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1. Introduction

Analytic techniques are frequently used for performance analysis of discrete event systems.
Conventional models have a set of single value input parameters (such as mean resource
demands) and give single value results for each performance index of interest (such as
mean system throughput). However, this single point characterization of parameters
is insufficient when uncertainties and variabilities are related with system parameters.
As an application domain, we may highlight software performance engineering, which
accomplishes performance modelling in several phases design-cycle and throughout
implementation (Girault & Valk, 2003; Smith, 1990). Even if uncertainties and variabilities may
be associated with one or more parameters of the system in early stages of system design, the
expert designer might have a suitable guess related to the interval of values associated with
these parameters due to previous experience.
The current availability of software tools for performance evaluation allows one to hide
the technicalities from the end-user. Users specify their performance model using some
high-level modeling language supported by tools such as PEPSY-QNS, TimeNET 4.0, SPNP
6.0, GreatSPN 2.0, or PEPA, in which the underlying mathematical model is automatically
generated and analyzed. We propose the adoption of intervals to represent the uncertainties
in the parameters of ISPN (Interval Stochastic Petri Net) models (Galdino & Maciel, 2006;
Galdino et al., 2007a;b). Therefore, the set of methods considered for Markov chain
steady-state analysis have to be adapted for taking into account interval arithmetic. In ISPN
the exponential transition rates and immediate transition weights are represented by intervals.
This chapter focuses on ISPN using MATLAB with INTLAB toolbox. We briefly introduce
the interval arithmetic. Afterwards, we describe the ISPN and outline the approach adopted
to the respective interval steady state analysis. We present two ISPN system models and the
respective results of analysis. Further possibilities of the method are also suggested.

2. Background

Prior to present the ISPN, this section introduces some basic concepts needed to understand
how interval arithmetics may be used for evaluating system’s metrics. Hence, we initially
introduce some concepts on interval arithmetics.
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2.1 Notation

Throughout this paper, all scalar variables are denoted by ordinary lowercase letters (a).
Interval variables are enclosed in square brackets ([a]). Underscores and overscores denote
lower and upper bounds, respectively.
A real interval [x] is a nonempty set of real numbers

[x] = [x, x] = {x̃ ∈ R : x ≤ x̃ ≤ x} (1)

where x and x are called the infimum (inf) and supremum (sup), respectively, and x̃ is a point
value belonging to an interval variable [x].
The set of all intervals R is denoted by I(R) where

I(R) = {[x, x] : x, x ∈ R : x ≤ x} (2)

2.2 Interval arithmetic

Let +, −, ×, and ÷ denote the arithmetic operations. If • denotes any of these arithmetic
operation for real numbers x and y, then the corresponding operation for arithmetic on
interval numbers [x] and [y] is

[x] • [y] = {x • y|x ∈ [x], y ∈ [y]} .

Thus the interval [x] • [y] resulting from the operations contain every possible number that
can be found as x • y for each x ∈ [x], and each y ∈ [y].
A form of interval arithmetic perhaps first appeared in 1924 and 1931 in (Chen & van Emden,
1995; Young, 1931), then later in (Ullrich, 1990). Modern development of interval arithmetic
began with R. E. Moore’s dissertation (Moore, 1962) as a method for determining absolute
errors of an algorithm, considering all data errors and rounding, after R.E. Moore introduced
interval analysis (Moore, 1966). Interval arithmetic is an arithmetic defined on sets of intervals,
rather than sets of real numbers. The power of interval arithmetic lies in its implementation
on computers. In particular, outwardly rounded computations allows rigorous enclosures.
An important result is the inclusion property theorem . Rall aptly calls this the fundamental
theorem of interval analysis (Hansen & Walster, 2004; Rall, 1969).

Theorem 2.1 (Fundamental Theorem). If the function f ([x]1, [x]2, [x]3, · · · [x]n) is an expression
with a finite number of intervals [x]1, [x]2, [x]3, · · · [x]n ∈ I(R) and interval operations
(+,−,×,÷) , and if [w]1 ⊆ [x]1, [w]2 ⊆ [x]2, [w]3 ⊆ [x]3, · · · , [w]n ⊆ [x]n then
f ([w]1, [w]2, [w]3, · · · , [w]n) ⊆ f ([x]1, [x]2, [x]3, · · · , [x]n) .

2.3 Enclosures for the range of function

Consider a function f from R
n to R. The interval function [f] from I(Rn) to I(R) is an inclusion

function [f] if
∀[x] ∈ I(Rn), f ([x]) ⊂ [ f ]([x])

Interval analyses provides, for a large class of functions f , inclusion functions such that [ f ]([x]
is not too large.
An inclusion function for f : R

n → R is obtained with two optimizations to compute the
in f imum anad supremum of f . However, these optimization problems are far from trivial in
general. An more tractable approach uses the following theorem (Jaulin et al., 2001), which is
a direct consequence of Theorem 2.1.

410 Applications of MATLAB in Science and Engineering

www.intechopen.com



ISPN: Modeling Stochastic with Input Uncertainties Using an Interval-Based Approach 3

Theorem 2.2 (Natural Inclusion Function Theorem). Consider a function

f : R
n → R, (x1, x2, x3, · · · xn) �→ f (x1, x2, x3, · · · xn),

expressed as a finite composition of the operators +, −, ×, and ÷ and elementary functions (sin, cos,
exp, sqr, ...). An inclusion monotonic and thin (degenerated) inclusion function [ f ] : I(R)n → I(R)
for f is obtained by replacing each real variable xi by an interval variable [xi] and each operator or
function by its interval counterpart. This function is called the natural inclusion function of f . If
f involves only continuous operators and continuous elementary functions, the [f] is convergent.If,
moreover, each of the variables (x1, x2, x3, · · · xn) occurs at most once in the formal expression of f then
[ f ] is minimal.

Natural inclusion functions are not minimal in general, because of the dependence problem.
The accuracy of the resulting interval strongly depends on the expression of f. The use of
natural inclusion functions is not always the best choice. An important field of interval
analysis is the use other types of inclusion functions that would provide best enclosures.

3. ISPN formalism

Petri Nets (PNs) represent a family of forms of graphical representation for description
of systems whose dynamics are characterized by concurrency, synchronization, mutual
exclusion, and conflict, which are typical features of distributed environments (Murata, 1989).
PNs incorporate a notion of local state and a rule for state change (transition firing) that
allow them to capture both the static and the dynamic characteristics of a real system being
explicit about time considerations. The introduction of timing concepts into PN models were
proposed later by Ramchandani (Ramchandani, 1974), Merlin (Merlin & Farber, 1976), and
Sifakis (Sifakis, 1978) from distinct viewpoints. Molloy (Molloy, 1981) as well as Florin (Florin
& Natkin, 1989) proposed PN models in which stochastic timing was considered. These works
opened the possibility of connecting PN theory and stochastic modeling. Nowadays, these
models as well as their extensions are generically named Stochastic Petri nets (SPN).
ISPN is an extension of GSPN (Generalized Stochastic Petri Nets) model in order to introduce the
interval analysis (Galdino & Maciel, 2006) and has a lot of potential to practical applications.
As part of the contribution in the development of this work, the authors also brought out
its related practical applications in performance and dependability evaluation (Galdino &
Maciel, 2006; Galdino et al., 2007a;b). GSPN is a particular timed PN (Petri Net) that
incorporates both stochastic timed transitions (represented as white boxes) and immediate
transitions (represented as thin black bars). Timed transitions have an exponentially
distributed firing time and immediate transitions fire in zero time. GSPNs were originally
defined (Marsan, Balbo & Conte, 1984) and later modified as described in (Brinksma, 2001).
A formal definition of ISPN is provided below. This definition keeps to the SPN definition
presented in (German, 2000), but considers real intervals assigned to transition delays and
weights instead of adopting real single values.
Let ISPN = (P, T, I, O, Π, G, M0, Atts) be an interval stochastic Petri net, where

• P = {p1, p2, · · · pn} is the set of places,

• T = {t1, t2, · · · tm} is the set of transitions,

• I ∈ (Nn → N)n×m is a matrix of marking-dependent multiplicities of input arcs, where
the ijk entry of I gives the possibly marking-dependent arc multiplicity of input arcs from
place pj to transition tk [A ⊂ (P × T) ∪ (T × P)− set o f arcs],

411ISPN: Modeling Stochastic with Input Uncertainties Using an Interval-Based Approach
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• O ∈ (Nn → N)n×m is a matrix of marking-dependent multiplicities of output arcs, where
ojk entry of O gives the possibly marking-dependent arc multiplicity of output arcs from
transition tj to place pk,

• H ∈ (Nn → N)n×m is a matrix of marking-dependent multiplicities of inhibitor arcs,
where hjk entry of H gives the possibly marking-dependent arc multiplicity of inhibitor
arcs from place pj to transition tk,

• G ∈ (Nn → {true, f alse})m is a vector that assigns a guard condition related to place
markings to each transition,

• M0 ∈ N
n is a vector that assigns the initial marking of each place (initial state),

• Atts = (Dist, W, Markdep, Police, Concurrency)m comprises the set of attributes for
transitions, where

– [Dist] ∈ N
m → [F ] is a possible marking-dependent firing interval distribution

function (the domain of [F ] is [0, ∞)),

– [W] ∈ N
m → I(R+) is a possible marking-dependent interval weight,

– Markdep ∈ {constant, enabdep} where the transition interval firing timing distribution
could be marking independent (constant) or enabling dependent ( enabdep - the
distribution depends on the actual enabling condition),

– Police ∈ {prd, prs} is the preemption policy (prd- preemptive repeat different means that
when a preempted transition becomes enabled again the previous elapsed firing time
is lost; prs- preemptive resume, in which the firing time related to a preempted transition
is resumed when the transition becomes enabled again),

– Concurrency ∈ {ss, is} is the degree of concurrency of transitions, where ss represents
single server semantics and is depicts infinite-server semantics.

It is worth noting that if only point intervals are assigned to delays and immediate transition
weights the model is reduced to a GSPN. This case the ISPN analysis provides GSPN verified
results.

3.1 ISPN steady state analysis

ISPN is considered to be a high-level formalism for ICTMC (Interval Continuous Time Markov
Chain) generation Galdino et al. (2007b). The classical algorithms found in literature (Bolch
et al., 2006) are adapted to take into account the interval coefficients of the ISPN model. This
is a contribution to analysis of models ISPN that will be presented in sequel. The analysis of
models using ISPN is accomplished in four subtasks:

• generation of the IERG (Interval Extended Reachability Graph),

• elimination of vanishing markings and the corresponding state transitions,

• interval steady-state analysis,

• computation of measures. Standard measures such as the average number of tokens in
places and the throughput of timed transitions are computed using interval arithmetic.

412 Applications of MATLAB in Science and Engineering

www.intechopen.com



ISPN: Modeling Stochastic with Input Uncertainties Using an Interval-Based Approach 5

3.1.1 Generation of the IERG

The first of four steps of ISPN analysis is the IERG generation (interval extended reachability
graph). From the IERG the set of markings M = T ∪ V is divided into set of tangible
markings T and vanishing V . Through the elimination of vanishing markings discussed
below, using methods of interval analysis, we obtain the infinitesimal generator matrix [Q]
of ICTMC underlying an ISPN model.
From a given ISPN, an interval extended reachability graph (IERG) is generated containing
markings as nodes and interval stochastic information attached to arcs so as to relate markings
to each other. The ISPN reachability graph is a directed graph RG(ISPN) = (V, E), where

V = RS(ISPN) and E = {〈m, t, m′〉 | m, m′ ∈ RS(ISPN) and m
t
→ m′

}

are the set of nodes

and edges, respectively. If an ISPN model is bounded, the RG(ISPN) is finite and it can be
constructed, for example, based on Algorithm 5.1: Computation of the Reachability Graph p.
61 from (Girault & Valk, 2003).
The RG(ISPN) is constructed, in this work, using the Algorithm 1 below. The activity
defined in Step 2.1 ensures that no marking is visited more than once. Each visited
marking is labeled (Step 2.1), and Step 2.2.3 ensures that only unique added markings
to V are those that were not previously added. When the marking is visited, only those
edges that represents the firing of an enabled transition are added to the set E (Step 2.2.4).
===================================================================

Algorithm 1

(** IERG generation **)

Input - A ISPN model.

Output - A directed graph RG(ISPN) = (V, E) of a limited network system.

1. Initialize RG(ISPN) = ({m0} , ∅) ;m0 is unlabelled.

2. while there are an unlabeled node m in V do

2.1 Select an unlabeled node m ∈ V label it

2.2 for each enabled transition t in m do

2.2.1 Calculate m′ such that m
t
→ m′;

2.2.2 if there are m′′ ∈ V such that m′′
σ
→ m′ and m” ≤ m’

then the algorithm fails and ends;

(no limitation condition was detected).

2.2.3 if there is no m′′ ∈ V such that m′′ = m′

then V := V ∪ {m′}; (m′ é um nó não etiquetado).

2.2.4 E := E ∪ {〈m; t;m′〉}
3. The algorithm is successful and RG(ISPN) is the interval extended

reachability graph.

===================================================================

3.1.2 Elimination of vanishing markings

The second of four steps of ISPN analysis is the elimination of vanishing markings, which is
the step for generating the ICTMC from a given ISPN. Once the IERG has been generated, it
is transformed into an ICTMC by the use of matrix algorithms Bolch et al. (2006).
The markings set M = V ∪ T in the reachability set of an ISPN is partitioned into two sets,
the vanishing markings V and the tangible markings T . Let:

[P]V = [P]VV | [P]VT (3)

413ISPN: Modeling Stochastic with Input Uncertainties Using an Interval-Based Approach
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denote an interval matrix, where

• [P]VV - denotes the interval transition probabilities between vanishing markings,

• [P]VT - denotes the interval transition probabilities from vanishing markings to the
tangible markings.

Furthermore, let
[U]T = [U]T V | [U]T T (4)

denote an interval matrix, where

• [U]T V - represents interval transition rates from tangible to vanishing markings;

• [U]T T - represents interval transition rates between tangible markings.

Now, we obtain the interval rate matrix [U]. This matrix has dimensions |T | × |T |, where T
denotes the set of tangible markings.

[U] = [U]T T + [U]T V (1 − [P]VV )−1[P]VT (5)

The interval matrix of the infinitesimal generator is [Q] = [q]ij, where its entries are given by:

[q]ij =

⎧

⎪

⎨

⎪

⎩

[u]ij i f i = j

−∑
k ∈ T
k = i

[u]ik i f i = j (6)

where T denotes the set of tangible markings.

3.1.3 Steady-state probability vector evaluation

Now we describe the third of four steps of ISPN analysis. The steady-state solution of
the ICTMC model underlying the ISPN is obtained by solving the interval linear system of
equations with as many equations as the number of tangible markings.

{

[π] · [Q] = 0

∑M∈T [π] (M) = 1
(7)

[π] is the interval vector for the equilibrium pmf (probability mass function) over the reachable
tangible markings, and we write [π] (M) for the interval steady-state probability of a given
tangible marking M.
Once the interval generator matrix [Q] of the ICTMC associated with a ISPN model has been
derived, the steady state probability is calculated so that other respective metrics might be
subsequently computed.
ISPN models deal with system uncertainties by considering intervals for representing time
as well as weights assigned to transition models. The proposed model and the respective
methods, adapted to take interval arithmetic into account, allow the influence of simultaneous
parameters and variabilities on the computation of metrics to be considered, thereby
providing rigorously bounded metric ranges. It is also important to stress that even when only
taking into account thin intervals, one may make use of the proposed model, since rounding
and truncation errors are naturally dealt with in interval arithmetic, so that the metrics results
obtained are certain to belong to the intervals computed.

414 Applications of MATLAB in Science and Engineering
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3.1.4 Interval performance indices

The computation of performance indices (metrics) of interest is the fourth and final step in the
analysis ISPN. In the case of ISPN steady state analysis, where interval p.m.f. has already been
obtained, indices are calculated by interval function evaluation. Interval performance indices
are interval functions extended on classical indices (Marsan, Bobbio, Conte & Cumani, 1984).

4. Examples of ISPN models

The purpose of this section is to present clearly all steps of ISPN analysis. Two examples are
used. One is very simple and can be followed up and have calculations performed without
using a computer. The second case, however, you must use a software with an interval
arithmetic library as a tool to carry out by all his calculations. Example 1 has only two
tangible markings and two vanishing markings. Example 2 has sixteen tangible markings
and twelve vanishing markings. The performance evaluations are carried out in MATLAB
with the INTLAB toolbox (MATLAB toolbox INTLAB framework). The ISPN model analysis
considering only degenerated intervals (points) leads to the classic model GSPN, with verified
computations (self-validating).

4.1 Example 1: ISPN analysis of a single machine

The model depicted in Figure 1 represents a failure prone machine and finite capacity buffer
(Desrochers & Al-Jaar, 1994). Table 1 presents (degenerated) interval rates of timed transition
firing per unit time, where [ν] represents the production rate interval, [λ] represents the failure
rate interval, and [µ] represents the repair rate interval. Here we have a model equivalent to
the GSPN model, because there are only degenerate interval parameters.

Fig. 1. The Single Machine module.

Transition Value ([t]−1) Symbol

[t2] [10, 10] [ν]
[t4] [3, 3] [µ]
[t5] [5, 5] [λ]

Table 1. Transition Firing Rates (degenerated intervals) for the Single Machine One-Buffer
Transfer Line.

As a result of the first step of ISPN analysis we obtain the reachability set (Table 2), and the
reachability graph (Figure 2).

415ISPN: Modeling Stochastic with Input Uncertainties Using an Interval-Based Approach
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State Marking (m1, m2, m3, m4 )
1 M0 = (1, 0, 0, 0 )
2 M1 = (0, 1, 0, 0 )
3 M2 = (0, 0, 1, 0 )
4 M3 = (0, 0, 0, 1 )

Table 2. Reachability set and distribution markings from ISPN of Figure 1.

Fig. 2. Reachability graph and interval embedded Markov chain

Finally, we obtain the matrices [P]VV , [P]VT , [U]T V and [U]T T :

[P]VV =

(

[ 0, 0] [ 0, 0]
[ 1, 1] [ 0, 0]

)

[P]VT =

(

[ 1, 1] [ 0, 0]
[ 0, 0] [ 0, 0]

)

[U]T T =

(

[ 0, 0] [ 5, 5]
[ 3, 3] [ 0, 0]

)

[U]T V =

(

[ 0, 0] [ 10, 10]
[ 0, 0] [ 0, 0]

)

.

Afterwards, carry out the elimination of vanishing markings (Equation 5) to obtain the matrix
of rate intervals [U]. The matrix of rate intervals represents an IREMC (Interval Reduced
Embedded Markov Chain on Figure 3):

[U] =

(

[ 10, 10] [ 5, 5]
[ 3, 3] [ 0, 0]

)

.

M
3

M
1

[t
2
]

[t
5
]

[t4]

0 1 0 0 0 0 0 1

Fig. 3. Interval Reduced Embedded Markov Chain

Finally, using Equation 6, we find the infinitesimal generator interval matrix:

[Q] =

(

[ -5, -5] [ 5, 5]
[ 3, 3] [ -3, -3]

)

.

The third step of ISPN analysis solves the system of interval linear equations described by
Equation (7). The interval linear equations solution is carried out by the verifylss function of
the MATLAB toolbox INTLAB. Substituting the last equation of system ([π]1, [π]2) · [Q] = 0
by the normalization condition [π]1 + [π]2 = 1, the linear system ([π]1, [π]2) · [A] = [b]
is obtained. The solution of this system directly provides the steady state probabilities of
tangible states. Considering

[A] =

(

−3 5
1 1

)

and [b] =

(

0
1

)
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the M-file MATLAB toolbox INTLAB case1v.m, used for calculating verified probabilities and
machine production rate, is given bellow:

1. % INPUT: A coeffifiente matrix

2. % b right hand side vector

3. % OUTPUT: x interval probabilities vector solution

4. % P machine production rate

5. format long

6. intvalinit(’displayinfsup’)

7. A=intval([-3,5;1,1])

8. b=[0;1]

9. x=verifylss(A,b)

10.P=10*x(1)

Executing case1v.m yields:

>> case1v

===> Default display of intervals by infimum/supremum (e.g. [ 3.14 , 3.15 ])

intval A =

[ -3.00000000000000, -3.00000000000000] [ 5.00000000000000, 5.00000000000000]

[ 1.00000000000000, 1.00000000000000] [ 1.00000000000000, 1.00000000000000]

b =

0

1

intval x =

[ 0.62499999999998, 0.62500000000001]

[ 0.37499999999999, 0.37500000000001]

intval P =

[ 6.24999999999998, 6.25000000000001]

>>

The verified interval bounds of each state probabilities on tangible states are:

[π](1) = [ 0.62499999999998, 6.25000000000001]

and
[π](2) = [ 0.37499999999999, 0.37500000000001].

Finally we can make the fourth and final step of analysis ISPN, computation of metrics. The
machine production rate is

[P] = [ 6.24999999999998, 6.25000000000001]

(calculated with the formula [P] = [π](1) · [t2]). This results exhibit the enclosure of exact
value obtained by GSPN analysis. The ISPN analysis results give us verified results, ensuring
that the exact value is certain to belong to the intervals computed. One can, for example, to
compare this result with interval P = 6.25 exact value in this simple case.

Introducing parameters with input uncertainties

Now we calculate a solution in which the parameters are not known exactly, but it is known
that they are within certain intervals. Lets consider that rates are [µ] = 3 ± 0.01 = [2.99, 3.01]
and [λ] = 5 ± 0.01 = [4.99, 5.01] intervals.

417ISPN: Modeling Stochastic with Input Uncertainties Using an Interval-Based Approach
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As a result from the first step of analysis (by-product of the reachability set), we obtain the
matrices [P]VV , [P]VT , [U]T V e [U]T T :

[P]VV =

(

[ 0, 0] [ 0, 0]
[ 1, 1] [ 0, 0]

)

[P]VT =

(

[ 1, 1] [ 0, 0]
[ 0, 0] [ 0, 0]

)

[U]T T =

(

[ 0, 0] [ 4.99, 5.01]
[ 2.99, 3.01] [ 0, 0]

)

[U]T V =

(

[ 0, 0] [ 10, 10]
[ 0, 0] [ 0, 0]

)

.

Afterwards, carry out the elimination of vanishing markings (Equation 5), to obtain the matrix
of rate intervals [U]:

[U] =

(

[ 10, 10] [ 4.99, 5.01]
[ 2.99, 3.01] [ 0, 0]

)

.

Finally, using Equation 6, we find the infinitesimal generator interval matrix:

[Q] =

(

[ -5.01, -4.99] [ 4.99, 5.01]
[ 2.99, 3.01] [ -3.01, -2.99]

)

.

Considering

[A] =

(

−3 5
1 1

)

and [b] =

(

0
1

)

the M-file MATLAB toolbox INTLAB case1i.m, used for calculating verified probabilities and
machine production rate, is given bellow:

1. % INPUT: A coeffifiente matrix

2. % b right hand side vector

3. % OUTPUT: x interval probabilities vector solution

4. % P machine production rate

5. format long

6. intvalinit(’displayinfsup’)

7. A=infsup([-3.01,4.99;1,1],[-2.99,5.01;1,1])

8. b=[0;1]

9. x=verifylss(A,b)

10.P=10*x(1)

Executing case1i.m yields:

>> case1i

===> Default display of intervals by infimum/supremum (e.g. [ 3.14 , 3.15 ])

intval A =

[ -3.01000000000000, -2.99000000000000] [ 4.99000000000000, 5.01000000000000]

[ 1.00000000000000, 1.00000000000000] [ 1.00000000000000, 1.00000000000000]

b =

0

1

intval x =

[ 0.62374656249999, 0.62625343750001]

[ 0.37374656249998, 0.37625343750001]

intval P =

[ 6.23746562499999, 6.26253437500001]

>>

The interval bounds of each state probabilities on tangible states are:

[π](1) = [ 0.62374656249999, 0.62625343750001]

418 Applications of MATLAB in Science and Engineering
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and
[π](2) = [ 0.37374656249998, 0.37625343750001].

Finally we can make the computation of machine production rate:

[P] = [ 6.23746562499999, 6.26253437500001]

(calculated with the formula [P] = [π](1) · [t2]). This result represents the variabilities when

the rates are in [µ] = [2.99, 3.01] and [λ] = [4.99, 5.01] intervals.

4.2 Example 2: ISPN analysis of Two-Machine One-Buffer Transfer Line Model

Consider the Two-Machine One-Buffer Transfer Line Model in Figure 4 (Desrochers & Al-Jaar,
1994). Table 3 presents (degenerated) interval rates of timed transition firing per unit time,
where [νi] represents the production rate intervals, [λi] represents the failure rate intervals,
and [µi] represents the repair rate intervals. Here we have a model equivalent to the GSPN
model, because there are only degenerate interval parameters.

Fig. 4. Two-Machine One-Buffer Transfer Line Model (k = 3)

Transition Value ([t]−1) Symbol

[t2] [1, 1] [ν1]
[t3] [3, 3] [λ1]
[t4] [5, 5] [µ1]
[t6] [2, 2] [ν2]
[t7] [4, 4] [λ2]
[t8] [6, 6] [µ2]

Table 3. Interval transition firing rates for the Two-Machine One-Buffer Transfer Line model.

As a result of the first step of ISPN analysis we obtain the reachability set (Table 4) and the
reachability graph (Table 5).

Markings enabling the transitions t1 and t5 are vanishing, because enabled transitions are
immediate (state changes that take negligible amounts of time to occur). Can be identified
twelve vanishing markings M0, M2, M4, M5, M7, M12, M13, M17, M19, M22, M24, M26

(firing of immediate transitions t1 and t5) and other markings are tangibles.
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12 Will-be-set-by-IN-TECH

State Marking1 State Marking1

1 M0 = [1, 0, 0, 0, 1, 0, 0, 3] 15 M14 = [0, 0, 1, 1, 0, 1, 0, 1]
2 M1 = [0, 1, 0, 0, 1, 0, 0, 2] 16 M15 = [0, 1, 0, 1, 0, 0, 1, 1]
3 M2 = [1, 0, 0, 1, 1, 0, 0, 2] 17 M16 = [0, 1, 0, 2, 0, 1, 0, 0]
4 M3 = [0, 0, 1, 0, 1, 0, 0, 2] 18 M17 = [0, 0, 1, 1, 1, 0, 0, 1]
5 M4 = [0, 1, 0, 1, 1, 0, 0, 1] 19 M18 = [0, 0, 1, 1, 0, 0, 1, 1]
6 M5 = [1, 0, 0, 0, 0, 1, 0, 3] 20 M19 = [1, 0, 0, 2, 0, 0, 1, 1]
7 M6 = [0, 1, 0, 0, 0, 1, 0, 2] 21 M20 = [1, 0, 0, 3, 0, 1, 0, 0]
8 M7 = [1, 0, 0, 1, 0, 1, 0, 2] 22 M21 = [0, 0, 1, 2, 0, 1, 0, 0]
9 M8 = [0, 0, 1, 0, 0, 1, 0, 2] 23 M22 = [0, 1, 0, 2, 1, 0, 0, 0]

10 M9 = [0, 1, 0, 0, 0, 0, 1, 2] 24 M23 = [0, 1, 0, 2, 0, 0, 1, 0]
11 M10 = [0, 1, 0, 1, 0, 1, 0, 1] 25 M24 = [1, 0, 0, 3, 1, 0, 0, 0]
12 M11 = [0, 0, 1, 0, 0, 0, 1, 2] 26 M25 = [1, 0, 0, 3, 0, 0, 1, 0]
13 M12 = [1, 0, 0, 1, 0, 0, 1, 2] 27 M26 = [0, 0, 1, 2, 1, 0, 0, 0]
14 M13 = [1, 0, 0, 2, 0, 1, 0, 1] 28 M27 = [0, 0, 1, 2, 0, 0, 1, 0]

1- Marking = [ m1, m2, m3, m4, m5, m6, m7, m8 ]

Table 4. Reachability set and distribution markings from ISPN of Figure 4.

Marking | Firing of transition 〉 New marking

M0 |t1〉 M1 M1 |T2〉 M2 M1 |T3〉 M3 M2 |t1〉 M4 M2 |t5〉 M5

M3 |T4〉 M1 M4 |t5〉 M6 M5 |t1〉 M6 M6 |T2〉 M7 M6 |T3〉 M8

M6 |T6〉 M1 M6 |T7〉 M9 M7 |t1〉 M10 M8 |T4〉 M6 M8 |T6〉 M3

M8 |T7〉 M11 M9 |T2〉 M12 M9 |T3〉 M11 M9 |T8〉 M6 M10 |T2〉 M13

M10 |T3〉 M14 M10 |T6〉 M4 M10 |T7〉 M15 M11 |T4〉 M9 M11 |T8〉 M8

M12 |t1〉 M15 M13 |t1〉 M16 M14 |T4〉 M10 M14 |T6〉 M17 M14 |T7〉 M18

M15 |T2〉 M19 M15 |T3〉 M18 M15 |T8〉 M10 M16 |T2〉 M20 M16 |T3〉 M21

M16 |T6〉 M22 M16 |T7〉 M23 M17 |t5〉 M8 M18 |T4〉 M15 M18 |T8〉 M14

M19 |t1〉 M23 M20 |T6〉 M24 M20 |T7〉 M25 M21 |T4〉 M16 M21 |T6〉 M26

M21 |T7〉 M27 M22 |t5〉 M10 M23 |T2〉 M25 M23 |T3〉 M27 M23 |T8〉 M16

M24 |t5〉 M13 M25 |T8〉 M20 M26 |t5〉 M14 M27 |T4〉 M23 M27 |T8〉 M21

Table 5. Literal description of reachability graph from ISPN of Figure 4.

Finally, we obtain the matrices [P]VV , [P]VT , [U]T V and [U]T T :

[P]VV =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [0,5, 0,5] [0,5, 0,5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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[P]VT =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]

[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟



[U]T T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[ 0, 0] [ 3, 3] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 2, 2] [ 0, 0] [ 0, 0] [ 3, 3] [ 4, 4] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 2, 2] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0] [ 0, 0] [ 3, 3] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 3, 3] [ 4, 4] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 3, 3] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 5, 5] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]

[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 3, 3] [ 4, 4] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 4, 4]
[ 0, 0] [ 0, 0] [ 1, 1] [ 3, 3]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 6, 6] [ 5, 5] [ 0, 0] [ 0, 0]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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14 Will-be-set-by-IN-TECH

[U]T V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟



Afterwards, carry out the elimination of vanishing markings (Equation 5), to obtain the matrix
of rate intervals [U] representing the IREMC:

[U] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[ 0, 0] [ 3, 3] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 2, 2] [ 0, 0] [ 0, 0] [ 3, 3] [ 4, 4] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 2, 2] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0] [ 0, 0] [ 3, 3] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 3, 3] [ 4, 4] [ 1, 1] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 3, 3] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 1, 1]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 5, 5] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 5, 5] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]

[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0]
[ 3, 3] [ 4, 4] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 4, 4]
[ 0, 0] [ 0, 0] [ 1, 1] [ 3, 3]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 6, 6] [ 5, 5] [ 0, 0] [ 0, 0]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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Finally, using Equation 6, we find the infinitesimal generator interval matrix:

[Q] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[ -4, -4] [ 3, 3] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 5, 5] [ -5, -5] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 2, 2] [ 0, 0] [ -10, -10] [ 3, 3] [ 4, 4] [ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 2, 2] [ 5, 5] [ -11, -11] [ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [-10, -10] [ 0, 0] [ 3, 3] [ 0, 0] [ 1, 1]
[ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0] [ -10, -10] [ 0, 0] [ 3, 3] [ 4, 4]
[ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 5, 5] [ 0, 0] [ -11, -11] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 5, 5] [ 0, 0] [ -11, -11] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0] [ -10, -10]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 6, 6] [ 5, 5]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 2, 2] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]

[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 1, 1] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 4, 4] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 0, 0] [ 3, 3] [ 0, 0] [ 0, 0] [ 1, 1] [ 0, 0] [ 0, 0]

[ -10, -10] [ 0, 0] [ 1, 1] [ 3, 3] [ 4, 4] [ 0, 0] [ 0, 0]
[ 0, 0] [ -11, -11] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0] [ 0, 0]
[ 2, 2] [ 0, 0] [ -6, -6] [ 0, 0] [ 0, 0] [ 4, 4] [ 0, 0]
[ 5, 5] [ 0, 0] [ 0, 0] [ -11, -11] [ 0, 0] [ 0, 0] [ 4, 4]
[ 6, 6] [ 0, 0] [ 0, 0] [ 0, 0] [ -10, -10] [ 1, 1] [ 3, 3]
[ 0, 0] [ 0, 0] [ 6, 6] [ 0, 0] [ 0, 0] [ -6, -6] [ 0, 0]
[ 0, 0] [ 6, 6] [ 5, 5] [ 0, 0] [ -11, -11] [ 0, 0] [ 0, 0]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟



out by the verifylss function of the MATLAB
The third step of ISPN analysis solves the system of interval linear equations described by
Equation (7). The interval linear equations solution is carried out by the verifylss function of
the MATLAB toolbox INTLAB. Substituting the last equation of system [�π] · [Q] = 0 by the

normalization condition
16

∑
i=1

[π]i = 1, the linear system ([π]1, [π]2) · [A] = [b] is obtained. The

solution of this system directly provides the steady state probabilities of tangible states:
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[�π]t =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[ 0.30162341059172. 0.30162341059173]
[ 0.20129241213850. 0.20129241213851]
[ 0.10001579083719. 0.10001579083720]
[ 0.05079591445866. 0.05079591445867]
[ 0.05701697985273. 0.05701697985274]
[ 0.05122652318522. 0.05122652318523]
[ 0.03402132703571. 0.03402132703572]
[ 0.02728986215974. 0.02728986215975]
[ 0.03607316886026. 0.03607316886027]
[ 0.02968055852738. 0.02968055852739]
[ 0.01976172320179. 0.01976172320180]
[ 0.02527256969829. 0.02527256969830]
[ 0.01396928749535. 0.01396928749536]
[ 0.02086458086920. 0.02086458086922]
[ 0.02032580994373. 0.02032580994374]
[ 0.01077008114445. 0.01077008114446]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟



.

Finally we can make the fourth (final) step of analysis ISPN, i.e. computation of metrics. The
average utilization of machines, i.e., the probability that a machine is processing a part are:

[UM1] = [prob](m(p2) = 1) and [UM2] = [prob](m(p6) = 1).

The evaluation result provides the following values:

[UM1] = [0.59650101272372, 0.59650101272374] and

[UM2] = [0.29825050636186, 0.29825050636187].

These results gives interval bounds to exact value and can be used to verify conventional
analysis of GSPN results.

Experiment for Two-Machine One-Buffer Transfer Line Model

Table 6 shows the average machine utilization, UM1 and UM2, for three µ1 rate intervals
(degenerated intervals). ISPN analysis results, provided by ISPN MATLAB toolbox INTLAB,
are GSPN ordinary results with verified interval bounds.

Interval rate
[µ1]

Machine utilization

[UM1] [UM2]

[0.1E2, 0.1E2]
[0.11946700722573,
0.11946700722574]

[0.59733503612865,
0.59733503612866]

[0.1E1, 0.1E1]
[0.59650101272372,
0.59650101272374]

[0.29825050636186,
0.29825050636187]

[0.2E0, 0.2E0]
[0.62490104707753,
0.62490104707755]

[0.06249010470775,
0.06249010470776]

Table 6. Experiment for Two-Machine One-Buffer Transfer Line Model for three MR
(Machining Rate) = µ1 (degenerated interval). Results obtained with ISPN MATLAB toolbox
INTLAB Prototype Tool.
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Interval rate
[µ1]

Machine utilization

[UM1] [UM2]

[0.099E2, 0.101E2]
=

0, 100E2 ± 0, 001E2

[0.11399679921745,
0.12493721523401]

=
0.11946700722573±
0.00547020800828

[0.57960670982656,
0.61506336243075]

=
0.59733503612865±
0.01772832630210

[0.099E1, 0.101E1]
=

0, 100E1 ± 0, 001E1

[0.49611631459760,
0.69688571084986]

=
0.59650101272373±
0.10038469812613

[0.22827877740233,
0.36822223532140]

=
0.29825050636187±
0.06997172895954

[0, 199E0, 0, 201E0]
=

0, 200E0 ± 0, 001E0

[0.54449037658809,
0.70531171756699]

=
0.62490104707754±
0.08041067048945

[0.02346019982939,
0.10152000958611]

=
0.06249010470775±
0.03902990487836

Table 7. The average machine utilization results obtained with ISPN MATLAB toolbox
INTLAB Prototype Tool to Two-Machine One-Buffer Transfer Line Model for three µ1 rate
intervals.

Introducing parameters with input uncertainties:

In sequel, the variations in the rates of exponential transitions are considered. To avoid
redundancy, will not be displayed detailing of ISPN analysis as in previous examples. Table
7 shows the average machine utilization, UM1 and UM2 for three [µ1] rate intervals. All
exponential rate variabilities have ±1 as errors in the 3rd significant digits:

ISPN.m Line 59 modification for each experiment:

• AT(3,1)= [infsup(0.099E2,0.101E2),infsup(2.99,3.01),infsup(4.99,5.01),infsup(1.99,2.01),
infsup(3.99,4.01),infsup(5.99,6.01)];

• AT(3,1)= [infsup(0.099E1,0.101E1),infsup(2.99,3.01),infsup(4.99,5.01),infsup(1.99,2.01),
infsup(3.99,4.01),infsup(5.99,6.01)];

• AT(3,1)= [infsup(0.199E0, 0.201E0),infsup(2.99,3.01),infsup(4.99,5.01),infsup(1.99,2.01),
infsup(3.99,4.01),infsup(5.99,6.01)];

5. ISPN MATLAB toolbox INTLAB prototype tool

ISPN M-file MATLAB toolbox INTLAB is a prototype for the modeling and evaluation
of ISPNs in which exponential transition rates and immediate transition weights may be
represented by intervals. Models are specified by matrix input/output arc multiplicity of
transitions as a direct mapping of usual graphical Petri Nets representation description of
systems. The stationary analysis is based on Markov theory. An interval embedded Markov
chain (IEMC), constructed and solved by interval methods, allow us computation metrics.
The current prototype is still being used but ISPN.n will allow you to write your own features
and to tailor ISPNs to your own needs.
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The ISPN.m used for calculating verified probabilities and the machine utilization rate from
ISPN model of Figure 4, is given bellow:
Uncomment specified lines to display:

• Line 191: Reachability set and distribution markings from ISPN model (Table 4)

• Line 192: Literal description of reachability graph from ISPN model (Table 4)

• Line 213: [P]VV

• Line 218: [P]VT

• Line 223: [U]T V

• Line 229: [U]T T

• Line 237: [U]

• Line 237: [Q]
1. %
2. % ISPN prototype tool
3. %
4. % INPUT MODEL : Two-Machine One-Buffer Transfer Line Model ( Fig. 4 )
5. %
6. % Obs: Using matrix notation of ISPN model
7. datestr(now,0)
8. format long
9. clear At % Clear variable At
10. % input arc multiplicity of immediate transitions, (-) minus means input
11. At(1,1)= {[-1, 0; % P1
12. 0, 0; % P2
13. 0, 0; % P3
14. 0,-1; % P4
15. 0,-1; % P5
16. 0, 0; % P6
17. 0, 0; % P7
18. -1, 0]}; % P8
19. % labels of immediate transition
20. At(2,1)={ [’t1’;’t5’]};
21. % weight of immediate transition
22. At(3,1)= {[1,1]};
23. % celldisp(At) % uncomment display cell array contents
24. clear AtO % Clear variable AtO
25. % output arc multiplicity of immediate transitions
26. AtO(1,1)= {[ 0, 0; % P1
27. 1, 0; % P2
28. 0, 0; % P3
29. 0, 0; % P4
30. 0, 0; % P5
31. 0, 1; % P6
32. 0, 0; % P7
33. 0, 1]}; % P8
34. % celldisp(AtO) % uncomment display cell array contents
35. clear Ai % Clear variable Ai
36. % arc multiplicity of inhibitor arcs (associeted to immediate transitions)
37. Ai(1,1)= {[0, 0; % P1
38. 0, 0; % P2
39. 0, 0; % P3
40. 0, 0; % P4
41. 0, 0; % P5
42. 0, 0; % P6
43. 0, 0; % P7
44. 0, 0]}; % P8
45. % celldisp(Ai) % uncomment display cell array contents
46. clear AT % Clear variable AT
47. % input arc multiplicity of timed transitions, ( - ) minus means input
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48. AT(1,1)= {[ 0, 0, 0, 0, 0, 0;
49. -1,-1, 0, 0, 0, 0;
50. 0, 0,-1, 0, 0, 0;
51. 0, 0, 0, 0, 0, 0;
52. 0, 0, 0, 0, 0, 0;
53. 0, 0, 0,-1,-1, 0;
54. 0, 0, 0, 0, 0,-1;
55. 0, 0, 0, 0, 0, 0]};
56. % labels of timed transitions
57. AT(2,1)={ [’T2’;’T3’;’T4’;’T6’;’T7’;’T8’]};
58. % interval rate of timed transitions (degenereted)
59. AT(3,1)= {[1,3,5,2,4,6]};
60. % server semantics of timed transitions
61. AT(4,1)= {[’SS’;’SS’;’SS’;’SS’;’SS’;’SS’]};
62. % celldisp(AT) % uncomment display cell array contents
63. clear ATO % Clear variable ATO
64. ATO(1,1)= {[1, 0, 0, 0, 0, 0;
65. 0, 0, 1, 0, 0, 0;
66. 0, 1, 0, 0, 0, 0;
67. 1, 0, 0, 0, 0, 0;
68. 0, 0, 0, 1, 0, 0;
69. 0, 0, 0, 0, 0, 1;
70. 0, 0, 0, 0, 1, 0;
71. 0, 0, 0, 0, 0, 0]};
72. % celldisp(ATO) % uncomment display cell array contents
73. clear M % Clear variable M
74. clear d % Clear variable d
75. % Initial marking of each place (initial state)
76. M(1,1)={ [1;0;0;0;1;0;0;3] };
77. M(2,1)={ ’M0’ };
78. im=0;
79. ivm=1;
80. itm=1;
81. n=size(At{1},2); % number of columns of At
82. nT=size(AT{1},2); % number of columns of AT
83. m=size(AT{1},1); % number of rows of AT
84. id=1;
85. ic=1;
86. Q=infsup(0.0,0.0);
87. while im < size(M,2)
88. j=0;
89. t=0;
90. tvm=1;
91. mx=M{1,im+1};
92. for i=1:n
93. mt=At{1,1} (1:end,i);
94. ai=0;
95. mi=Ai{1,1} (1:end,i);
96. mi=mx-mi;
97. if mi==mx | min(mi)<0
98. ai=1;
99. end
100. md=mx+mt;
101. if min(md)>=0 & ai==1
102. d{id,1}=strcat(M{2,1+im} (1:end),’|’, At{2} (i,1:end),’>’);
103. md=md+AtO{1,1} (1:end,i);
104. t=1;
105. tvm=0;
106. id=id+1;
107. c=size(M,2);
108. xt=’new’;
109. for ix = 1:c
110. if md == M{1,ix}
111. x=M{2,ix};
112. d{id-1,2}=x;
113. xt=’old’;
114. Q(im+1,ix)=At{3,1} (i);
115. break
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116. end
117. end
118. if xt==’new’
119. strx=strcat(’M’,num2str(c));
120. d{id-1,2}=strx;
121. M{1,c+1} =md;
122. M{2,c+1}= strx;
123. Q(im+1,c+1)=At{3,1} (i);
124. end
125. end
126. end
127. % If there is no firing of immediate transitions so we try
128. % to firing timed transitions
129. if t==0
130. for i= 1:nT
131. mt=AT{1,1} (1:end,i);
132. md=mx+mt;
133. min(md);
134. if min(md) >= 0
135. d{id,1}=strcat(M{2,1+im} (1:end),’|’, AT{2} (i,1:end),’>’);
136. md=md+ATO{1,1} (1:end,i);
137. ma=md;
138. ga=0;
139. while min(ma)>=0
140. ma=ma+AT{1,1} (1:end,i);
141. ga=ga+1;
142. end
143. t=1;
144. id=id+1;
145. c=size(M,2);
146. xt=’new’;
147. for ix = 1:c
148. if md == M{1,ix}
149. x=M{2,ix};
150. d{id-1,2}=x;
151. xt=’old’;
152. if AT{4} (i,1:end) == ’SS’
153. Q(im+1,ix)=AT{3,1} (i);
154. end
155. if AT{4} (i,1:end) == ’IS’
156. Q(im+1,ix)=ga*AT{3,1} (i);
157. end
158. break
159. end
160. end
161. if xt==’new’
162. strx=strcat(’M’,num2str(c));
163. d{id-1,2}=strx;
164. M{1,c+1} =md;
165. M{2,c+1}= strx;
166. if AT{4} (i,1:end) == ’SS’
167. Q(im+1,c+1)=AT{3,1} (i);
168. end
169. if AT{4} (i,1:end) == ’IS’
170. Q(im+1,c+1)=ga*AT{3,1} (i);
171. end
172. end
173. end
174. end
175. end
176. im=im+1; % provoca termino do loop while
177. if tvm==0
178. vm(ivm)=im-1;
179. ivm=ivm+1;
180. else
181. tm(itm)=im-1;
182. itm=itm+1;
183. end
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184. end
185. clear At % Clear variable At
186. clear AtO % Clear variable AtO
187. clear AT % Clear variable AT
188. clear ATO % Clear variable ATO
189. clear Ai % Clear variable Ai
190. %===============================================
191. % celldisp(M); % uncomment display reachability set and distribution

markings from ISPN = ( Table 4 )
192. % d % uncomment display literal description of reachability graph from

ISPN = ( Table 5 )
193. % vm % uncomment display vanishing markings index vector
194. % tm % uncomment display tangible markings index vector
195. %==============================================
196. % ’number of vanishing markings’
197. ivm=ivm-1;
198. % ’number of tangible markings’
199. itm=itm-1;
200. n=ivm+itm;
201. clear PVV % Clear variable PVV
202. PVV=intval(zeros(ivm,ivm));
203. i = (1:ivm);
204. j=(1:ivm);
205. PVV(i,j)=Q(vm(i)+1,vm(j)+1);
206. % weigths uniformization of immediate transitions
207. for i= 1:ivm
208. s=sum(PVV(i,1:ivm));
209. if s>1
210. PVV(i,1:ivm)=PVV(i,1:ivm)/s;
211. end
212. end
213. % PVV % uncomment display PVV
214. clear PVT % Clear variable PVV
215. i = (1:ivm);
216. j=(1:itm);
217. PVT(i,j)=Q(vm(i)+1,tm(j)+1);
218. % PVT % uncomment display PVT
219. clear UTV % Clear variable UTV
220. i = (1:itm);
221. j=(1:ivm);
222. UTV(i,j)=Q(tm(i)+1,vm(j)+1);
223. % UTV % uncomment display UTV
224. clear UTT % Clear variable UTT
225. i = (1:itm);
226. j=(1:itm);
227. UTT(i,j)=Q(tm(i)+1,tm(j)+1);
228. clear Q % Clear variable Q
229. % UTT % uncomment display UTT
230. % ’Calculating X=eye(size(PVV,1))-PVV’
231. X=eye(size(PVV,1))-PVV;
232. clear PVV % Clear variable PVV
233. % ’Calculating X=inv(X)’
234. X=inv(X);
235. % ’Calculating U=UTT+UTV*X*PVT’
236. U=UTT+UTV*X*PVT;
237. % U % uncomment display U
238. clear PVT % Clear variable PVT
239. clear UTT % Clear variable UTT
240. clear UTV % Clear variable UTV
241. clear X % Clear variable X
242. n=size(U,1);
243. t=sum(U.’);
244. for i=1:n
245. U(i,i)=-t(i);
246. end
247. Q=U;
248. % Q % uncomment display Q
249. clear U % Clear variable U
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250. QZ=Q.’;
251. clear Q % Clear variable Q
252. m=size(QZ,1);
253. j= 1:m;
254. QZ(m,j)=1;
255. QZ;
256. Z(m)=1;
257. Z=Z.’;
258. % ’Calculating x=verifylss(QZ,Z)’
259. x=verifylss(QZ,Z)
260. % [UM1] = [prob](m(p_{2}) = 1)
261. ’UM1’
262. s1=0;
263. for i= 1:n
264. if M{1,tm(i)+1} (2) >0
265. s1=s1+x(i);
266. end
267. end
268. intvalinit(’displaymidrad’)
269. s1
270. intvalinit(’displayinfsup’)
271. s1
272. % [UM2] = [prob](m(p_{6}) = 1)
273. ’UM2’
274. s1=0;
275. for i= 1:n
276. if M{1,tm(i)+1} (6) >0
277. s1=s1+x(i);
278. end
279. end
280. intvalinit(’displaymidrad’)
281. s1
282. intvalinit(’displayinfsup’)
283. s1
284. datestr(now,0)

Executing ISPN.m yields:

>> ISPN
ans =
01-Apr-2011 23:59:14
intval x =
[ 0.30162341059172, 0.30162341059173]
[ 0.20129241213850, 0.20129241213851]
[ 0.10001579083719, 0.10001579083720]
[ 0.05079591445866, 0.05079591445867]
[ 0.05701697985273, 0.05701697985274]
[ 0.05122652318522, 0.05122652318523]
[ 0.03402132703571, 0.03402132703572]
[ 0.02728986215974, 0.02728986215975]
[ 0.03607316886026, 0.03607316886027]
[ 0.02968055852738, 0.02968055852739]
[ 0.01976172320179, 0.01976172320180]
[ 0.02527256969829, 0.02527256969830]
[ 0.01396928749535, 0.01396928749536]
[ 0.02086458086920, 0.02086458086922]
[ 0.02032580994373, 0.02032580994374]
[ 0.01077008114445, 0.01077008114446]
ans =
UM1
===> Default display of intervals by midpoint/radius (e.g. < 3.14 , 0.01 >)
intval s1 =
< 0.59650101272373, 0.00000000000001>
===> Default display of intervals by infimum/supremum (e.g. [ 3.14 , 3.15 ])
intval s1 =
[ 0.59650101272372, 0.59650101272374]
ans =
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UM2
===> Default display of intervals by midpoint/radius (e.g. < 3.14 , 0.01 >)
intval s1 =
< 0.29825050636187, 0.00000000000001>
===> Default display of intervals by infimum/supremum (e.g. [ 3.14 , 3.15 ])
intval s1 =
[ 0.29825050636186, 0.29825050636187]
ans =
01-Apr-2011 23:59:14
>>

6. Concluding remarks

In this chapter, ISPN is used as an approach to ISPN performance analysis in which the
exponential rates fall within pre-assumed intervals. ISPN is mainly applied in modeling,
where input data are known within definite interval of accuracy. Such uncertainties include
the errors involved with experimental data obtained from measurements. This framework
provides a way to formalize and study problems related to the presence of uncertainties.
Such uncertainties include data errors occurring during data measurements and rounding
errors generated during calculations. The model proposed and the related method of
analysis, involves the case of simultaneous variability in values of parameters. As an
immediate consequence, the ISPN analysis, designed for evaluation of results obtained from
measurements, may appear to be useful for engineers and technicians as a tool for decision
making. As future works, methods for interval transient analysis and simulation should
considered. Furthermore, other case studies should also be take into account. ISPN MATLAB
toolbox INTLAB Prototype Tool will allow you to specify your own ISPNs. We plan to post
future developments of ISPN MATLAB toolbox INTLAB Prototype Tool.
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