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1. Introduction

The discrete wavelet transform (DWT) has an established position in processing of signals
and images in research and industry. The first DWT structures were based on the compactly
supported conjugate quadrature filters (CQFs) (Smith & Barnwell, 1986, Daubechies, 1988).
However, a drawback in CQFs is related to the nonlinear phase effects such as image
blurring and spatial dislocations in multi-scale analyses. On the contrary, in biorthogonal
discrete wavelet transform (BDWT) the scaling and wavelet filters are symmetric and linear
phase. The biorthogonal filters (BFs) are usually constructed by a ladder-type network
called lifting scheme (Sweldens, 1988). The procedure consists of sequential down and
uplifting steps and the reconstruction of the signal is made by running the lifting network in
reverse order. Efficient lifting BF structures have been developed for VLSI and
microprocessor environment (Olkkonen et al. 2005; Olkkonen & Olkkonen, 2008). The
analysis and synthesis filters can be implemented by integer arithmetics using only register
shifts and summations. Many BDWT-based data and image processing tools have
outperformed the conventional discrete cosine transform (DCT) -based approaches. For
example, in JPEG2000 Standard (ITU-T, 2000), the DCT has been replaced by the lifting BFs.

One of the main difficulties in DWT analysis is the dependence of the total energy of the
wavelet coefficients in different scales on the fractional shifts of the analysed signal. If we
have a discrete signal x[n] and the corresponding time shifted signal x[n—7], where
7 €[0,1], there may exist a significant difference in the energy of the wavelet coefficients as
a function of the time shift. Kingsbury (2001) proposed a nearly shift invariant method,
where the real and imaginary parts of the complex wavelet coefficients are approximately a
Hilbert transform pair. The energy (absolute value) of the wavelet coefficients equals the
envelope, which provides smoothness and approximate shift-invariance. Selesnick (2002)
observed that using two parallel CQF banks, which are constructed so that the impulse
responses of the scaling filters have half-sample delayed versions of each other: hy[n] and
hy[n—0.5], the corresponding wavelets are a Hilbert transform pair. In z-transform domain
we should be able to construct the scaling filters Hy(z) and z*°H,(z). For design of the
scaling filters Selesnick (2002) proposed a spectral factorization method based on the half
delay all-pass Thiran filters. As a disadvantage the scaling filters do not have coefficient
symmetry and the nonlinearity interferes with the spatial timing in different scales and
prevents accurate statistical correlations. Gopinath (2003) generalized the idea for N parallel
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222 Discrete Wavelet Transforms: Algorithms and Applications

filter banks, which are phase shifted versions of each other. Gopinath showed that
increasing N the shift invariance of the wavelet transform improves. However, the greatest
advantage comes from the change N=1to 2.

In this book chapter we review the methods for constructing the shift invariant CQF and BF
wavelet sequences. We describe a dual-tree wavelet transform, where two parallel CQF
wavelet sequences form a Hilbert pair, which warrants the shift invariance. Next we review
the construction of the BF wavelets and show the close relationship between the CQF and
BF wavelets. Then we introduce a novel Hilbert transform filter for constructing shift
invariant dual-tree BF banks.

H,(z) ‘@—> 4>@— G,(2)
H(z) —E2)—> —)— G

Fig. 1. The analysis and synthesis parts of the real-valued CQF DWT bank.

2. Design of the shift invariant CQF

The CQF DWT bank consists of the H,(z) and H;(z) analysis filters and Gy(z) and G;(z)
synthesis filters for N odd (Fig. 1)

Hy(z)=(1+2")"P(2)

1(2) =2V Hy(-27)
0(2) ( 2)

1(2) = ~Ho(-2)
where P(z)is a polynomial in z™* . The scaling filter H,(z) has the Kth order zero at @ =7 .

The wavelet filter H;(z) has the Kth order zero at @ =0, correspondingly. The filters are
related via the perfect reconstruction (PR) condition

au

(1)

D)

)

Hy(2)Gy(2)+ H, (2)Gy (2) =227

(2)
Hy(=2)Go(2) + Hy(~2)Gy(2) =0

The tree structured implementation of the real-valued CQF filter bank is described in Fig. 2.
Let us denote the frequency response of the z-transform filter as

Zh 7" = H(w Zh jan 3)

Correspondingly, we have the relations

H(-z)= H(o—-7)
H(-z")= H' (0~ 7)
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where * denotes complex conjugation. In M-stage CQF tree the frequency response of the
wavelet sequence is

M
W(@) = Hy (@ / 2)[ [Ho(e / 2°) ®)
k=2

H,(z) _@ SM[n]

-
Hy(2) 32— K

H,(2) H,(2)-32)—wln]

H\(2) @_Wz[n]

H,(:) 32 —w[n]

Fig. 2. The tree structured implementation of the real-valued CQF DWT, which yields the
wavelet sequences w;[n], w,[n] ...w,,[n] and one scaling sequence s,[n].

Next we construct a phase shifted parallel CQF filter bank consisting of the scaling filter
H,(z) and the wavelet filter H;(z). Let us suppose that the scaling filters in parallel CQF
trees are related as

Hy(@)=e " Hy(o) (6)

where ¢(w)is a 27 periodic phase function. Then the corresponding CQF wavelet filters are
related as

H, (@) =" Hy(@- ) 7)

and
Hy(o)=eNHy(w—-7) = e 7N/ Hy(w - ) = ¢/ H, () 8)
We may easily verify that the phase shifted CQF bank (6,8) obeys the PR condition (2).

Correspondingly, the frequency response of the M-stage CQF wavelet sequence is

_ M
Wiy (0)=H, (0] 2) H () 25Y=e /> H (0 /2 He—f¢”/2 Hy(w / 2)
=2

2- Z #e/2) v ky_ ,i0 ¥
=/ O/2 e 5 H1<w/2>HHo<w/2 )= Wy (@)
k=2
where the phase function
M
=h(0/2-7)= ) #(o/2") (10)

k=2
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224 Discrete Wavelet Transforms: Algorithms and Applications

If we select the phase function ¢(w) in (6) as

Hw)=o/2 (11)

the scaling filters (6) are half-sample delayed versions of each other. By inserting (11) in (10)
we have

w/2-7 M1 n 1)
0=—= —w;2k+1=—3+2M—+1 (12)

The wavelet sequences (5,9) yielded by the CQF bank (1) and the phase shifted CQF bank
(6,8) can be interpreted as real and imaginary parts of the complex wavelet sequence

Wi (@) = Wy (@) + Wy (@) (13)
The requirement for the shift-invariance comes from

WM(C‘)) = H{'//M("))} (14)

where 'H denotes the Hilbert transform. The frequency response of the Hilbert transform
operator is defined as

H(w) =—jsgn(w) (15)
where the sign function is defined as
1 for >0
= 16
sgn() {—1 for @ <0 10

In this work we apply the Hilbert transform operator in the form

H(w) = e ™2 sgn(w) (17)

Our result (12) reveals that if the scaling filters are the half-sample delayed versions of each
other, the resulting wavelet sequences are not precisely Hilbert transform pairs. There
occurs a phase error term w / 2M*!, which depends both in frequency and the stage M of the
wavelet sequence. In sequel we describe a novel procedure for elimination this error. We
move the phase error in front of the phase shifted CQF tree using the equivalence described
in Fig. 3. Then the error term reduces to @ / 2 . The elimination of the error term can be made
by prefiltering the analyzed signal by the half-sample delay operator D(z) =z '/, which has
the frequency response D(w) = ¢7“/%  The total phase function is then for —7<w <7

O(w)=/D(w)-7/2+w)2=-1]2 (18)

which warrants that the M-stage CQF wavelet sequence and the phase error corrected
sequence are a Hilbert transform pair.

@_ pt@ L = _e/¢<2m)_@

Fig. 3. The two equivalents for transferring the phase function in front of the phase shifted
CQF tree.
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3. Biorthogonal discrete wavelet transform

The first DWT structures were based on the compactly supported conjugate quadrature
filters (CQFs) (Smith & Barnwell, 1986), which have unavoided nonlinear phase effects in
multi-resolution analyses. On the contrary, in biorthogonal discrete wavelet transform
(BDWT) the scaling and wavelet filters are symmetric and linear phase. The two-channel
biorthogonal filter (BF) bank is of the general form

Ho(z)=(1+27)"Q(2)
H(z)=(1-z")"R(z)
Go(2) = Hy(~2)

Gi(2) =~Ho(-2)

(19)

where the scaling filter H;(z) has the Lth order zero at @ = . The wavelet filter H,(z) has
the Kth order zero at =0, correspondingly. Q(z)and R(z) are polynomials in z™" The
low-pass and high-pass reconstruction filters Gy(z) and G;(z)are defined as in the CQF
bank. For two-channel biorthogonal filter bank the PR relation is

H(2)Gy(2) + H, (2)Gy (2) = 2277

(20)
Hy(=2)Gy(2) + H1(=2)G,(2) =0
4. Relationships between CQF and BF wavelet transforms
In the following treatment we use a short notation for the binomial term
By(z)=(1+z H¥ (21)

which appears both in the CQF and BF banks. Using the binomial term the CQF bank can be
written as

Hy(z) = Bx(2)P(2)
Hy(2) =z N (-2)"Bg(-2)P(-z ")

(22)
Go(z) =z NZ"By (z)P(z ™)
Gy(2) = By (-2)P(~2)
For the PR condition of the CQF bank () the following is valid for K odd
Bk (2)P(2)P(z ") = By (-2)P(-2)P(-z") =22 (23)
On the other hand, the PR condition of the BF bank gives
By m(2)Q(2)R(~2) = B, (-2)Q(-2)R(2) = 227" (24)
Both PR conditions are identical if we state 2K =L + M . Then we have
P(2)P(z")z NP = Q(2)R(~2) (25)
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226 Discrete Wavelet Transforms: Algorithms and Applications

The above relation (25) gives a novel way to design of the biorthogonal wavelet filter bank
based on the CQF bank and vice versa. The polynomials Q(z) and R(-z) can be found by
factoring P(z)P(z™'), which is a symmetrical polynomial. The roots of the product filter
P(z)P(z™") should be optimally divided so that both Q(z) and R(-z) are low-pass. Then
R(z) is high-pass. If the BF bank is known it is easy to factor Q(z)R(-z) into
P(z) and P(z™") using some spectral factorization method. An important result is related to
the modification of the BF bank (Olkkonen & Olkkonen, 2007a).

Lemma 1: If the scaling filter H;,(z), the wavelet filter H;(z) and the reconstruction filters
Go(z) and Gy(z)in FB bank (19) have a perfect reconstruction property (20), the following
modified FB bank obeys also the PR relation

Hy(2) = F(z)H,(2)
H,(z) = F'(-2)Hy(2)
Go(2) = F(2)Gy(2)
G,(2) = F(-2)Gy(2)

where F(z) is any polynomial in z™* . Proof is yielded by direct insertion (26) to PR condition
(20).

(26)

5. Hilbert transform filter for construction of shift invariant BF bank

In BF bank the shift invariance is not an inbuilt property as in CQF bank. In the following
we define the Hilbert transform filter H(z), which has the frequency response

H(w) = e /? sgn(w) (27)

where sgn(w)=1for @>0and sgn(w)=-1for w<0. We describe a novel method for
constructing the Hilbert transform filter based on the half-sample delay filter D(z) =z 05
The classical approach for design of the half-sample delay filter D(z) is based on the Thlran
all-pass interpolator

D(z)= 20 1ﬂ[ck+z _ZVAETY) oy tong etz 8)
a4z A(z)  T4cz +eteyz ™

where the c, coefficients are optimized so that the frequency response follows approximately
D(w)=e//? (29)

In this work we define the half-sample delay filter more generally as

D(z) =212 (30)
B(2)
The quadrature mirror filter D(-z) has the frequency response
D(w—z)=e¢ /@ )/2 (31)
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The frequency response of the filter D(z)D™!(~z) is, correspondingly

D(a)) _ e—ja)/ze]‘(a)—;r)/Z _ e—j/r/2 (32)
D(w—7)

Comparing (27) and using the IIR filter notation (30) we obtain the Hilbert transform filter as

A(2)B(-2)

H(z) = (33)

The Hilbert transform filter is inserted in the BF bank using the result of Lemma 1 (26). The
modified prototype BF filter bank is

(34)

(33)

H_l (_Z) = H(Z) (35)
H ™ (2) = H(-2)
By inserting (35) in (34) we obtain a highly simplified FB bank
Hy(2) = H(2)Ho ()
H,(2) = H(2)H, (2 6)
Go(2) = H(-2)Go(2)
G1(2) = H(-2)Gy(2)

The modified BF bank (36) can be realized by the Hilbert transform filter H(z) , which works
as a prefilter for the analysed signal. The Hilbert transform filter H(—z) works as a postfilter
in the reconstruction stage, respectively. The wavelet sequences yielded by the two parallel
BF trees can be considered to form a complex wavelet sequence by defining the Hilbert
transform operator

H,(z) =1+ ] H(z) (37)

By filtering the real-valued signal x[n] by the Hilbert transform operator results in an
analytic signal

X [n] = x[n]+ j Hix[n]} (38)
whose magnitude response is zero at negative side of the frequency spectrum

2X 0<
w1 00, &
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The wavelet sequence is obtained by decimation of the high-pass filtered analytic signal
1
W(@) =[X,(@)H1(0)],, = Wy(@)y, = Xo(@ / 2)Hy (0] 2) (40)

The result (40) means that the decimation does not produce aliasing but the frequency
spectrum is dilated by two. The frequency spectrum of the undecimated wavelet sequence
W, (@) contains frequency components only in the range 0<w<7z, but the frequency
spectrum of the decimated analytic signal has the frequency band 0< <27 . Hence, the
decimation does not produce overlapping and leakage (aliasing) to the negative frequency
range. A key feature of the dual-tree wavelet transform is the shift invariance of the decimated
analytic wavelet coefficients. The Fourier {ransform of the decimated wavelet sequence of the
fractionally delayed signal x[n-z] is —e /*"/?W (w/2) and the corresponding wavelet
sequence is w[n -7 /2] . The energy (absGlute value) of the decimated wavelet coefficients is
~|W(w / 2)|, which does not depend on the fractional delay 7. If the wavelet filter has linear
p2ha5e the wavelet coefficients are shift invariant in respect to their energy content.

An integer-valued half-delay filter D(z) = A(z)/ B(z) is obtained by the B-spline transform
(see details Olkkonen & Olkkonen, 2007b). Table I gives the polynomial coefficients for the
B-spline orders K=4, 5 and 6. The frequency response of the Hilbert transform filter
constructed by the fourth order B-spline (Fig. 4) shows a maximally flat magnitude
spectrum. The phase spectrum corresponds to an ideal Hilbert transformer (15).

K A(z) B(z)
4 1+6z71+272 1+4z71 +272
8 6
5 1+76z71+23022+7627° +274 1+11z 1 +11272 + 273
384 24
o 1t 237271 41682272 +2372° + 27t 142627 + 66272 +2627° + 27
3840 120

Table I. The half-delay filter polynomials for the B-spline transform order K=4, 5 and 6.

10° —— - ﬁﬁ —

3 10"

3 2 40 1 2z 3
Frequency [red]
Fig. 4. Magnitude and phase spectra of the Hilbert transform filter yielded by the fourth

order B-spline transform.
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6. Conclusion

It is well documented that the real-valued DWTs are not shift invariant, but small fractional
time-shifts may introduce significant differences in the energy of the wavelet coefficients.
Kingsbury (2001) showed that the shift invariance is improved by using two parallel filter
banks, which are designed so that the wavelet sequences constitute real and imaginary parts
of the complex analytic wavelet transform. The dual-tree discrete wavelet transform has
been shown to outperform the real-valued DWT in a variety of applications such as
denoising, texture analysis, speech recognition, processing of seismic signals and
neuroelectric signal analysis (Olkkonen et al. 2006; Olkkonen et al. 2007b).

Selesnick (2002) made an observation that a half-sample time-shift between the scaling
filters in parallel CQF banks is enough to produce the shift invariant wavelet transform. In
this work we reanalysed the condition and observed a phase-error term o /2M*!(12)
compared with the ideal phase response #(w)=-x /2. The phase error attains s highest
value at high frequency range and small stage M of the wavelet sequence. Fortunately, we
showed in this book chapter that the phase error term can be cancelled by adding a half-
delay prefilter in front of the CQF chain. For this purpose the half-delay filter
D(z) = A(z) / B(z) (30, Table I) constructed by the B-spline transform (Olkkonen & Olkkonen,
2007a) is well suited. In addition, there exists many other design methods for half-delay
filters (see e.g. Laakso et al. 1996; Johansson & Lowenborg, 2002; Pei & Tseng, 2003; Pei &
Wang, 2004; Tseng, 2006).

In multi-scale DWT analysis the complex wavelet sequences should be shift invariant. This
requirement is satisfied in the Hilbert transform-based approach (Olkkonen et al. 2006,
Olkkonen et al. 2007b), where the signal in every scale is Hilbert transformed yielding
strictly analytic and shift invariant transform coefficients. The procedure needs FFT-based
computation which may be an obstacle in many digital signal processor realizations. To
avoid this we conducted the novel shift invariant dual-tree BF bank (36) based on the
Hilbert transform filter (33). This highly simplified BF bank is yielded by Lemma 1 and the
equivalence (35) of the Hilbert transform filter (33). In many respects the BF bank (36)
outperforms the previous nearly shift invariant DWT approaches.
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