

(

Sj+1Φn
j+1 + Q

)

, (24)

with Aj+1 (resp. Sj+1) representing matrix A (resp. S) restricted to ΛA
j+1 (resp. ΛS

j+1) support.

The error is given by:

Φn+1
j+1 − Φ = Aj+1

(

Sj+1Φn
j+1 + Q

)

− A(SΦ + Q)

=
(

Aj+1 − A
) (

Sj+1Φn
j+1 + Q

)

+ A
(

Sj+1 − S
)

Φn
j+1 + AS

(

Φn
j+1 − Φ

)

.

(25)

It follows that the relative error can be expressed by Eq. 23 with

δǫS = ‖A‖

∥

∥

∥

(

Sj+1 − S
)

Φn
j+1

∥

∥

∥

∥

∥

∥Φn+1
j+1

∥

∥

∥

, (26)

δǫA =

∥

∥

∥

(

Aj+1 − A
) (

Sj+1Φn
j+1 + Q

)∥

∥

∥

∥

∥

∥Φn+1
j+1

∥

∥

∥

, (27)

δǫres = ‖AS‖

∥

∥

∥
Φn+1

j+1 − Φn
j+1

∥

∥

∥

∥

∥

∥
Φn+1

j+1

∥

∥

∥

. (28)

A main issue is the choice of the matrices Sj+1 and Aj+1 or, in other words, the selection of the
wavelet supports. The idea in the remainder is to monitor the errors related to the operator
discretizations using the numerical residual in order to obtain a relation of the type:

∥

∥

∥
Φn+1

j+1 − Φ

∥

∥

∥

∥

∥

∥
Φn+1

j+1

∥

∥

∥

≤ K

∥

∥

∥
Φn+1

j+1 − Φn
j+1

∥

∥

∥

∥

∥

∥
Φn+1

j+1

∥

∥

∥

, (29)

where K is a given constant. The error on the flux is thus controlled by the residual at each
iteration.
The error on δǫS (resp. δǫA) can be practically controlled by a thresholding on the product

SΦn (resp. A
(

Sj+1Φn
j+1 + Q

)

) ensuring:

∥

∥

∥
(Sj+1 − S)Φn

j+1

∥

∥

∥
≤ ǫ′j+1

∥

∥

∥
Φn

j+1

∥

∥

∥
, (30)

∥

∥

∥

(

Aj+1 − A
) (

Sj+1Φn
j+1 + Q

)∥

∥

∥ ≤ ǫj+1

∥

∥

∥Φn
j+1

∥

∥

∥ . (31)
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Remaining coefficients give the new supports ΛS
j+1 and ΛA

j+1 such that #ΛS
j+1 ≪ #ΛS and

#ΛA
j+1 ≪ #ΛA where ΛS and ΛA are the support of S and A operators approximated by

a large number of coefficients. The localization property of wavelets ensure that these two
supports slowly increase when ǫ′j+1 and ǫj+1 decrease (see (Cohen, 2003) for more details).

By applying the procedures exposed above to A and S, Eq. 23 becomes:

∥

∥

∥
Φn+1

j+1 − Φ

∥

∥

∥

∥

∥

∥
Φn+1

j+1

∥

∥

∥

≤ 1

1 − ‖AS‖

⎛

⎝ǫj+1

∥

∥

∥
Φn

j+1

∥

∥

∥

∥

∥

∥
Φn+1

j+1

∥

∥

∥

+ ǫ′j+1 ‖A‖

∥

∥

∥
Φn

j+1

∥

∥

∥

∥

∥

∥
Φn+1

j+1

∥

∥

∥

+ ‖AS‖

∥

∥

∥
Φn+1

j+1 − Φn
j+1

∥

∥

∥

∥

∥

∥
Φn+1

j+1

∥

∥

∥

⎞

 .

(32)
Note however that the thresholding procedure described for operator A in Eq. 31 cannot
be applied in the general context of the spatially-dependent transport equation (Eq. 4). A
possibility is to use the same support for operators A and S. Such a solution has been tested in
(Fournier & Le Tellier, 2009). Even if the convergence is deteriorated compared to the solution
with two different supports for S and A, results are interesting and show that the adaptive
algorithms proposed in this book chapter are extensible to the general problem.

As proposed in (Cohen, 2003), a geometrical decreasing sequence
(

ǫj

)

is fixed and iterations

on n are performed until the residual becomes inferior to the value imposed by this sequence.
To link ǫj and ǫ′j, we ensure that the first two terms defined in Eq. 32 decay at the same rate by

imposing:

ǫ′j+1 =
ǫj+1

‖A‖ . (33)

At a given iteration j, Richardson iterations are carried out in order to ensure:

∥

∥

∥
Φj+1 − Φj

∥

∥

∥

∥

∥

∥
Φj+1

∥

∥

∥

≤
ǫj+1

‖AS‖ . (34)

Combining Eqs. 33 and 34 with the bound of Eq. 32 guarantees the convergence of the error:

∥

∥

∥
Φj+1 − Φ

∥

∥

∥

∥

∥

∥
Φj+1

∥

∥

∥

�
3ǫj+1

1 − ‖AS‖ . (35)

The devised algorithm is written in pseudocode in Algorithm 1.

The choice of
(

ǫj

)

is arbitrary and some numerical tests have been performed with different

values. A possible choice is

ǫ =
ǫj+1

ǫj
=

∥

∥

∥
AjSj

∥

∥

∥
,

the rate of convergence of Richardson method.
Indeed, two asymptotic behaviours can be observed depending on the ǫ value with respect to
ρ = ‖AS‖ as presented in Figure 1 for 16O where ρ = 0.01:

• ǫ ≫ ρ (case ǫ = 1/2 in Figure 1): Richardson iterative scheme converges rapidly (and
even in one iteration in the presented case) and the error decreases linearly at the same
rate than the sequence (ǫj) but it needs many outer iterations. In our example, the slope of
the straight line is equal to 0.3 = log(1/2) = log(ǫ).
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Result: Solve HΦ = SΦ + Q thanks to an adaptive procedure
Input : Matrix H, S and vector Q calculated on an “infinite” support

given accuracy tol
Output: Φ: flux solution of Φ = H−1 (SΦ + Q) at accuracy tol
Data: Λ: support, ǫ: accuracy

Φ0 = 0, Λ0 = ∅, ǫ0 = 1 ;
j = 0 ;
err = 1 ;

while ǫj ≥ tol
1−‖AS‖

3 do

j ← j + 1 ;
ǫj ← ǫǫj−1 ;

Φ0
j ← Φj−1 ;

n ← 1 ;
while err ≥ ǫj

‖AS‖ do

tmp = SΦn−1
j−1 ;

prod = Thresholding(tmp, ǫj) ;

% remove smallest coefficients of tmp, guarantee ‖tmp − prod‖ ≤ ǫj

∥

∥

∥
Φn−1

j−1

∥

∥

∥

Rn
j = prod + Q ;

ΛSn
j = Support(Rn

j ) ;

Φn
j = H−1Rn

j ;

Φn
j = Thresholding(Φn

j ,
ǫj

‖H−1‖ ) ;

ΛAn
j = Support(Φn

j ) ;

err ←
∥

∥

∥
Φn

j −Φn−1
j

∥

∥

∥

∥

∥

∥
Φn

j

∥

∥

∥

;

n ← n + 1 ;
end
Φj+1 = Φn

j ;

end

Algorithm 1: two-loop adaptive algorithm

• ǫ ≪ ‖AS‖: the number of coefficients kept increases rapidly and several Richardson
iterations are necessary to converge at a given support.

ǫ = ρ seems a good compromise between increasing too slowly the support causing useless
iterations and keeping too many coefficients which implies the resolution of a uselessly large
linear system.
Figure 2 presents the L2−error as a function of the cost for 238U and 16O. Showing this two
cases is interesting because they exhibit a different spectral radius (‖AS‖ = 0.26 for 238U and
0.01 for 16O). As ǫ decreases, the cost decreases to a minimum value (ǫ = 1

8 for 238U), and
then increases again. As ǫ decreases, less iterations are performed which improves the cost;
below a given value too large systems are solved and the cost increases (these are the two
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Fig. 1. L2−error and numerical bound for different ǫ values on groups 26 to 29 of 16O
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Fig. 2. Relative error versus cost for different ǫ values for group 88 of 238U (left) and for
groups 26 to 29 of 16O (right)

behaviours illustrated in Figure 1). Obtaining the value of this minimum is not possible in the

general case but let us mention that the use of the spectral radius
∥

∥

∥
AjSj

∥

∥

∥
ensures a reasonable

cost. Figure 3 further illustrates the evolution of the cost as a function of the parameter ǫ for
16O and confirms the choice of

∥

∥

∥
AjSj

∥

∥

∥
to minimize the cost.
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Fig. 3. Cost versus ǫ for a given accuracy of 10−6 for groups 26 to 29 of 16O

3.3 Single-loop algorithm

The previous algorithm was directly inspired from Cohen (2003) and uses two levels of
iterations which complicate the source iterations. Besides, the choice of the series (ǫj) is not

obvious even if a geometrical sequence with a common ratio equal to
∥

∥

∥AjSj

∥

∥

∥ gives good

results. As a simplification of this algorithm, a one-loop version is proposed, i.e. the iterative
system is written as:

Φn+1 = An+1
(

Sn+1Φn + Q
)

. (36)

A single loop means that the residual is no longer directly controlled and a strategy to handle
this point has to be devised. At a given iteration, the residual is given by:

Φn+1 − Φn = An+1
(

Sn+1Φn + Q
)

− An
(

SnΦn−1 + Q
)

=
(

An+1 − An
) (

Sn+1Φn + Q
)

+ An
(

Sn+1 − Sn
)

Φn + AnSn
(

Φn − Φn−1
)

.

(37)

And the same relationship as the one for the two-loop algorithm holds for the actual error:

(I − AS)
(

Φn+1 − Φ
)

=
(

An+1 − A
) (

Sn+1Φn + Q
)

+ A
(

Sn+1 − S
)

Φn − AS
(

Φn+1 − Φn
)

.

(38)

Substituting
(

Φn+1 − Φn
)

as given by Eq. 37 in Eq. 38 leads to an error bound given by Eq. 23
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with

δǫS =

∥

∥A
((

Sn+1 − S
)

− SAn
(

Sn+1 − Sn
))

Φn
∥

∥

∥

∥Φn+1
∥

∥

, (39)

δǫA =

∥

∥

((

An+1 − A
)

− AS
(

An+1 − An
)) (

Sn+1Φn + Q
)∥

∥

∥

∥Φn+1
∥

∥

, (40)

δǫres = ‖ASAnSn‖
∥

∥Φn − Φn−1
∥

∥

∥

∥Φn+1
∥

∥

. (41)

Such a bound for the operator-related error δǫA (resp. δǫS) is interesting because it takes
into account both ‖An+1 − A‖ (resp. ‖Sn+1 − S‖), the distance between the current operator
and the complete one, and ‖An+1 − An‖ (resp. ‖Sn+1 − Sn‖), the distance between two
successive operators. The direct control of the numerical residual with Richardson iterations
in the previous algorithm is now “replaced” by the introduction of the distance between two
successive operators in the error bounds on A and S. As the first term decreases with n until 0,
the second one increases until ‖A − An‖ (resp. ‖S − Sn‖). Depending on the value of ‖AS‖,
(∥

∥An+1 − A
∥

∥+ ‖AS‖
∥

∥An+1 − An
∥

∥

)

can be strictly decreasing or presents a minimum or a
maximum (Figure 4).
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Fig. 4. Comparison of error terms defined in Eq. 40 for group 88 of 238U with ‖AS‖ = 0.26
(left) and with ‖AS‖ artificially increased to 0.8 (right)

Even if the general behaviour is not known, the initial and final bounds are given by:

δǫS
(Sn+1=S) = δǫS

f in = ‖ASAn (S − Sn) Φn‖ , (42)

δǫA
(An+1=A) = δǫA

f in =
∥

∥

∥
AS (A − An)

(

Sn+1Φn + Q
)∥

∥

∥
, (43)

δǫS
(Sn+1=Sn)

= δǫS
ini = ‖A (Sn − S)Φn‖ , (44)

δǫA
(An+1=An)

= δǫA
ini =

∥

∥

∥(A − An)
(

Sn+1Φn + Q
)∥

∥

∥ . (45)
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As ‖AS‖ < 1 (ensuring the convergence of Richardson iterations), it guarantees that δǫS
f in <

δǫS
ini and δǫA

f in < δǫA
ini. These error bounds are at the basis of our algorithm. Three different

cases are considered:

• δǫres ∈ [δǫS
f in, δǫS

ini]. It is possible to decrease the error due to operator S discretization to

the numerical residual so Sn+1 is chosen to ensure δǫS ≈ δǫres.

• δǫres < δǫS
f in. Numerical residual is too small to be reached directly. Error on operator S is

reduced to
δǫS = αδǫS

ini + (1 − α)δǫS
f in, (46)

with α fixed in [0, 1].

• δǫres > δǫS
ini. The numerical residual is not yet enough converged so the support of

operator S is not modified, Sn+1 = Sn.

The same approach is used to treat δǫA.
Figure 5 presents the behaviour of the three error terms and the numerical bound defined
by Eq. 23. When ‖AS‖ is low (Figure 5 (left)), Richardson iterations converge rapidly and
do not slow the convergence of other terms. When ‖AS‖ tends to 1 (Figure 5 (right)),
more Richardson iterations are needed in order to converge the numerical residual and the
operators support grows slowly and stepwise. It explains the decay by step observed for the
operator discretization errors in Figure 5 (right).
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Fig. 5. Comparison of error terms on group 88 of 238U with ‖AS‖ = 0.26 (left) and with ‖AS‖
artificially increased to 0.8 (right)

The only remaining parameter is α. A numerical study is performed to give us some
information about the optimal value.
Figure 6 shows that the choice of this parameter is important regarding the cost of the
algorithm. If not enough coefficients are kept at each iteration, the rate of convergence is
low which causes an important cost. On the opposite, if a large number is kept, large systems
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Fig. 6. Cost of the algorithm depending on α for a given accuracy ǫ = 10−5 on group 56 of
56Fe (left) and ǫ = 10−4 on group 88 of 238U (right)

have to be solved. An interesting compromise seems to keep coefficients in order to reduce
the error by about half.

3.4 Comparison of the two algorithms

A comparison of the two algorithms and of the non-adaptive strategy is done in this section.
All tests are performed by doing hard thresholding on an approximated flux and using
symmlets of the 6th order. All strategies are compared as a regard of the number of kept
coefficients but also the cost defined by Eq. 22. To make non-adaptive and adaptive strategies
comparable, non-adaptive Richardson iterations are stopped when δǫres is of the same order
as δǫS + δǫA in such a way that the cost of the non-adaptive algorithm is nearly optimal.
Figure 7 (resp. Figure 8) presents results obtained on 238U (resp. 56Fe).
Figures 7 and 8 present coherent results and clearly highlight the interest of the two adaptive
algorithms. The use of the spectral radius in the two-loop algorithm and the construction
of our single-loop strategy make the convergence nearly independent of the case of study.
Moreover, let us recall that the non-adaptive algorithm used in this study exhibits a nearly
optimal cost and requires the control of the different error terms (δǫS, δǫA and δǫres) as
explained at the beginning of this section.
While both adaptive algorithms exhibit similar performances, the single-loop algorithm
presents some advantages. First, the treatment of source iterations is easier with only one
level of iteration. Then, the choice of the decreasing series (ǫj) is problem-dependent and
more difficult to compute compared to the choice α = 0.5 in Eq. 46 for the one-loop algorithm.

4. Conclusion

Considering a wavelet-based Galerkin discretization for treating the energy variable in the
neutron transport equation, this chapter has proposed two adaptive algorithms for the
Richardson iterative scheme that is commonly used to solve the source-flux coupling. While
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Fig. 7. Algorithms comparison in terms of the convergence (left) and the cost (right) for
group 88 of 238U

100 200 300 400 500 600 700

10
−5

10
−4

10
−3

10
−2

10
−1

number of coefficients

e
rr

o
r 

c
ri

te
ri

o
n

 

 

non−adaptive algorithm

single−loop algorithm

double−loop algorithm

200 400 600 800 1000 1200 1400 1600

10
−5

10
−4

10
−3

10
−2

10
−1

cost

e
rr

o
r 

c
ri

te
ri

o
n

 

 

non−adaptive algorithm

single−loop algorithm

double−loop algorithm

Fig. 8. Algorithms comparison in terms of the convergence (left) and the cost (right) for
group 56 of 56Fe

the first algorithm based on two nested loops is a modification of an algorithm previously
proposed in the literature, the second one has been devised as a simplification that retains
the same convergence properties. Both approaches are based on a formal decomposition of
the error into three terms: two of them are related to the operators discretization while the
third one is the Richardson residual. The algorithms then consist in a strategy to monitor and
relate these three terms in such a way that error can be controlled by the Richardson iterations
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residual. As a benefit of these algorithms, the accuracy of the final solution is known and the
cost to obtain it has been decreased by adapting the size of the system during iterations. The
performances of these algorithms have been demonstrated in the restricted framework of the
fine structure flux equation in an homogeneous infinite medium. In the context of neutron
transport calculations, the modifications necessary for spatially-dependent cases have been
mentioned.
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