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The Use of Matlab in Advanced  
Design of Bonded and Welded Joints 

Paolo Ferro  
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1. Introduction  

From a mathematical viewpoint, welding can be considered as a transient boundary 
problem in which the thermal input varies in space and time. Thermal coefficients involved 
with heat lost by convection and radiation, are usually temperature-dependent; 
displacement constraint conditions are also imposed on the geometry. Temperature and 
stress development in the material are steered by the well know differential equations of 
heat exchange and elasto-plastic equilibrium. Two complications in the models are due to 
the microstructure transformations (which influence  the mechanical behaviour of the joint), 
and to the filler metal (which influences also the chemical composition of the parent metal 
and the temperature distribution). It should be noted that coupled phenomena are involved 
because the latent heat of phase transformation influences the temperature distribution due 
to the welding source. Moreover, the constitutive relations which connect stresses to strains 
are both temperature  and phase dependent. 
The development of new models for joint planning is of great importance in the industrial 
and research fields. The prediction of residual stresses, temperature distributions, phase 
transformations, asymptotic stress fields near the weld toe or near the interface between 
the matrix and the adhesive in bonded joints, may be of fundamental importance for a 
good joining plan and operation. In this chapter, some models developed for bonded and 
welded joints and solved by means of Matlab program, are presented. In the first part, 
models for temperture ditributions and phase transformations diagrams are considered 
with particular attention, referred both to conventional and innovative welding precesses, 
such as laser and friction stir welding. In the second part, mechanical models are 
described with particolar attention put on residual stress calculation and advanced joints 
planning methodologies.  
Only analytical or semi-analyitical models are taken into account due to their efficiency 
compared to Finite Element models. As a matter of fact, by using analytical models for 
temperature distributions prediction it is possible to optimize the process parameters such 
as power source, welding speed and pre-heating temperature, with low effort in terms of 
time and cost.  Such models offer also the possibility to predict the fusion zone (FZ) and heat 
affected zone (HAZ) extension and, finally, to perform a parametric sudy of welding. In this 
work, the Rosenthl solution (Rosenthal, 1941; Rosenthal and Shamerber, 1938) of the 
welding thermal problem, will be described. Moving point source, linear source or 
combinations of the last two are used to reproduce the fusion zone shape of the joint, 
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leading to good results in a very short time. Referring to the residual stresses calcualtion, the 
‘’rod model“ by Cañas et al. will be presented. In this model, the equations referred to the 
problem under consideration, are written in matrix notation and advantageously used in an 
efficient algorithm solved with Matlab. As refers to phase transformations, the possibility to 
calculate the Time-Temperature Transformation (TTT) and Continuous Cooling 
Transformation (CCT) diagrams of steels with use of the Kirkaldy model is also proved. 
In the matter of advanced joint planning, it was shonwn that better predictions of static and 
fatigue resitance are possible if the intensity of the asymptotic stress fields is taken into 
account. Dealing with the fatigue strength of welded joints, such local approach models the 
weld toe region as a sharp, zero radius, V-shaped notch. Under these conditions, the 
intensity of asymptotic stress distribuions, obeying Williams’ solution, are quantified by 
means of the notch stress intensity factors (NSIFs). The formulation of this method is 
completed analytically and the resulting set of ordinary differential equations is solved 
numerically by means of Matlab. In this chapter it is described with a particular attention 
put on bonded joints. 

2. Thermo-metallurgical analysis 

The thermal history induced by a welding process can be calculated by solving the 
fundamental equation of heat transfer (1): 

 ( )p ij ij
i j

C T k T L T p


      (1) 

where ρ is the material density, Cp is the specific heat capacity of the material (weighted 
according to proportions of various phases), k is the thermal conductivity of material 
(weighted according to proportions of various phases), T is the temperature, T  is the 
temperature rate (Newton’s notation is used for the time derivative of a function), Lij(T) is 
the latent heat (at temperature T) of the i→j transformation, pij is the phase proportion of i-th 
phase which is transformed into j-th phase in the time unit, and 

1 2 3
1 2 3x x x

  
   

  
i i i  

is the 3D gradient vector operator. The heat transfer boundary conditions of the problem are 

 
q k T  

 (2) 

where q is the heat flux at the boundary which, in the welding process, consists of a 
prescribed function of the time and space (heat source), convective and radiative heat loss, 
and zero flux in a symmetry plane. 
The Rosenthal solution of Eq. (1) is described both for fusion and friction stir welding with 
some guidelines put on its practical use in welding process plan.  

2.1 Temperature distribution and cooling rate in fusion welding 

The analytical solution of Eq. (1) was given by Rosenthal (1941), who considered a point 
source moving on a semi-infinite plate under steady-state conditions, with temperature-
independent material properties, at convective and radiative heat loss and phase 
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transformations neglected. In a reference system linked to the source, this solution is given 
by the following equation: 

 0
2

vR
vQ e

T T e
k R


 




   (3) 

where T0 is the reference temperature, R=(ξ2 + y2 + z2)1/2 is the radial distance of a point of 
the plate from the source axis, v is the welding speed, t is the time, ξ = x – vt is a moving co-
ordinate,  λ = 1/(2α) (where α is the diffusivity), and Q is the effective thermal power 
absorbed by the material. In the case of a line source in a plate of thickness H, the relation (3) 
becomes: 

 0
0

( )

2
v K vrQ

T T e
k H

  


   (4) 

where K0 is the modified Bessel function of the second kind and zero order. In the case of  
arc welding, the effective thermal power equals to 

 Q VI  (5) 

where V is the arc voltage, I is the current intensity, and η is the arc efficiency. Eq. (4) can be 
easily solved by means of Matlab. Figure 1 shows a 3D representation of Eq. (4) and a 
comparison between analytical and Finite Element (FE) solution (Ferro et al., 2002). It can be 
observed that the asymptotic solution at the centre of the source gives non-realistic results 
(asymptotic temperature distribution). This means that Eqs. (3) and (4) are valid only when 
referred to the points distant from the heat source axis. 
 

  
                                     (a)                                                               (b) 

Fig. 1. Thermal analytical solution (Rosenthal, 1941) (a); comparison between FE and 
analytical thermal solution (b). Material:  AA-5083-O, welding technology: GMAW, voltage 
= 23.4 V, current = 170 A, welding speed: 11 mm/s 

The time derivative of Eq. (3) gives an estimation of the cooling rate (at the point of its 
maximum value (y = z = 0)) and ξ < 0):  
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 2
0

2
( )

T k
v T T

t Q


  


 (6) 

Equation (6) shows the strong (squared) dependence of the pre-heating (T-T0) on cooling 
rate compared to the others process parameters such as welding speed and power. It means 
that pre-heating is the most efficient variable, in the case of steel welding, which can be 
modified in order to obtain sound welds. Knowing the critical cooling rate of the steel, it is 
possible to estimate, by using Eq. (6), the pre-heating value needed to avoid a martensitic 
microstructure in the weld bead. 

2.2 Temperature distribution in Friction Stir Welding 

The main difficulty in the formulation of any model for friction stir welding (FSW) is due to 
the high coupling between thermal and mechanical phenomena. Thus, in Ferro et al. (2010), 
the solution of the formulated equation was obtained by a numerical routine written in 
Matlab code under the simplification of isothermal condition at the matrix/tool interface. 
The formulation of heat flow is based on Rosethal’s solution, while the heat generation is 
described as a surface flux, which depends on the variation of the shear yield stress with 
temperature.  

2.2.1 Governing equations 

As proposed by P. Vilaca et al. (2007), the heat source can be considered to be concentrated 
at the mid-thickness of the plate, simulating the typical location of the nugget centre and 
travelling with a constant linear velocity (v) (fig. 2)(Eq. 3).  
 

 

Fig. 2. Point Heat Source located at the nugget centre. 

In this case, in Eq. (3), Q is the total heat generation due to frictional and plastic dissipation. 
Eq. (3) gives good results in case of thick plates. For medium thick plates, good results can 
be obtained by using eq. (7) (Ferro et al. (2010)):  

 /2 2
0

1

2

i
vi r

v

ii

Q
T T e e

k r
  



 



 
  
 
 
  (7) 

where 2 2 2( 2 )ir y z iH     and H is the thickness of the plates. Finally, if thin plates 

has to be modelled, the best results can be found by using linear heat source (Eq. (4)) instead 

of point-source. 
The heat flux in FSW is primarily generated by the friction and the deformation process. 
However, the mechanical loads applied by the pin tool to the workpiece result in a yielded 
region only in the immediate vicinity of the former while most of the workpiece remains 
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unyielded. Thus, idealizing the localized yielded region as being coincident with the tool 
surface and treating the workpiece as a rigid matter, the heat generation originated from 
both frictional and plastic dissipation, can be modelled via surface flux boundary condition 
at tool/matrix interface (Schmidt et al., 2008, Perivilli et al., 2008). It can be found (Ferro et 
al., 2010) that the heat generated is expressed by the formula: 

 3 3 3 2
0

2 *
1 ( )(1 tan ) 3

3
workpiece sh p p p p

M

T
Q R R R R H

T
 

           
 (8) 

where  is the tool shoulder cone angle, Hp is the tool pin height, Rsh and Rp are the shoulder 
and pin radius respectively (Fig. 3), TM is the melting temperature, τ0 is a fitting material 
parameter,  is the thermal efficiency of the process,   is the angular velocity of the tool 
and T* is the temperature at the tool/matrix interface. Thus, in the case of thick plates, the 
temperature field induced by friction stir welding under steady-state conditions can be 
described by eq. (9): 

 

3 3 3 2
0 2

/2
0

2 *
1 ( )(1 tan ) 3

3

2

v
rsh p p p p

M v

T
R R R R H

T e
T T e

k r


 

 






              (9) 

 

 

Fig. 3. Schematic representation of the tool geometry. 

(Ferro et al., 2010). The unknown parameters in Eqs. (8) and (9) are:   and T*, showing the 
coupled thermo-mechanical characteristic of the problem under consideration. However, 
Eq. (9) can be solved by using a simple numerical routine,  as one described in the flow chart 
of Fig. 5 where ΔT is the temperature increment and T*trial is an interface trial temperature 
value. This routine was written in Matlab code. Finally, the thermal efficiency ( ) is 
calculated by a reverse analysis as in any other analytical or phenomenological numerical 
model of welding process. Because of the temperature singualrity of the Rosenthal’s 
solution, the validity of Eq. (9) is limited to a zone sufficentely far from the source centre. 
Moreover, in order to obtain a numerical solution of Eq. (9), in the proposed model,  T* 
refers to the temperature reached at a distance R* close to Rsh (Fig. 4). Good results were 
obtained with R*=Rsh for aluminum alloys. The modelling procedure, although not perfect, 
is belived to be a reasonable approach. Finally, since the Rosenthal solution depends on the 

www.intechopen.com



  
Applications of MATLAB in Science and Engineering 

 

392 

thickness of the plates (Eqs. (3, 4,7 )), the correct formulation has to be used according to the 
analysed plates thickness. 
 

 

Fig. 4. Schematic representation of the tool/matrix interface temperature and R* parameter 

 

 

Fig. 5. Flow chart of the numerical routine written in Matlab code 

The model was validated by comparison with different experimental data found in 
literature (Ferro et al., 2010). In Fig. 6 it can be observed that the thermal history calculated 
by the model is in good agreement with that measured experimentally. 
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Fig. 6. Variation of transient temperature at different locations of the thermocouples for 

rotational speed of 240 rpm, welding speed 3.32 mm/s (=0.5, R*=Rsh, 0=51.56 MPa)  (lines: 
Semi-analytical solution, symbols: test data (Chao et al. (2003))) 

2.3 TTT and CCT diagrams calculation 

The Time-Temperature Transformation (TTT) and Continuous Cooling Transformation 
(CCT) diagrams are useful tools in thermomechanical processing of steels. Such diagrams 
depend on a so great number of variables that it is impossible to produce enough 
experimental diagrams for generalised use.  For this reason, significant work has been 
undertaken to develop models that can calculate TTT and CCT diagrams for steels.  
Starting from Kirkaldy’s model, the general formulation of TTT diagrams is described by the  
relation (10): 

 
( , , , , , , )

( , ) ( )
exp( / )n

eff

F C Mn Si Ni Cr Mo N
X T S X

T Q RT
 

 
 (10) 

where  is the time needed to transform X volume fraction of austenite, T is the temperature, 
F is a function of steel composition (expressed in wt%), N is the prior austenite grain size 

(ASTM number), T is the undercooling, Qeff  is the effective activation energy for diffusion, 
and the exponent n is an empirical constant, determined by the effective diffusion 
mechanism; n = 2 for volume and n = 3 for boundary diffusion. S(X) is the reaction rate 
term, which approximates the sigmoidal effect of phase transformation. In the work of 
Victor Li at al. (1998), S(X) is expressed as follows: 

 
0.4(1 ) 0.4

0

( )
(1 )

X

X X

dX
S X

X X
  (11) 
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In a TTT diagram, the location of the ‘nose’ of each C curve correlates to the maximum 
reaction rate. The exact locations of the nose are jointly determined by the values of n and Q. 
From Eq. (10), at the nose temperature the denominator has to be maximum, thus: 

  exp( / ) 0n
eff

d
T Q RT

dT
    (12) 

which lead to the relationship: 

 
2
NosenRT

Qeff
T




 (13) 

where TNose is the temperature at the nose position. Eq. (13) can be calibrated by using 
experimental data taken from literature and getting good estimations of the optimal value of 
Qeff. It was found in Victor et al. (1998) that the Qeff values have a median value of 27500 
kcal/mol °C. For simplicity, this value is used for each diffusion-controlled phase 
transformation.  The kinetic coefficients of alloying elements in Eq. (10) are then determined 
by calibrating such equation with TTT diagrams in the open literature. Under isothermal 
conditions, the ferrite transformation can be represented by: 

 
0.41 3

3

exp(1.00 6.31 1.78 0.31 1.12 2.70 4.06 )
( )

2 ( ) exp( 27500 / )
F N

C Mn Si Ni Cr Mo
S X

Ae T RT
      


 

 (14) 

the pearlite transformation is represented by  

 
0.32 3

1

exp( 4.25 4.12 4.36 0.44 1.71 3.33 5.19 )
( )

2 ( ) exp( 27500 / )
P N

C Mn Si Ni Cr Mo
S X

Ae T RT
       


 

 (15) 

and the bainite transformation under isothermal condition is represented by 

 
0.29 2

exp( 10.23 10.18 0.85 0.55 0.90 0.36 )
( )

2 ( ) exp( 27500 / )
B N

S

C Mn Ni Cr Mo
S X

B T RT
      


 

 (16) 

where 

 ( ) 637 58 35 15 34 41sB C C Mn Ni Cr Mo        (17) 

While, the martensite start temperature can be expressed by the following equation: 

 ( ) 539 423 30.4 17.7 12.1 7.5 10 7.5sM C C Mn Ni Cr Mo Co Si          (18) 

Once the TTT diagram is calculated, it is possible to transform it into a CCT diagram using 
the well–established additivity rule: 

 

0 0

exp( / )
1

( , , , , , , ) ( )( , ( ))

t t n

TTT

dt T Q RT
dt

F C Mn Si Ni Cr Mo G S XX T t
 

    (19) 

where TTT(X,T(t)) represents the isothermal transformation time for X at temperature T, and 
t is the total non-isothermal transformation time. Fig. 7 shows an example of TTT diagram 
computed with Matlab, starting from Eqs. (14-18).  
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Fig. 7. Calculated TTT diagrams; steel composition (wt%): C 0.37, Mn 0.77, Si 0.15, Ni 0.04, 
Cr 0.98, Mo 0.21; ASTM grain size number: 7; A= Austenite, F = Ferrite, P = Pearlite, B = 
Bainite, Ms = martensite start temperature. 

The above described model is limited to carbon and low-alloy steels. However, efforts are 
made in literature in order to develop models for general steels, including medium to high 
alloy types, tool steels, 13%Cr steels etc.  

2.4 Practical use of thermo-metallurgical models for welding 

An efficient recognition of the thermal field induced by a welding process, offers the 
possibility to make a parametric study of welding in order to check the influence of process, 
material and geometrical parameters on the temperature distribution within the plates. Fig. 
8 shows an example of influence of the welding speed on the temperature distribution 
during the welding. It is clear that the lower the velocity the wider the HAZ. 
 

 

Fig. 8. Isotherms [°C]: at I = 170 A, V = 23.4 Volt, H = 6.6 mm, T0 = 0 °C and a) v = 5 mm/s b) 
v = 11 mm/s [Material:  AA-5083-O, welding technology: GMAW] 
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By comparing the solidus temperature isotherm width with that of FZ, it is also possible to 
estimate the thermal efficiency of the welding process. Finally, by using the CCT diagram 
and Eq. (6), it is possible to evaluate the pre-heating temperature needed to avoid a 
martensitic microstructure in the weld bead. 

3. Mechanical analysis 

3.1 Residual stresses calculation on butt-welded joints 

High thermal gradients occurred during a welding process make thermal stresses in welded 

plates, that develop, after cooling, a state of permanent stress, generally defined as residual 

stresses. The magnitude of this residual stress state is so great that the mechanical behaviour 

of the welded joint, and in particular: fatigue, fracture, instability strength and  stress 

corrosion, may be compromised. Thus the knowledge and, above all, the prediction of 

residual stresses is very important for a correct choice of parameters of the welding process 

and a good planning of welded joints. Unfortunately, the evaluation of thermal and residual 

stresses is not an easy task because of the complexity of the phenomena. However, in the 

case of simple shapes like butt or edge welded plates, some simplifications are possible. In 

such instances, one can calculate the residual stress field induced by a welding operation by 

using simple equations which can be solved with an iterative procedure with high time 

efficiency. The use of such analytical models were already been proposed by several 

authors. In particular, Goff (1979) simplified the problem assuming temperature-

independent materials properties and a linear temperature distribution in the transversal 

direction of the plate. Using the singular Rosenthal solution of the thermal field, Tall (1964) 

suggested a step by step trial and error method in which at any temperature increment one 

had to determinate the equilibrium of  thermal stress seen as the summation of temperature 

and  equilibrium stresses; thermal stresses due to the temperature increment were summed 

to stresses calculate at the previous time step. Agapakis and Masubuchi (1984) developed 

the previous work by Tall, solving the equilibrium and stress-strain consititutive relations 

by an iterative procedure. Finally, Cañas et al (1996),  proposed a ‘rod model’ in which the 

previous equations were written in matrix form and advantageously used in an efficient 

algorithm.  

In what follows a model for residual stresses calcualtion in butt-welded joints is described. 

The equations which solve the problem are written in matrix form like in Cañas‘s work 

(1996). The thermal field induced by welding is given by Eq. (4) in which some fundamental 

assumptions are made: 

1. the plate is infinitely large and very thin; 

2. Eq. (4) describes a line source and then no temperature gradient exists through the 

thickness of the plate; 

3. steady-state conditions; 

4. for the stress calculation it is assumed that at time t, each longitudinal section is a part 

of an infinitely long plate subject to the same temperature distribution over its entire 

length (T=T(x,t)) (Fig. 9). 

Moreover, plates without lateral constraints are considered so that  longitudinal stresses 

are much greater than the transversal ones which are for this reason neglected. In order to 

write the equations in matrix form the welded plates are divided into n bars as shown in 

Fig. 9.  
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Fig. 9. Schematic representation of  welded plates (plate thickness: h) 

According to the configuration shown in Fig. 9, the conditions of equilibrium of forces and 
moments,  written in matricial form, are:  

 y TC N 0  (20) 

where C and Ny represent  the following matrixes:  
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   
 
 
  

N  (21) 

Nyi is the axial force of the bar i and n is the total number of bars employed to represent the 

welded plates. Assuming an ideal elasto-plastic non-holonomic material behaviour the 

constitutive equations are: 

 y y y y y    e t p pq q q q q  (22) 

where 

 qy represents the elongation vector in y direction (qiy is the elongation of the bar i in y 
direction); 

 
( )

yiy
ei

i

NL
q

E T h b

 
   

 
 is the elastic elongation of the bar i in y direction (Hooke’s law); 

 0( )( )y
ti i iq L T T T   is the thermal elongation of the bar i  

 qpiy is the accumulated inelastic elongation of the bar i during the previous time 
increments;  

 qpiy is the change of inelastic elongation of the bar i in y direction during the current 
time increment; 

The compatibility equations are: 

 y q Cu  (22) 
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where u is the displacement vector associated to the degrees of freedom  and   to which 
the equilibrium conditions are applied (fig. 10). 
 

 

Fig. 10. Scheme of welded general plate deformation. 

3.1.1 Field equations reduction 

Eq. (22) can be written as: 

 0( )y y y
y t p p     q AN A T T q q  (23) 

where A is a diagonal matrix, each element of it representing the flexibility coefficient of the 
bar i (L/(E(Ti)hb), with E = Young’s modulus), At is another diagonal matrix where each 

element of it is L(Ti) and T is the temperature vector. 
Now by using Eqs. (22) and (23), the vector Ny turns out to be: 

 0( ( ) )y y
y t p p     N K Cu A T T q q  (24) 

where K = [A]-1. From Eqs. (24) and (20): 

 1
0[ ] ( ( ) )y yT T

pt p
   u C KC C K A T T q q  (25) 

Now, the only unknown terms are the current plastic elongations (qpiy) but a convergence 
procedure may be used to calculate them. At each time step, the temperature vector (T-T0) 
can be first calculated by Eq. (4) and thus the temperature dependent material characteristics 
(E(Ti) etc). The matrixes, K, A and At (qp

y is known from the previous time step) may be 
then determined. Initially assuming that no plastic elongation exists, Eqs. (24) and (25) can 
be used for a first approximation of Ny. Imposing  

 | |y
i piN N  for i =1…n (26) 

where Npi is the yield force of the bar i, a first approximation of qp
y can be obtained by 

using the previous value of u and Eqs. (22) and (23). In this way a second approximation of 
Ny  can be obtained by means of Eqs. (24), (25) and (26) and this procedure can be repeated 
until convergence is reached for the current time step. A program for the automatic solution 
of such iterative procedure can be easily written in Matlab code. The input data requested 
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are: the net energy (Q) of the heat source, the welding speed (v), the liquidus and reference 
temperature, plates dimensions (L, 2B, h), the total number of  bars (n). Figure 11 shows an 
example of the computed residual stresses in a butt welding joint and the comparison with 
Finite Element and experimental results. 
 

 

Fig. 11. Residual stresses along the centre line transverse to welding direction: analytical 
solution (Material: AA-5083-O. Geometrical parameters: h = 0.66 cm, 2B = 36 cm, L = 25 cm. 
Welding procedure: GMAW; Welding voltage: 23.4 V; Welding current: 170 A; Arc 
efficiency: 0.64; Welding speed: 11 mm s-1; Filler wire diameter: 1.2 mm; Number of passes: 
1; Shielding gas: Argon; Shielding gas flow rate: 0.21 s-1) 

 

 

Fig. 12. Influence of welding speed (v) on residual stresses 
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The analytical model is very cost-effective in its computer implementation. Therefore, it 
allows for a series of parametric analyses to be performed and the relative importance of 
various parameters to be easily investigated. Fig. 12 shows, for example, the influence of 
welding speed on the residual stress field in welded plate without lateral constraints. 
Because of the heat input reduction, a decrement of plastic zone when welding speed 
increases is found. 

3.2 Asymptotic stress distributions in welded and bonded joints 

It is well know that fatigue resistance in mecahical components is controlled above all by the 
singular stress fields which arise near the gemetric discontinuities such as the wleld toe in 
welded joints (Livieri at al. (2005)) (Fig. 13) or the interface between the substrate and the 
adhesive in bonded joints (Lazzarin et al. (2002)).  
 

 

Fig. 13. Welded joint geometry and weld toe. 

In several works (Lazzarin at al., 1998; Livieri et al, 2005) the weld toe region is modelled as 
a sharp, zero radius, V-shaped notch and the intensity of asymptotic stress distributions 
obeying Williams’ solution (Williams, 1952) are quantified by means of the Notch Stress 
Intensity Factors (NSIFs). When the constancy of the angle included between weld flanks 
and main plates is assured and the angle is large enough to make mode II contribution non-
singular, mode I NSIF can be directly used to summarised the fatigue strength of welded 
joints having very different geometry (Livieri et al, 2005). Furthermore, the NSIFs 
parameters can be used also for the evaluation of thermal fatigue resistance of different 
components (Ferro et al., 2006; Ferro et al., 2009). 
The same approach is used for the advanced planning of bonded joints (Lazzarin et al., 
2002). Adhesively bonded joints inevitably present high stress concentration zones, due to 
the different elastic properties of the connected materials. While in a homogeneous material, 
linear elastic stress distributions need the presence of a V-shaped corner to become singular 
(Williams, 1952), in the bi-material problems stress singularity arises, as well known, also in 
absence of any geometrical discontinuity (Bogy, 1968). 
Strength evaluation needs both the order and the intensity of the stress singularity to be 
quantified in terms of joint geometry, material elastic properties and applied load. Several 
researchers (Gradin, (1982); Adams, et. al (1987); Groth, (1988); Hattory et al., (1988); 
Hattory, (1991); Reedy, (1990)) have used H (or other symbols, as K or Q) as a “generalised” 
stress intensity factor suitable as a failure criterion for bonded joints made of dissimilar 
materials. In the work of Hattory et al. (1991), for example, the stress field parameter 

(denoted Qxy) was determined on the basis of the singular distribution of the shear stress xy 
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present at the interface of Large Scale Integrated (LSI) electronic circuit devices subjected to 
thermal stresses. The critical value of Qxy (able to provoke delamination in the components) 

was plotted against the order of the singularity . Different values of  were obtained by 
using various configurations of epoxy/Fe-Ni blocks bonded together. Previously, Qxy had 
already been used by Gradin (1982), by introducing his static criterion for brittle edge-
bonded bi-material bodies. 
More recently, a H-based approach has also been used by Lefrebvre and Dillard (1999) to 
predict the fatigue crack initiation in epoxy-aluminium wedge specimens, in a manner similar 
to the use of the Notch Stress Intensity Factors in welded structures (Lazzarin at al., 1998).  
In view of the use of stress fields and stress intensity factors to predict the fatigue life at 
crack initiation, it is important to have the complete and correct description of the stress 
field very near to the apex. A method for the evaluation of the singular stress field in 
bonded joints of different geometry is presented and solved with Matlab; the stress 
distributions are represented by a two terms stress expansion, under the hypothesis that 
both first and second terms are in the variable separable form and therefore each term can 
be represented by a radial component with unknown exponent (eigenvalue) and an angular 
function also unknown.  
The resulting analytical formulation of the stress distributions can be given as: 

 (0) (1)
0 1( , ) ( ) ( )s t

ij ij ijr H r f H r f      (27) 

The method is based on the numerical solution of the ordinary differential equation (ODE) 
system that, under the hypothesis of plane strain state, derives from the equilibrium and 
compatibility equations of a bonded joint or, more generally, of a bi-material body. 
The capability of the formulation to account for the actual elastic properties of the 
substrates, allows us to obtain the accurate description of the stress field even in the case of 
joints made of materials with comparable elastic properties. It is worth noting that the 
“stress function approach” (where the formulation is completed analytically and the 
resulting set of equations is solved numerically) has already been used successfully by many 
researchers, mainly engaged with in-plane crack and notch problems in materials obeying a 
power-hardening law (Lazzarin et al., 2001). 

3.2.1 Analytical frame 

Let us consider the problem of the elastic equilibrium in a bi-material joint, in presence of a 
V-shaped corner with an opening angle 1 2( )   as shown in Figure 14. Both materials are 
thought of as homogeneous and isotropic and subjected to plane strain conditions. Under 
linear elastic hypothesis, strains components are: 

 
1 m m

ij ij kk ij
m mE E

    
   (28) 

where subscript m =1, 2 denotes the material, ij  is the Kroneker delta, and summation 
convention is used for repeated indexes. 
In writing the problem of the elastic equilibrium we can now consider separately the two 
materials and later find the solution by applying the boundary conditions at the traction free 
surfaces and at the interface. It is possible therefore to omit, from now on and until not 
differently evidenced, the material subscript m, being the equations valid for the both 
substrates. 
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Fig. 14. Schematic view of the singular zone showing the cartesian and polar coordinate 
systems. 

By assuming a polar coordinate system, in absence of body forces, the equilibrium 
conditions can be written as: 

 
1

0rr r rr

r r r
    


  
  

 
 (29) 

 
1 2

0r
r

r r r
 


 




 
  

 
 (30) 

The compatibility equations between strains and displacements are: 

 r
rr

U

r
 




 (31) 

 
1rU U

r r






 


 (32) 

 
1 1

2
r

r

U U U

r r r
 

 
       

 (33) 

where rU  andU  are the displacement components. 
According to the direct approach, first suggested by Ponte Castanêda (1985) and then used 
also in (Yuan et al., (1994); Lazzarin et al. (2001)), a variable separable two term expansion is 
used for the stresses: 

 (0) (1)( , ) ( ) ( )s t
ij ij ijr r f r f      (34) 

where the exponent s is to be thought of as negative to give a stress field singular and, 
moreover, it is stated for hypothesis that s < t.  

It should be noted that in Eq. (34) the generalised stress intensity factors H0 and H1, related to 

the first and second order component of the stress distribution respectively, are, for the time 

being, included in the angular stress distribution functions ijf  which are always defined 

within a constant value. Such a value is to be later determined by means of FE analyses. 
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Substitution of Eq. (34) into (28) gives the following expressions for strains: 

 (0) (1)( , ) ( ) ( )s t
ij ij ijr r r        (35) 

where: 

 (0) (0) (0)1
( ) ( ) ( )ij ij kk ijf f

E E

     
    (36) 

 (1) (1) (1)1
( ) ( ) ( )ij ij kk ijf f

E E

     
    (37) 

The relevant displacement components are: 

 (0) (1)1 1( , ) ( ) ( )s t
i i iU r r U r U      (38) 

As it is known, the exponents depend on the combination of the material elastic properties.  
In the close neighbourhood of the singularity point (r which tends towards zero), the first 
term of the stress distribution becomes dominant. Let us consider, therefore, in the stress 
and strain expansions only the leading-order term, s being the relevant exponent.  
Substitution of Eqs. (34), (35) and (38) into Eqs. (29) to (33), together with the plane strain 
conditions 

 (0)(0) (0)( ) [ ( ) ( )]z rrf f f      (39) 

gives the following system: 

 

(0) (0) (0)
,

(0) (0)
,

(0) (0) (0) (0)

(0) (0) (0) (0) (0)
,

( 1) ( ) ( ) ( ) 0

( ) ( 2) ( ) 0

1
( 1) ( ) ( ) [ ( )(1 ) ( )(1 )] 0

1
( ) ( ) ( ) [ ( )(1 ) ( )(1 )] 0

1

2

rr r

r

r rr rr

r rr

s f f f

f s f

s U f f f
E E

U U f f f
E E

  

  



   

  

 
      

       

   

  


      


      

(0) (0) (0)
,

1
[ ( ) ( )] ( ) 0r rU sU f

E
  

  
  

 (40) 

where ,f   and  ,U    mean 
f





 and 
U





, respectively. 

The boundary conditions, at the traction free surface and at the interface between the two 
materials, are as follows:  

 

.1 .2
1 2

.1 .2
1 2

.1 .2

.1 .2

.1 .2

.1 .2

( ) ( ) 0

( ) ( ) 0

(0) (0)

(0) (0)

(0) (0)

(0) (0)

mat mat

mat mat
r r

mat mat

mat mat
r r

mat mat

mat mat
r r

f f

f f

f f

f f

U U

U U
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 

 

 

 

 

 
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   






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 (41) 
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By using the third equation of the system 40 to eliminate the (0)( )rU  , the problem gives 

four differential equations for the material 1 and four differential equations for the material 

2. The angular stress and displacement components f , rf  , rrf  and U  are the 

eigenfunctions of the problem, which will be given to within a constant value, as the 

problem is homogeneous. 
A PC-based application has been developed for the solution of the system, by using the 

MATLAB® program and, particularly, its ODE45®  routine.  

According to the procedure illustrated in the flowchart of Figure 15, the solution begins with 

the introduction of an arbitrary value for 1( )U   (for example, 104106) together with a 

couple of  s and 1( )rrf   guess values and proceeds in iterative form till up: 

    .2 .2
2 2( ) ( )mat mat

rabs f abs f tolerance     (42) 

the tolerance value being usually set equal to 1015, while the angular stress components are 
close to the unity. 
 

 

Fig. 15. Procedure for the solution of the ODE system (40). 
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To obtain the solution, the MATLAB® FMIN®  function can, automatically, slightly modify 
the guessed values and restart the procedure. In cases where the convergence is not reached 
within a certain number of iterations, substantially different guessed values  have to be 
chosen and the solution to be restarted. 
As the stress expansion is in a variable separable form, and due also to the hypothesis of linear 
elastic behaviour, if we consider, in the stress and strain expansions, only the second term and 
the associated t order exponent, the system solution provides the related eigenfunctions. 
Once the solution of the ODE system (40) is completed, the eigenfunctions, that is the 
angular stress and displacement distribution functions, and also the singularity strength for 
both the leading and second order term and for material 1 and 2 are available.  

For the complete description of the stress field, according to Eq. (27), the generalised stress 
intensity factors H0 and H1 have still to be  determined and this can be done through FE 
analyses, by minimising, for a generic *  direction (arbitrarily chosen on the steel side), the 
following error function: 

 
,max

(0) (1)
0 1 0 1

,min

. .( , ) .[ ( *) ( *) ( )]
r

s t
ij ij ij

r

E F H H abs H r f H r f FE      (43) 

being the rmin and rmax values usually set to 104 mm and one tenth of the substrate thickness, 
respectively. It is important to note that, kept constant the mesh refinement, the adhesive 
and substrate thickness varied from model to model, being 0.5-1.0 mm and 2.0-4.0 mm, 
respectively, their more typical value ranges. Fig. 16 shows the asymptotic stress 
distribution near the interface between the adhesive and the substrate in bonded joints 
obtained with Matlab. 
 

 

Fig. 16. Asymptotic stress distribution near the interface between the adhesive and the 
substrate in bonded joints 
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4. Conclusion 

Different thermal and mechanical models solved with Matlab were presented which are 
very useful for a good planning of welded or bonded joints. About the thermal and residual 
stress fields predictions, some limitations are due to the geometry and material properties, 
but, compared to the finite element models, they are more user friendly and more efficient 
in terms of computational time; thus they can be used both for a rapid check of the thermal 
and stress filed induced by welding and for a parametric study of the process. 
The ‘stress field approach’ for fatigue resistance prediction of welded and bonded joints was 
also presented. In particular, an analytical method for the description of the singular stress 
distributions on bonded joints of different geometry has been developed. The stress 
distributions near the singularity have been assumed to be represented by a power series 
expansion in the variable separable form as usually done in the elastoplastic analyses; under 
the further hypothesis of plane strain state, applying the equilibrium and compatibility 
conditions results in a ordinary differential equation system, which has been numerically 
solved by using a “shooting” technique.  
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