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1. Introduction

Digital imaging devices inevitably produce images corrupted with noise. The noise originates
from the sensors and analogue circuitry in the camera. In order to have better and sharper
images and also for commercial reasons, there is a recent tendency to further increase the
image resolution. Nowadays, cameras with more than 20 megapixels are not uncommon. To
reach such a high number of megapixels, the area of the sensor elements must be decreased
and correspondingly the elements become more sensitive to noise, resulting in a lower image
quality due to noise.
During the last decades, the use of image processing techniques has become widespread. The
increasing processing power of computers allows for more sophisticated techniques that are
better adapted to the classes of images under consideration (e.g. photographic images or
medical images). This also allows for new classes of techniques that alleviate the physical
limitations of the sensor elements by means of post-processing such as denoising. Because
of power and hardware complexity constraints, the post-processing techniques implemented
by camera manufacturers are based on simplistic assumptions with respect to the assumed
noise model: for example, while it is well known that photon signals are Poisson distributed,
the techniques most often rely on a white Gaussian noise model. In practice, such model
mismatches generally lead to inferior denoising results. Also, many factors cause the noise
in practice to be colored instead of white (i.e. with a flat power spectrum). For example, the
image formation is often a reconstruction process based on an insufficient number of samples,
and missing samples need to be estimated using interpolation techniques (e.g. Bayer pattern
demosaicing). Doing so, the noise becomes colored. A technique that is designed to remove
white Gaussian noise may offers a image quality: either some noise artifacts may be left in the
image, or the noise is suppressed too much, leading to an overblurred image.
The obvious solution to this problem is to adapt existing techniques to use a colored noise
model that is well matched to the underlying sensor characteristics and/or reconstruction.
Therefore, estimation of the noise statistics is indispensable. Stationary colored noise (or
correlated noise) is completely described by its Power Spectral Density (PSD). The noise PSD
describes the power distribution of the noise in frequency space and can be estimated by
using the Discrete Fourier Transform (DFT). However, noisy images also contain information
other than noise (e.g. edges and textures), and directly estimating the PSD through the DFT
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2 Discrete Wavelet Transforms

will yield seriously biased estimates caused by the signal presence. Alternatively, the PSD
could be estimated from noise-only patches in the image. However, not all images contain
such patches and also the number of noise samples that can be used for this task is often too
limited to yield reliable PSD estimates. Hence, more specialized techniques are needed.
The discrete wavelet transform (DWT) is an important tool for developing such techniques.
The DWT provides a non-uniform partitioning of the space-frequency plane, which allows
positional information of structures to be included in the estimation. This is not possible with
the DFT, since the DFT cannot recover information at specified positions in the image.
In this chapter, we investigate the estimation of colored noise. First, we discuss a number of
origins for colored noise in images. Next, we explain the importance of wavelets in solving
the estimation problem. To proceed, it is necessary to know how the wavelet-domain and
spatial-domain autocorrelation functions are related to each other, since we are aiming at
estimating the wavelet-domain autocorrelation function. Because the wavelet transform in
general does not fully decorrelate signals as we will explain, noise-free wavelet coefficients
with significant magnitudes can still be found near high-frequent transitions in the signals (for
example, near edges in images). To benefit from prior knowledge in a statistical estimation
approach, we will discuss a number of wavelet domain prior models. Two iterative EM-based
techniques will be presented, to estimate the wavelet-domain autocorrelation function. Next,
we will explain how the parameters of a parametric noise PSD can be estimated using the
presented tools. Finally, we will give a number of experimental results for the proposed
techniques.

1.1 From white noise to colored noise

Throughout this chapter, we will consider a stationary additive Gaussian noise process:

y(p) = x(p) + w(p) (1)

where x(p) is a pixel intensity of a noise-free image at position p ∈ Z
2, y(p) is the

corresponding observed pixel intensity and w(p) is a zero-mean additive noise component.
w(p) and x(p) are mutually statistically independent. We will further assume that the samples
w(p) are generated by a (wide-sense) spatial stationary process w, in which the correlation
between two noise samples only depends on the position difference between the two noise
samples, but not on their absolute position. Consequently, w can be completely described by
the mean and the autocorrelation function.
A wide-sense stationary random process w obeying the above conditions is called white if its
autocorrelation function is a Dirac delta function:

Rw(p) = E
[
w(p′)w(p+ p′)

]
= δ (p) . (2)

For colored noise, neighboring noise samples are not statistically independent, hence spatial
dependencies exist between these samples. Their dependencies can be characterized by the
autocorrelation function of the noise, which is - for colored noise - different from the Dirac
delta function.
The PSD is a related descriptor of colored noise. More specifically, the PSD describes how the
noise energy is distributed in frequency space. According to the Wiener-Khinchin theorem,
the power spectral density is the (discrete time) Fourier transform of the autocorrelation function
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Fig. 1. Noise in PAL broadcasting. (a) Power Spectral Density [dB], (b) Noise signal
(containing horizontal stripe patterns due to correlations).

Rw(p):

Pw(ω) = ∑
p∈Z2

Rw(p) exp
(
−jωTp

)
. (3)

White noise has a flat PSD: Pw(ω) = 1. Suppose a filter with frequency response H(ω) �= 1 is
applied to the noise signal, then the resulting PSD P

′
w(ω) becomes Baher (2001):

P
′
w(ω) = Pw(ω) |H(ω)|2 . (4)

Clearly, the PSD P
′
(ω) is subjected to the filter magnitude response |H(ω)|. Hence one can

think of correlated noise as white noise subjected to linear filtering. In analogy with the term
“white noise” the resulting term is called “colored noise” (or correlated noise, because the filtering
introduces correlations in the noise samples).
In practical circumstances, there are a number of origins of colored noise in images:

• Phase Alternating Line (PAL) television: the noise in PAL television images is a good example
of colored noise. The correlations between the noise samples are caused by several
mechanisms, such as deinterlacing Kwon et al. (2003), demodulation and filter schemes.
In Figure 1, the PSD of a noise patch from a PAL broadcast is shown. Here, there is a high
concentration of energy in the lower horizontal frequencies, leading to horizontal stripes
and artifacts.

• Color interpolation (demosaicing): modern digital cameras use a rectangular arrangement of
photosensitive elements. In this matrix arrangement, photosensitive elements of different
color sensitivity are placed in an interleaved way. This allows sampling of full color
images without the use of three arrays of photosensitive elements. One popular example
is the Bayer pattern Bayer (1976). Color interpolation (or demosaicing) is the process of
estimating the values of missing photosensitive elements.

• Post-processing techniques: image noise often becomes correlated by the use of
post-processing techniques, e.g., image quality enhancement techniques, sharpening
filters, digital zoom functions of cameras, JPEG compression...
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Fig. 2. (a) Image corrupted with colored noise caused by demosaicing (b) PSD of the noise in
the green color channel of (a).

• Thermal cameras: images captured by thermal cameras of the push broom or whisk broom
type often exhibit streaking noise artifacts, mainly caused by detector and sampling
circuitry Aelterman, Goossens, Pižurica & Philips (2010). This kind of noise can be
approximated using a 1/ f frequency characteristic (called pink noise) Borel et al. (1996).
Pink noise also frequently arises in image sensors that acquire pixel data in time.

• Medical imaging: in computed tomography (CT), noise correlations are introduced
by the specific reconstruction technique that is being used. Noise created by the
backprojection algorithm (without reconstruction filter) is called ramp-spectrum noise,
and has an 1/ f frequency characteristic. Noise in magnetic resonance imaging
(MRI) is traditionally considered white Nowak (1999); Pižurica et al. (2003), although
many MRI scanner manufacturers have included a wide range of techniques to
allow for shorter scanning times (mainly to avoid patient motion artifacts in the
images). To name a few: K-space subsampling, partial Fourier, elliptical filtering
Aelterman, Deblaere, Goossens, Pižurica & Philips (2010). The use of these techniques
results in correlated noise in the reconstructed MRI images.

In Figure 3 another example is shown of an image corrupted with colored noise. The colored
noise was artificially generated by subjecting white noise to a filter with magnitude response√

P(ω) and subsequently by adding the filtered noise to the images.

2. Wavelets for the estimation of colored noise

Spatially stationary colored noise can be directly specified through its mean and
autocorrelation function and/or power spectral density. Given an observed noise signal w(p),
the estimation of these parameters is then a relatively simple task by, e.g., using the sample
mean and sample autocovariance estimates. However, in practice, it often happens that the
observed signal also contains information other than noise, this underlying signal is unknown
and it is the signal that we eventually want to estimate. Hence, we are observing y(p) instead
of w(p). The estimation of the noise statistics from the signal y(p) is then considerably more
difficult.
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Fig. 3. Illustration of the noise PSD: (a) Image with correlated noise, (b) The noise PSD (in
frequency domain, the center of the image is the origin of frequency space, white
corresponds with low noise powers, black with high noise powers).
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Fig. 4. Example of a piecewise linear signal with correlated noise. Our goal is to estimate the
noise power spectrum from the corrupted signal y(p). (a) The signals in time domain, (b)
The finest scale of the wavelet transform of the signals (Daubechies’ wavelet with 2
vanishing moments was used).

This problem is illustrated in Figure 4 for a piecewise linear signal corrupted with correlated
Gaussian noise. While the noise statistics can be easily estimated from w(p), we only have
the degraded signal y(p) at our disposal, which also contains an unknown signal component.
A straightforward solution is then to first estimate the signal x̂(p), to subtract it from y(p)
and finally to estimate the noise statistics from the difference y(p) − x̂(p). However, optimal

estimation of x(p) from y(p) requires knowledge of the noise statistics on its own, so we have
a chicken-and-egg problem. The common approach is then to use iterative techniques, which
first estimate x̂(p) and then later refine this estimate x̂(p) when better estimates for the noise
parameters become available.
In this chapter, we will take a different approach by relying on the properties of wavelets. The
wavelet transform Daubechies (1992); Mallat (1999) analyzes signals according to different
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6 Discrete Wavelet Transforms

scales and at different points in time. Starting from a fixed mother wavelet ψ(t), the input
signal is correlated with time-shifted and time-stretched (dilated) versions of this wavelet.
Correlations with wavelets with a large dilation factor then give the coarse features of the
signal, while correlations with wavelets with small dilation factors give the fine signal details.
Because the wavelet basis functions are well localized in time or space (this is in contrast to
the basis functions of e.g., the Fourier transform), wavelets are ideal candidates for analyzing
non-stationary signals, having statistical properties that vary in time (or space).
The Daubechies wavelets are a class of orthogonal wavelets for which the number of vanishing
moments for a given support is maximal. More specifically, the n-th moment of a real-valued
wavelet function ψ(t) is defined by:

μn =

ˆ +∞

−∞

tnψ(t)dt. (5)

The Daubechies wavelet of support 2N (with N vanishing moments) will have moments μn =
0 for 0 ≤ n < N. Now, let us denote the time-shifted and dilated basis functions of ψ(t) by:

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
(6)

where a is the dilation factor, b is a time shift, and the constant 1/
√

a is an energy
normalization factor. The continuous wavelet transform of a signal f ∈ L2(R) is defined
by:

W f (a, b) =

ˆ +∞

−∞

f (t)ψa,b(t)dt. (7)

Now, suppose that a signal is linear on a region larger than the support S(a) of the wavelet
function ψa,b(t):

f (t) = c · t if |t − b| ≤ S(a).

For Daubechies wavelets with at least two vanishing moments (N ≥ 2), the corresponding
wavelet coefficient W f (a, b) will be zero:

W f (a, b) =

ˆ +∞

−∞

c · tψa,b(t)dt

=
c√
a

ˆ +∞

−∞

tψ

(
t − b

a

)
dt

= c
√

a

ˆ +∞

−∞

(
at′ + b

)
ψ
(
t′
)

dt′

= ca3/2
ˆ +∞

−∞

t′ψ
(
t′
)

dt′ + cba1/2
ˆ +∞

−∞

ψ
(
t′
)

dt′

= 0

In the remainder of this chapter, for the ease of notation, we will consider one particular
wavelet subband (with scale a) at a time and we will denote the corresponding wavelet
coefficients by a tilde: for example x̃(p) are the wavelet coefficients for that particular scale
of x(p). The process can then be repeated for other subbands as well. Let us now apply a
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Daubechies wavelet transform to the piecewise linear signal from Figure 4(a). The result is
shown in Figure 4(b) for the finest scale of the DWT1: because of the vanishing moments of
the wavelet, the wavelet coefficients x̃(p) are zero, except at the positions where the derivative
of x(p) does not exist. At these positions, the wavelet coefficients have a negligibly small
magnitude. This nicely illustrates the sparsifying properties of the DWT for this type of signal.
Correspondingly, the wavelet coefficients ỹ(p) are (approximately) w̃(p), which means that
the chicken-and-egg problem is solved: the noise statistics can be directly estimated from
ỹ(p)! More specifically, the wavelet domain autocorrelation function of w(p) can in this case
be estimated based on the following relationship:

Rw̃(p) ≈ Rỹ(p) = E
[
ỹ(p′)ỹ(p+ p′)

]
. (8)

It then suffices to compute the sample autocorrelation function of ỹ(p). There are now two
issues remaining, which we will explain in the remainder of this Chapter:

1. The autocorrelation function of a signal in the wavelet domain (e.g. a for particular wavelet
subband) is not the same as the autocorrelation function of a signal in time domain.
Nevertheless, there exists a simple relation between both, as we will explain in Section
3.

2. Most real-life signals are not piecewise linear functions or piecewise polynomials. For such
signals, the wavelet coefficient magnitudes may become non-negligible, causing serious
biases to the final noise estimates. An example of a frequency modulated signal with
maximal frequency at half length of the signal, is given in Figure 5. Because of the high
local bandwidth of the signal at this time position, the wavelet is not able to cancel out
the signal, resulting in wavelet coefficients with a large magnitude. Consequently, the
approximation ỹ(p) ≈ x̃(p) does not hold anymore. However, it can be seen in Figure
5(b) that this phenomenon is well localized in time, hence, because the noise process is
assumed to be stationary, a plausible solution would be to estimate the noise statistics from
the wavelet coefficients ỹ(p) that have a small underlying components x̃(p) (ignoring the
outliers in Figure 5(b)). In Section 4 we will discuss solutions that generalize this idea by
using a statistical prior model for wavelet coefficients.

So far, we discussed the estimation of colored noise for one dimensional signals. The reasoning
can also be extended to higher dimensional signals, such as images. To illustrate this, a
noisy image together with its DWT are shown in Figure 6. It can be seen that the wavelet
subbands (LH, HL and HH in Figure 6) predominantly contain information on the noise,
with exception in the areas of textures and edges (the fine hairs of the mandrill). In these
areas, the (noise-free) wavelet coefficients x̃(p) still have a relatively large magnitude, but this
phenomenon is localized - in the surrounding smooth regions the wavelet coefficients ỹ(p)
mostly consist of noise.
For higher dimensional signals, the DWT is usually computed by using basis functions that
are tensor products of one dimensional wavelets and one dimensional scaling functions.
While this approach can efficiently deal with point-wise singularities (e.g. bumps, dots,
...), most structures in images are line-like singularities with a given direction. However,
the DWT can not well adapt to the arbitrary direction of the singularity: for example, the

1 Note that for other scales the plots are similar.
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Fig. 5. Example of a non-piecewise linear signal with correlated noise. Our goal is to estimate
the noise power spectrum from the corrupted signal y(p). (a) The signals in time domain, (b)
The finest scale of the wavelet transform of the signals (Daubechies’ wavelet with 2
vanishing moments was used).

transform can not make a distinction between features oriented at +45° and -45°. This
is known as the checkerboard problem of the DWT: due to the separability of the higher
dimensional wavelets, these wavelets appear as a checkerboard pattern which does not have
a dominant direction. Consequently, many nonzero wavelet coefficients may be needed to
represent a line singularity at an arbitrary orientation. To overcome this limitation there has
recently been a lot of interest in transforms that offer a better directional selectivity. Examples
are steerable pyramids Simoncelli et al. (1992), dual-tree complex wavelets Selesnick et al.
(2005a), Marr-like wavelet pyramids Van De Ville & Unser (2008), 2-D (log) Gabor transforms
Fischer et al. (2007); Lee (1996), contourlets Do & Vetterli (2005), ridgelets Candès (1998);
Do & Vetterli (2003), curvelets Candès et al. (2006) and shearlets Guo & Labate (2007). These
transforms are designed to have better sparsifying properties so that our outlier problem in
Figure 5(b) is alleviated (but not solved).
In the next subsections we will focus on the DWT as a primary multiresolution decomposition
tool, however, the same reasoning can also be applied to more recently developed transforms.

3. From time-domain to wavelet-domain autocorrelation functions

Because our goal is to estimate the autocorrelation function of noise in the wavelet
domain, it is very useful to know how the wavelet-domain and time-domain autocorrelation
functions are related to each other. When the autocorrelation function of the input signal
is known, a simple Monte-Carlo based technique is to generate colored noise with this
given autocorrelation function, then to transform the noise to the wavelet domain (or other
multiresolution transform domain) and subsequently to estimate the autocorrelation function
in this domain Portilla et al. (2003). While such computational method is attractive from an
implementation point of view, it does not bring a direct analytical relationship between both
autocorrelation functions. We will see in Section 6 that an analytical relationship will prove to
be very useful when estimating parametric noise PSDs.
Let us consider the wavelet analysis filterbank shown in Figure 7(a), where a signal with
z-transform F̃1(z) is filtered by a wavelet filter G(z) and a scaling filter H(z). Both signals
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Fig. 6. (a) Baboon image with noise, (b) DWT of the image.

are subsequently decimated by a factor of two. The analysis is iterated on the scaling
coefficients F2(z). Now, the input signal has an autocorrelation function in the z-domain
defined by R̃1(z) = E

[
F̃1(z)F̃1(z

−1)
]
. The filtered signals then have autocorrelation functions

respectively R̃1(z)G(z)G(z−1) and R̃1(z)H(z)H(z−1). Decimating the resulting signals by a
factor 2 leads to the signal with autocorrelation function Goossens et al. (2010):

R1(z) = E
[

F1(z)F1(z
−1)

]

=
1
2

(
R̃1

(
z

1
2

)
G
(

z
1
2

)
G
(

z−
1
2

)
+ R̃1

(
−z

1
2

)
G
(
−z

1
2

)
G
(
−z−

1
2

))
,

R2(z) = E
[

F2(z)F2(z
−1)

]

=
1
2

(
R̃1

(
z

1
2

)
H
(

z
1
2

)
H
(

z−
1
2

)
+ R̃1

(
−z

1
2

)
H
(
−z

1
2

)
H
(
−z−

1
2

))
. (9)

Hence, the wavelet-domain autocorrelation function R1(z) can be directly computed from the
autocorrelation function of the input signal R̃1 (z) and the wavelet and scaling filters. This
involves two simple convolutions and a decimation operation of the input autocorrelation
function R̃1 (z). For subsequent decompositions (coarser scales of the wavelet transform), this
process can be iterated by re-inserting R̃1 (z) = R2(z) in (9).
To show that this reasoning also applies to other wavelet transforms, we will briefly discuss
the adaptation to the dual-tree complex wavelet transform (DT-CWT) Kingsbury (2001) in
one dimension. Extension to higher dimensions is then straightforward. The 1D DT-CWT is
implemented using two parallel DWT filter banks, the first filter bank uses the real parts of
the complex wavelet and scaling filters (respectively G1(z) and H1(z)), while in the second
filter bank, the imaginary parts of the wavelet and scaling filters (respectively G2(z) and
H2(z)) are applied. Finally, the output of both filter banks are mixed together (see the right
square in Figure 7(b)), applying a 45° rotation in the complex plane. This last step is in fact
only necessary in 2D (or higher dimensions), where complex wavelets are constructed using
tensor products of 1D complex wavelets. The translation of the resulting complex-valued
filter banks to parallel real-valued filter banks then automatically results into this phase
modulation in the complex plane (for more details, see Selesnick et al. (2005b)). Defining
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Fig. 7. Analysis filterbank for (a) the DWT, (b) the DT-CWT.

R̃2(z) = E
[
F̃2(z)F̃2(z

−1)
]
, application of (9) to the DT-CWT leads to the following equations:

R1(z) = E
[

F1(z)F1(z
−1)

]
=
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(
z

1
2

)
H1

(
z−

1
2

)
+ R̃1

(
-z

1
2

)
H1

(
-z

1
2

)
H1

(
-z−

1
2

))

R4(z) = E
[

F4(z)F4(z
−1)

]
=

1
2

(
R̃2

(
z

1
2

)
H2

(
z

1
2

)
H2

(
z−

1
2

)
+ R̃2

(
-z

1
2

)
H2

(
-z

1
2

)
H2

(
-z−

1
2

))

S1,2(z) = E
[

F1(z)F2(z
−1)

]
=

1
2

(
S̃1,2

(
z

1
2

)
G1

(
z

1
2

)
G2

(
z−

1
2

)
+ S̃1,2

(
-z

1
2

)
G1

(
-z

1
2

)
G2

(
-z−

1
2

))
(10)

where S̃1,2 (z) is the cross-power spectrum between F̃1(z) and F̃2(z): S̃1,2(z) =

E
[
F̃1(z)F̃2(z

−1)
]
. The final autocorrelation functions (after the complex phase modulation)

are computed from R1(z), R2(z) and S1,2(z), as follows:

R
′
1(z) = E

[
F
′
1(z)F

′
1(z

−1)
]
=

1
2
(R1(z) + R2(z)) +

1
2

(
S1,2(z) + S1,2(z

−1)
)

,

R
′
2(z) = E

[
F
′
2(z)F

′
2(z

−1)
]
=

1
2
(R1(z) + R2(z))−

1
2

(
S1,2(z) + S1,2(z

−1)
)

. (11)

In Algorithm 1, an OCTAVE/MATLAB program is given for computing the autocorrelation
functions in case of the DWT and DT-CWT, according to (9) and (10)-(11). In this program,
the variables lo and hi respectively signify the scaling and wavelet coefficients. It can
be seen that all operations are linear operations, which makes it possible to express the
conversion from time-domain to wavelet-domain as a matrix multiplication applied to the
input autocorrelation coefficient vector.
In Figure 8, an example of a parametric autocorrelation function and its DWT decomposition,
according to (9), is shown. Due to the cone of influence (Mallat, 1999, p. 174), the support
size of the autocorrelation function decreases when increasing the wavelet scale (i.e., when
analyzing finer scales). Interesting to note is the envelope of the noise variance in the wavelet
domain: the noise variance is identical to the noise autocorrelation function evaluated in
the origin (which is in this case also the maximum of the autocorrelation function). When
one modifies the center band frequency of the noise PSD in Figure 8(b), this also directly
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Algorithm 1 OCTAVE/MATLAB program for computing wavelet domain autocorrelation
functions.

f = [1 2 1 ] ; % i n p u t a u t o c o r r e l a t i o n f u n c t i o n

% d i s c r e t e wavelet t rans form (DWT)

l o = conv ( f , conv ( h , h ( end : −1 : 1 ) ) ) ;

h i = conv ( f , conv ( g , g ( end : −1 : 1 ) ) ) ;

l o = l o ( 1 : 2 :end ) ; h i = h i ( 1 : 2 :end ) ;

% dual−t r e e complex wavelet t rans form (DT−CWT)

lo1 = conv ( f , conv ( h1 , h1 ( end : −1 : 1 ) ) ) ;

h i1 = conv ( f , conv ( g1 , g1 ( end : −1 : 1 ) ) ) ;

lo2 = conv ( f , conv ( h2 , h2 ( end : −1 : 1 ) ) ) ;

h i2 = conv ( f , conv ( g2 , g2 ( end : −1 : 1 ) ) ) ;

cr1 = conv ( f , conv ( h1 , h2 ( end : −1 : 1 ) ) ) ; % cross−c o r r e l a t i o n

cr2 = conv ( f , conv ( h2 , h1 ( end : −1 : 1 ) ) ) ;

lo1 = lo1 ( 1 : 2 : end ) ; lo2 = lo2 ( 1 : 2 :end ) ; % decimat ions

hi1 = hi1 ( 1 : 2 : end ) ; h i2 = hi2 ( 1 : 2 :end ) ;

cr1 = cr1 ( 1 : 2 : end ) ; cr2 = cr2 ( 1 : 2 :end ) ;

h i1_out = 0 . 5 * ( h i1 +hi2 ) + 0 . 5 * ( cr1+cr2 ) ; % complex phase modulat ion

hi2_out = 0 . 5 * ( h i1 +hi2 )−0.5*( cr1+cr2 ) ;
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Fig. 8. (a) Wavelet analysis of the autocorrelation function (in z-domain)

R(z) = ∑n
β2

π(n2−β2)

(
1 + cos

(
πn
β

))
zn across different scales and for different values of β.

Daubechies’ wavelet with two vanishing moments was used. (b) Power spectral density
R(ejω) for different values of β.

influences the noise variances of the individual wavelet subbands (see Figure 8(a)), due to
the frequency-selective behavior of the wavelets at different scales. For example, increasing
the parameter β has as effect that the noise variance at wavelet scale 4 decreases. This also
suggests that, when a thresholding strategy (e.g. soft/hardthresholding) would be used to
suppress the colored noise process, the thresholds would need to be level-dependent, e.g., as
proposed by Johnstone and Silverman Johnstone & Silverman (1997).
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12 Discrete Wavelet Transforms

4. Statistical priors for noise estimation

As already illustrated in Figure 5, the DWT will in general not fully suppress the signal.
Consequently, wavelet-based noise estimation techniques need to take into account that the
wavelet coefficients contain a non-negligible signal component. One of the earliest and
well-known wavelet-based noise estimation techniques is the MAD estimator from Donoho,
which estimates the noise standard deviation as follows Donoho & Johnstone (1995):

σ̂ =
Medianp (|ỹ(p)|)

0.6745
. (12)

The estimator gives level dependent estimates of the noise standard deviation in every
wavelet subband. Based on robust statistics, the non-zero signal coefficients are considered to
be outliers. By computing a median instead of a more traditional mean, the outlier influences
in the end result are significantly reduced.
In this chapter, we are interested in estimating the noise correlations or covariances (next to
the noise standard deviation), therefore the estimator (12) can not directly be used. For this
purpose, a general class of robust S estimators for the covariance (see, e.g., Campbell et al.
(1998); Pena & Prieto (2001)) can be used. These estimators detect outliers after finding
projections that maximize the kurtosis of the data. An illustration of such a technique is given
in Figure 9: the robust S estimators attempt to estimate the covariance of the noise (the black
dots in Figure 9). In this case this is equivalent to determining the sizes of the axes and the
orientation of the ellipse shown in the figure (the ellipse can be seen as an isocontour of the
probability function of the data). Because of the presence of outliers (the crosses in Figure 9),
this is not a trivial task. The robust estimation techniques then try to identify the outliers, in
an iterative process.
While robust S estimators are unfamiliar with the structure of the data they are applied to,
in our application, we have some more information on the data that we can take into our
advantage. In particular, due to the sparsifying properties of the chosen multiresolution
transform, the identification of the outliers (signal components) is somewhat easier: the
multiresolution transform already performs a projection to maximize the kurtosis. Instead
of relying on robust statistics, we will incorporate prior knowledge on the noise-free wavelet
coefficients to further improve the estimation performance using Bayesian techniques. Our
noise estimation approach will then consist in 1) specifying a statistical prior distribution for
the noise-free signal coefficients, 2) maximum likelihood estimation of the unknown noise
covariance matrix.
In the next subsections, we will briefly review a number of statistical models for noise-free
wavelet coefficients and we will explain how these models can be used to perform noise
estimation.

4.1 The generalized Laplace distribution

It has been found in several studies Field (1987); Mallat (1989) that histograms of wavelet
coefficients (or generally coefficients of bandpass filtered images) have a highly kurtotic
shape. An example is shown in Figure 10(a)-(b) for the Baboon image: the wavelet
coefficient histogram reveals a sharp peak and a heavy tail. The sample kurtosis of
the wavelet coefficients (6.98) is much higher than the theoretical kurtosis of a Gaussian
distribution (which is 3). Several authors Antonini et al. (1992); Chang et al. (1998); Mallat
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Fig. 9. Joint histogram of neighboring wavelet coefficients for Figure 5(b). Black dots are
noise coefficients, crosses are the outliers due to signal presence.
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Fig. 10. (a) wavelet subband LH1 of the Baboon image (black corresponds to a large coefficient
magnitude, white to small magnitudes, the contrast of the image was enhanced to better
reveal the details), (b) histogram of the wavelet coefficients in (a), (c) multivariate Gaussian
Scale Mixture distribution.

(1989); Moulin & Liu (1999); Simoncelli & Adelson (1996) proposed to use a generalized Laplace

distribution (GLD, also known as generalized Gaussian distribution) to model the kurtotic
behavior of wavelet coefficients. The GLD is defined as:

f x̃ (x̃) =
ν

2sΓ(1/ν)
exp

(
−

∣∣∣∣
x̃

s

∣∣∣∣
ν)

, (13)

where Γ(x) =
´ +∞

0 tx−1e−tdt is the Gamma function. The parameter s is scale parameter of
the distribution, which controls the variance of the distribution. The parameter ν is a shape
parameter that is related to the kurtosis of the distribution, given by:

κ =
Γ(5/ν)Γ(1/ν)

Γ2(3/ν)
− 3. (14)

The shape parameter ν is typically in the range [0.5, 1]. Because in practice, the actual value
of this parameter is unknown, the parameter value is usually estimated from the observed
data. This may be done using the maximum likelihood method or the method of moments
Srivastava et al. (2003).
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14 Discrete Wavelet Transforms

4.2 Elliptically symmetric distributions and Gaussian Scale Mixtures

The GLD from (13) is a univariate distribution that can well model highly kurtotic histograms
of wavelet coefficients, however this distribution does not allow capture correlations between
different observations x̃. This can be achieved by using multivariate distributions, where
dependencies between neighboring wavelet coefficients can be modeled. For these densities,
a neighborhood of a fixed size (e.g. 3 × 3 in 2D) is defined around every wavelet coefficient.
Next, every neighborhood2 can be represented by a vector, e.g., by using column stacking.
In the following, we will use bold letters x̃(p), w̃(p), ỹ(p) to denote neighborhood vectors
extracted by column stacking. Statistical studies Portilla et al. (2003); Srivastava et al. (2003)
have indicated that, next to the kurtotic behavior, the noise-free wavelet coefficients are
typically symmetric around the mode and the joint histograms have elliptical contours. This
suggests the use of elliptically symmetric distributions (ESD) to model these characteristics.
The ESD is defined by Kotz & Kozubowski (2001):

fx̃ (x̃) = kd |Cx|−1/2 g

(∣∣∣(x̃− m)C−1
x (x̃ − m)

∣∣∣
1/2

)
, (15)

where m is the mean of the distribution (typically m = 0), g(u) is a real-valued function
(called density generator function), d is the length of x̃ and kd is a proportionality constant.
A multivariate extension of the GLD is obtained by using the following density generator
function Kotz et al. (2000): g(u) = exp

(− |u|ν
)
. The resulting distribution is known as

the multivariate exponential power distribution (EPD). For our modeling task, the EPD
has a number of practical limitations: 1) the marginal densities of the distribution are not
EPD-distributed and 2) for estimation purposes, the exponential power ν often leads to
integral expressions that are analytically intractable.
Wainwright & Simoncelli (2000) noted that when the wavelet filter responses are normalized
by dividing by the square root of the local variance, the statistics of the normalized coefficients
are approximately Gaussian. The Gaussian Scale Mixture (GSM), see Figure 10(c), was then
proposed to account both for the correlations and the variability in local variance of the
wavelet coefficients. A random variable x̃ is GSM distributed if it can be written as the
product of a zero mean Gaussian random vector ũ and a scalar positive random variable√

z Andrews & Mallows (1974):

x̃
d
=

√
zũ (16)

where d
= denotes equality in distribution. The scalar variable z is not observed and is therefore

also called ’hidden’ multiplier or mixing variable. Because of scaling ambiguity between
√

z

and ũ, the hidden multiplier is often assumed to be normalized such that E [z] = 1. Prior
distributions for z include Jeffrey’s non-informative3 prior Portilla et al. (2003), the log-normal

prior Portilla & Simoncelli (2001), the exponential distribution Selesnick (2006) and the Gamma

distribution Fadili & Boubchir (2005); Srivastava et al. (2002).

2 Quite often, the neighborhoods are chosen to be overlapping, despite of the fact that this destroys the
mutual independence of the different neighborhood vectors. This is done to arrive at a sufficiently large
number of neighborhood vectors (for example, for a 3 × 3 neighborhood, the number of vectors will be
multiplied by 9), which will generally result in more reliable estimates.

3 Note that in this case, the mathematical expectation E [z] does not exist.
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The GSM also belongs to the family of ESDs. The density generator function is given by:

g(x) =

ˆ +∞

0
fz(z)z

− d
2 exp

(
− 1

2z
x2
)

dz. (17)

For some hidden multiplier densities fz(z) a closed-form expression can be found for
g(x), although most often, numerical integration is performed over a closed interval. In
Gómez et al. (2008) it has been shown that the EPD is also a GSM distribution, for some
values of the shape parameter ν ∈]0, 1]. However, the distribution fz(z) depends on d and
has a complicated analytical expression (see Gómez et al. (2008)).

4.3 Other prior distributions

In literature, several other prior distributions for noise-free wavelet coefficients have
been proposed. For example, the Student-T distribution Tzikas et al. (2007), Alpha-stable

distributions Achim et al. (2001); Nikias & Shao (1995) and the Cauchy distribution
Rabbani et al. (2006). All these heavy tailed distributions have a GSM representation,
hence studying general GSMs automatically covers all of these distributions. Next, a
complex extension of the Gaussian Scale Mixture density has been proposed for modeling
complex-valued wavelet coefficients in Vo et al. (2007). This complex GSM distribution is a
special case of the GSM distribution, with a special condition imposed to the covariance matrix
of the distribution. Next to GSMs, mixtures of a Gaussian distribution and a point mass at zero

were used in Abramovich et al. (1998); Clyde et al. (1998), mixtures of two Gaussian distributions

in Crouse et al. (1998); Fan & Xia (2001); Romberg et al. (2001) and mixtures of truncated or
quasi-Laplace distributions in Pižurica & Philips (2006); Shi & Selesnick (2006).

5. Noise covariance estimation techniques

In this Section, we will use the GSM prior distribution from Section 4 to design a noise
covariance estimation technique. We therefore start from the signal-plus-noise model from
equation (1). The assumed addititivity of the signal and noise leads to an equivalent
expression in the wavelet domain:

ỹ(p) = x̃(p) + w̃(p), (18)

where w̃(p) is spatially stationary Gaussian distributed vector of length d with mean 0

and covariance Cw̃. Due to the assumed noise stationarity, the covariance matrix Cw̃ has
dimensions d × d and is directly related to the noise autocorrelation function Rw̃(p): the
covariance between two coefficients at positions p and q only depends on the difference in
location between both positions:

(Cw̃)p,q = Rw̃(q − p) (19)

where vector-valued indices in (Cw̃)p,q are used as a short notation for their respective
column-stacked ordening. By (19), the estimation of the noise autocorrelation function is
equivalent to the estimation of the covariance Cw̃. Next, the noise-free coefficients are GSM
distributed with covariance matrix Cx̃. For the GSM model, we have x̃|z ∼ N (0, zCũ) .
Consequently, the density of ỹ is a specific case of a Gaussian mixture model:

269Wavelet-Based Analysis and Estimation of Colored Noise

www.intechopen.com



16 Discrete Wavelet Transforms

ỹ|z ∼ N (0, zCũ +Cw̃) (20)

where the signal covariance is also unknown. We remark that this matrix can be eliminated

relying on Cũ +Cw̃ = Cỹ (this directly follows from (1), when E [z] = 1):

ỹ|z ∼ N
(
0, zCỹ + (1 − z)Cw̃

)
. (21)

The signal-plus-noise covariance matrix can be estimated using the method of maximum

likelihood: Ĉỹ = 1
N ∑p ỹ(p)ỹT(p), with N the number of coefficients in the considered

wavelet subband.

5.1 Generalized Expectation-Maximization algorithm

In Portilla (2004), a Generalized Expectation-Maximization (GEM) algorithm is given to
estimate the noise covariance matrix. Based on an initial estimate of the noise covariance
(typically chosen as C

(0)
w̃ = cCỹ, with 0 < c < 1 a constant), the noise covariance matrix is

iteratively updated according to the following rule:

C
(i+1)
w̃ =

∑p P
(

z < z0|ỹ(p), Θ(i)
)
ỹ(p)ỹT(p)

∑p P
(

z < z0|ỹ(p), Θ(i)
) , (22)

where i is the iteration index and Θ(i) denotes the GSM model parameters at iteration i and

where z0 is a small positive constant. Equation (22) can be motivated by the observation that
for z sufficiently small, Cỹ|z = Cw̃. The posterior probability that z < z0, conditioned on an

observation vector ỹ(p), i.e., P
(

z < z0|ỹ(p), Θ(i)
)

is then used as a weight in the averaging

process. We can understand this as follows: P
(

z < z0|ỹ(p), Θ(i)
)

represents the probability
that a given observation vector contains a negligible signal component. The estimated noise
covariance is then the average over all sample covariances ˜y(p)ỹT(p), weighted by the
probability that the considered sample contains a negligible signal component.
Because the updating rule (22) is not guaranteed to increase the likelihood of the data, at
every iteration it is checked if this new covariance estimate results in a higher likelihood:
Q(Θ(i), Θ(i+1)) > Q(Θ(i), Θ(i)), with Q(Θ(i), Θ) the expected log-likelihood function of the
data:

Q(Θ(i), Θ) = E
[
log fz|ỹ (z|ỹ, Θ) |ỹ, Θ(i)

]

= ∑
p

ˆ +∞

0
fz|ỹ

(
z|ỹ(p), Θ(i)

)
log fz|ỹ (z|ỹ(p), Θ)dz. (23)

In case the expected log-likelihood (23) decreases, it is proposed in Portilla (2004) to perform
a gradient ascent step:
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C
(i+1)
w̃ = C

(i)
w̃ + λ

∂Q(Θ(i), Θ)

∂Cw̃

∣∣∣∣∣
Cw̃=C

(i)
w̃

= C
(i)
w̃ +

λ

2
N

ˆ +∞

0
fz (z) (1 − z)C−1

z (I − ĈzC
−1
z )dz, (24)

where

Cz = zCỹ + (1 − z)Cw̃, (25)

Ĉz =
∑p fz|ỹ

(
z|ỹ(p), Θ(i)

)
ỹ(p)ỹT(p)

∑p fz

(
z|ỹ(p), Θ(i)

) . (26)

Although a good fitting to the data was reported in Portilla (2004), the technique requires the
relatively costly evaluation of the expected log-likelihood function (23). Another issue is the
choice of the constant z0. In Portilla (2004), this was solved by using a discrete GSM mixture
for the hidden multiplier density fz(z). By assigning a non-zero probability mass at z = 0, the

probability P
(

z = 0|ỹ(p), Θ(i)
)

is guaranteed to be non-zero.

5.2 Constrained EM algorithm using augmented Lagrangian optimization

In this subsection, we present a novel, alternative estimation method that does not need
evaluation of the expected log-likelihood function. First, we assume a discrete hidden
multiplier density P (z = zk) = αk, with k = 1, ..., K. The parameters can be initialized in
a manner similar to Portilla et al. (2003):4

zk = exp (−3 + 7(k − 1)/(K − 1)) , k = 1, ..., K

αk = 1/K. (27)

In contrast to the GEM algorithm, where Cw̃ is optimized directly, we take a slightly
different approach. We rely on the fact that the density fỹ (ỹ) corresponds to a Gaussian
mixture model. This allows us to use the EM algorithm for Gaussian mixtures, with some
modifications that we will describe next. Let us denote by Ck the covariance matrices of
the mixture components. Because of (20), the mixture covariance matrices should be subject
to the constraint zkCũ + Cw̃ = Ck. Our method now consists of optimizing the expected
log-likelihood function (as in a regular EM algorithm Dempster et al. (1977)), but now subject
to the GSM constraint:

max
Θ

E
[
log fz|ỹ (z|ỹ, Θ) |ỹ, Θ(i)

]
s.t. zkCũ +Cw̃ = Ck (28)

To solve this constrained problem, we use the augmented Lagrangian (AL) method. In the AL
method, a constrained problem is translated to an unconstrained problem with a Lagrange

4 Here, values zmin and zmax from (Portilla et al., 2003, p. 1343) are slighly modified to have a good
sampling of the continuous pdf fz(z) with a small number of components K (for example, K = 6).
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18 Discrete Wavelet Transforms

multiplier and an extra penalty term. In our case, the unconstrained problem is given by:

max
Θ

E
[
log fz|ỹ (z|ỹ, Θ) |ỹ, Θ(i)

]
− 2

K

∑
k=1

Vec [ak]
T Vec [Ck-zkCx̃-Cw̃] -

K

∑
k=1

λk ‖Ck-zkCx̃-Cw̃‖2
F

(29)
where ak, k = 1, ..., K are d × d matrices of Lagrange multipliers, λk are penalty factors, Vec [·]
converts a matrix to a column vector (e.g., using column stacking) and ‖·‖F is the matrix
Frobenius norm. Taking the derivatives of (29) with respect to Cx and Cw and setting to zero
leads to a linear system of equations, in block matrix form:

(
μ2I μ1I

μ1I I

)⎛
⎝C

(i+1)
x̃

C
(i+1)
w̃

⎞
⎠ =

⎛
⎝

∑
K
k=1 zk

(
λkC

(i)
k +ak

)

∑
K
k=1

(
λkC

(i)
k + ak

)

⎞
⎠ (30)

with μ1 = ∑
K
k=1 λkzk and μ2 = ∑

K
k=1 λkz2

k . Similarly, maximizing (29) with respect to Ck leads
to the following update equation:

C
(i+1)
k =

∑p P
(

z = zk|ỹ(p), Θ(i)
)
ỹ(p)ỹT(p)− 2λk

(
zkC

(i)
x̃ +C

(i)
w̃ − ak

)

∑p P
(

z = zk|ỹ(p), Θ(i)
)
− 2λk

, k = 1, ..., K (31)

Additionally, the Lagrange multipliers are updated in every iteration:

a
(i+1)
k = a

(i)
k +

λk

2

(
C

(i+1)
k − zkC

(i+1)
x̃ −C

(i+1)
w̃

)
. (32)

This process is repeated iteratively until a given convergence criterion has been reached (for

example
∥∥∥C(i+1)

w̃ −C
(i)
w̃

∥∥∥
F
< ǫ, with ǫ a small positive number). The penalty weights λk are

chosen in order to speed up the convergence of the algorithm. In our method, we choose λk

inversely proportional to zk: λk = z1/zk, with z1 < z2 < · · · < zK. The complete algorithm is
summarized in Algorithm 2.
Important to mention is that the above algorithm may fail, if the matrix in the update formula
(30) is singular, i.e. if μ2

1 = μ2. It is worthful to note that the kurtosis of the wavelet subband
coefficients is given by 3μ2/μ2

1 − 3 and becomes zero if μ2
1 = μ2. In this case, the probability

density function fỹ (ỹ) is Gaussian, and every component of the GSM model will have the
same hidden multiplier value zk = μ1, such that also fx̃ (x̃) is Gaussian. Consequently, it
becomes impossible to separate the signal from the noise: the highly kurtotic behavior of the
noise-free coefficients x can not be exploited. By our specific initialization (27), we actually
avoided the latter problem.
The elegance of this algorithm lies in the fact that simple update formulas are being used
and that the complete algorithm is guaranteed to converge (albeit to a local maximum of the
objective function, as with nearly all EM type of algorithms).

6. Estimation of a parametric noise PSD

In the previous Section, two methods were presented to estimate the noise covariance matrix
in the wavelet domain. Although these covariance matrices can be directly used in, e.g., blind
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Algorithm 2 Constrained EM algorithm for estimating the noise covariance matrix Cw̃.

Cỹ = 1
N ∑

p

ỹ(p)ỹT(p), C(0)
w̃ = 9

10Cỹ, C(0)
x̃ = 0.1Cỹ, C(0)

k = zkC
(0)
x̃ +C

(0)
w̃ , α

(0)
k = 1

K , λk =
z1
zk

.

repeat

α̂
(i+1)
k = 1

N ∑p P (z = zk|y(p), Θ) , for k = 1, ..., K

C
(i+1)
k =

∑
p

P(z=zk|ỹ(p),Θ(i))ỹ(p)ỹT(p)−2λk

(
zkC

(i)
x̃ +C

(i)
w̃ −a

(i)
k

)

∑
p

P(z=zk|ỹ(p),Θ(i))−2λk

, for k = 1, ..., K

(
C

(i+1)
x̃

C
(i+1)
w̃

)
= 1

μ2−μ2
1

(
I −μ1I

−μ1I μ2I

)⎛
⎝∑

K
k=1 zk

(
λkC

(i+1)
k + a

(i)
k

)

∑
K
k=1

(
λkC

(i+1)
k + a

(i)
k

)
⎞
⎠

a
(i+1)
k = a

(i)
k + λk

2

(
C

(i+1)
k − zkC

(i+1)
x̃ −C

(i+1)
w̃

)
for k = 1, ..., K

i ← i + 1

until convergence (
∥∥∥C(i+1)

w̃ −C
(i)
w̃

∥∥∥
F
< ǫ).

Input signal Wavelet transform

Wavelet subbands

Parametric noise 

autocorrelation function

Wavelet-based

autocorrelation 

decomposition

Parametric autocorr. function 

for each wavelet subband

Parameter

estimation

Estimate of the

noise autocorr.

function

Fig. 11. Overview of the proposed algorithm for the estimation of a parametric noise PSD.

denoising approaches (see Portilla (2004)), the covariance matrices are not directly related to
the noise PSD (in the sense that, after estimation of the covariances matrices the noise PSD is
still unknown). We here present a novel approach to estimate the parameters of a parametric
noise PSD based on the covariance matrix estimation methods. As far as the authors are
aware of, such a technique does not yet exist. This approach also combines all the different
techniques discussed in this Chapter. An overview of our algorithm is given in Figure 11.
First, the noise is assumed to have a PSD with an unkown set of parameters β. Consequently,
by the Wiener-Khinchin theorem, the noise autocorrelation function Rw,β(p) is known. The
wavelet-domain noise autocorrelation functions can be computed from Rw,β(p), as explained
in Section 3. Using the formula (19), the parametric wavelet domain noise covariance matrix
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Cw̃(β) can be found. Defining Rw(β) =
[
Rw,β(p)

]
, the noise covariance matrix can be

expressed in terms of Rw(β) by using a matrix multiplication:

Cw̃(β) = QRw(β) (33)

Then, the parameter β can be estimated iteratively in every iteration of Algorithm 2.
Therefore, we minimize the squared matrix Frobenius norm:

β(i+1) = arg min
β

∥∥∥C(i+1)
w̃ −QRw(β)

∥∥∥
2

F
. (34)

Because Rw(β) is not a linear function in general, this is a non-linear optimization problem,
which can be solved using gradient descent or Gauss-Newton techniques. The gradient
descent step is given by:

β(i+1) = β(i) + γ
(
C

(i+1)
w̃ −QRw

(
β(i)

))T
Q

∣∣∣∣
∂Rw

∂β

∣∣∣∣
β=β(i)

. (35)

Note that in practice this equation may be iterated several times until convergence in
an inner iteration, before the other model parameters are updated. As an example,
consider the autocorrelation function from Figure 8, corresponding to the PSD P(ω) =
β sin (β |ω|) I [β |ω| < π], with I [·] the indicator function. Application of the inverse DTFT

gives the spatial autocorrelation function Rw,β(n) = β2
(

1 + cos
(

πn
β

))
/
(
π(n2 − β2)

)
. Its

derivative with respect to β is given by:

∂Rw,β(n)

∂β
=

n

π(n2 − β2)2

(
sin

(
πn

β

)
π
(

n2 − β2
)
+ 2βn

(
1 + cos

(
πn

β

)))
. (36)

Substitution of (36) into (35) then gives the desired update step.
An interesting special case is the estimation of white Gaussian noise, with autocorrelation
function Rw,β(n) = sδ(n), with s the unknown noise variance. In this case, (34) comprises a
least-squares problem, with a linear solution.

7. Experimental results

In this Section, we will compare the performances of the noise estimation methods from
Section 5. For this task, both iterative algorithms (the GEM algorithm and the constrained EM
algorithm), are initialized using the same set of parameters. The initial values used are given
in Algorithm 2 and in (27). The number of mixture components used is 6: K = 6. Five images
(Barbara, Baboon, Lena, Boats and Peppers) are transformed to the wavelet domain, using the
Daubechies wavelet with two vanishing moments. Artificial Gaussian noise with a known
(ground-truth) autocorrelation function is added to each LH1-subband, which allows us to
compute the estimation error afterwards. This ground-truth noise autocorrelation function is

given by: σ2β4
(

1 + cos
(

πx
β

)) (
1 + cos

(
πy
β

))
/
(
π(x2 − β2)(y2 − β2)

)
, with β = 3/2 and

with σ ∈ {1, 5, 10, 15, 25, 50}. Then, after every iteration of both algorithms, the log-likelihood

function log fỹ|Θ (ỹ|Θ) and the quadratic error
∥∥∥Ĉw̃ −Cw̃

∥∥∥
2

F
are computed, which allows us

to compare the performances of both algorithms as function of the iteration number i. Both
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Fig. 12. Comparison of the performance of the GEM algorithm Portilla (2004) and the
constrained EM algorithm Subsection 5.2, as a function the iteration number i. Results are
averaged over 5 images and 6 noise levels. (left) average log-likelihood log fỹ|Θ (ỹ|Θ), (right)

average estimation error in logarithmic scale 10 log10

(∥∥∥Ĉw̃ −Cw̃

∥∥∥
2

F

)
.

Table 1. Comparison of the performance of the GEM algorithm Portilla (2004) and the
constrained EM algorithm (CEM) from Subsection 5.2, for 5 images and 6 noise levels. Shown

is the estimation error in logarithmic scale 10 log10

(∥∥∥Ĉw̃ −Cw̃

∥∥∥
2

F

)
after 40 iterations.

σ = 1 σ = 5 σ = 10 σ = 15 σ = 25 σ = 50
Image CEM GEM CEM GEM CEM GEM CEM GEM CEM GEM CEM GEM
Barbara 14.25 14.56 -12.98 -11.78 -26.63 -23.21 -29.29 -28.08 -36.50 -31.83 -37.93 -35.50
Baboon 24.02 28.74 -3.79 2.13 -14.84 -7.23 -21.88 -12.82 -25.60 -18.60 -30.75 -28.38

Lena 9.56 14.42 -16.77 -12.23 -23.25 -23.34 -29.54 -29.68 -37.99 -37.17 -38.38 -38.93

Boats 7.72 9.66 -17.77 -16.55 -30.35 -26.31 -30.09 -28.59 -35.83 -32.65 -37.90 -37.06
Peppers 11.28 17.06 -14.34 -9.92 -24.71 -21.25 -30.10 -27.86 -31.84 -34.05 -40.29 -36.51
Average 13.37 16.89 -13.13 -9.67 -23.96 -20.27 -28.18 -25.41 -33.55 -30.86 -37.05 -35.28

algorithms maximize the log-likelihood function, note however that this does not necessarily
results in minimizing the quadratic error. The results are shown in Figure 12 and Table 1. It can
be seen that while the GEM algorithm converges to its final value, on average the constrained
EM algorithm is able to reach a solution with a higher log-likelihood function and a lower
error. We remark that the objective function is non-convex, such that both algorithms can get
trapped in local maxima. Although both algorithms use the same initialization, in most of
the experiments (see Table 1) the constrained EM gives a more accurate estimate of the noise
covariance matrix.
In Figure 13 and Figure 14, we used the noise estimation method based on the constrained
EM algorithm in combination with the BLS-GSM Portilla et al. (2003) denoising method, in
order to perform blind noise removal. An undecimated wavelet transform of 3 levels with the
Daubechies wavelet with eight vanishing moments was used. The PSD of the Gaussian noise
is in the captions of Figure 13 and Figure 14. Clearly, the combined method is well able to
distinguish signal information from noise information, leading to a succesful removal of the
noise while preserving signal structures.

275Wavelet-Based Analysis and Estimation of Colored Noise

www.intechopen.com



22 Discrete Wavelet Transforms

(a) Original image (b) With artificial noise (PSNR=20.17dB) (c) Denoised (PSNR=41.21dB)

Fig. 13. Blind denoising results (using the BLS-GSM denoising method and the proposed
constrained EM noise estimation technique). Noise PSD
P(ω) ∼ exp(−4000((ωx/π − 0.1)2 + (ωy/π − 0.12)2)).

(a) Original image (b) With artificial noise (PSNR=17.25dB) (c) Denoised (PSNR=29.00dB)

Fig. 14. Blind denoising results (using the BLS-GSM denoising method and the proposed
constrained EM noise estimation technique). Noise PSD P(ω) ∼ exp(−2000((ωx/π −
0.1)2 + (ωy/π − 0.12)2))+ exp(−3000((ωx/π + 0.15)2 + (ωy/π − 0.22)2)) + 10−3.

8. Conclusion

In this chapter, we investigated the estimation of stationary colored noise, which is most
efficiently described in a Fourier basis using the power spectral density (PSD). Because of
the time or spatial locality of signal structures, estimation of colored noise is best performed
in a transform domain that allows to adapt to the signal locality. We have shown that
wavelets are very good candidates for this task: their vanishing moment properties allow
us to complete suppress smoothly varying signals, such that efficient noise estimation can
directly be performed on a single wavelet subband. However, in practice, signals are not
smoothly varying and may contain transitions (such as edges and textures in images). To take
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this into account, we have presented several prior models for noise-free wavelet coefficients.
These prior models are then used in an expectation-maximization algorithm, which gives us
an estimate of the noise covariance matrix for a given wavelet subband. We have further
shown how this covariance matrix is related to the noise autocorrelation function in spatial or
time domain. This relationship can then be used, e.g., to estimate parameters of parametric
PSDs, yielding reliable and accurate estimates for noise PSDs. Because noise is present
in most real-life signals and images, many signal and image processing methods can be
further improved by taking advantage of estimated noise characteristics using techniques as
described in this chapter.
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