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1. Introduction

Vital functions of living organisms, such as immune responses or the metabolism, are

controlled by complex regulatory networks. These networks comprise, amongst others,

regulatory genes called transcription factors and cascades of information-processing proteins

such as enzymes. The ultimate goal of the increasingly popular systems biology approach is to

set-up extensive computer models that closely reflect the real-life behavior of these biological

networks (Kitano, 2002; Werner, 2007). With a reasonable in silico implementation at hand,

novel predictions, e.g. about the effect of gene mutations, can be generated by the computer.

The two basic modes of regulation we concentrate on here, are inhibition and activation

between two factors. Figure 1A visualizes the relation between the concentrations of

e.g. two transcription factors, which are linked by an activation (left-hand figure) or inhibition

(right-hand figure). Figure 1B shows a network of interacting activations and inhibitions as it

might be found in living cells. While a single regulatory interaction can easily be understood,

the complex wiring of several interactions, even for a medium-scale model as depicted here,

renders themanual investigation of the system’s dynamics unfeasible. For further information

on the concepts of regulation, we refer biologically interested readers to Alon (2006).

Classical computational modeling approaches attempt to describe biochemical reaction

networks as systems of ordinary differential equations (ODEs) (Klipp et al., 2005; Tyson

et al., 2002). This requires detailed knowledge about the molecular mechanisms in order

to implement precise kinetic rate laws for each biochemical reaction. However, for many

biological systems, and especially gene-regulatory networks, only qualitative information

about interactions, like “A inhibits B“, is available. A well-established workaround for

this lack of information is the application of discrete modeling approaches. In Boolean

methodologywe abstract from actual molecule quantities and assign each player in the system

the state on or off (e.g. active or inactive). Despite their simplicity, Boolean models have been

shown to provide valuable information about the general dynamics and capabilities of the

underlying system (Albert & Othmer, 2003; Fauré et al., 2006; Samaga et al., 2009).

To bridge the gap between discrete and fully quantitative models, we developed Odefy,

a MATLAB- and Octave-compatible toolbox for the automated transformation of Boolean
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Fig. 1. A Two basic modes of regulation, e.g. between two genes and their proteins. If the
regulatory factor (red) constitutes an activatory influence towards another factor (blue), it
will increase the activity of the blue factor, whereby the magnitude of this activation is
dependent on the expression of the red factor itself. Inhibition acts analogously, but the
expression of both factors is anti-correlated. B Regulatory interactions are part of complex
gene-regulatory networks which can be analyzed only by means of computational tools.

models into systems of ODEs (Krumsiek et al., 2010; Wittmann et al., 2009a). Odefy

implements a canonical way of transforming Boolean into continuous models, where the

use of multivariate polynomial interpolation allows transformation of logic operations into a

system of ODEs. Furthermore, we optionally apply sigmoidal Hill functions to get reasonable

approximations of real gene regulation dynamics. The Odefy software provides convenient

access to different model sources, the conversion process itself and various analysis and

export methods. After generating the ODEs, the user can easily adjust model parameters and

perform time-course simulations using Odefy’s graphical user interface. The ODE systems

can be exported to MATLAB script files for further usage in MATLAB programs, to ODE script

files for the R computing platform, to the SBML format, or to the well-established MATLAB

Systems Biology Toolbox (Schmidt & Jirstrand, 2006). Due to the nice mathematical properties

of the produced ODEs and the integration with state-of-the-art modeling tools, a variety of

analysis methods can be immediately applied to the models generated by Odefy, including

bifurcation analysis, parameter estimation, parameter sensitivity analysis, and the like.

This chapter is organized as follows. First, we will review the theoretical background of the

Odefy method by introducing Boolean models, the interpolation process and Hill functions

as a generalization of Michaelis-Menten kinetics. Next, the general structure of the Odefy

toolbox as well as details about model representation and input formats are discussed. In

the major part of this chapter, we will guide the reader through four sample applications of

our toolbox, which include both regular Boolean modeling as well as Odefy-converted ODE

models, see Table 1 for a detailed overview. The Odefy toolbox can be freely downloaded

from http://hmgu.de/cmb/odefy. All codes and additional files used in the examples

throughout this chapter are located at http://hmgu.de/cmb/odefymaterials.

2. Mathematical backgrounds

In the following, we provide a brief introduction to Boolean models in general, and the

automatic conversion of Boolean models into continuous systems of ordinary differential

equations. For more detailed information on these topics, we refer the reader to the papers

Krumsiek et al. (2010); Thomas (1991); Wittmann et al. (2009a).

36 Applications of MATLAB in Science and Engineering
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Fig. 2. Qualitative knowledge of regulatory interactions can readily be transformed into
Boolean models. The models are then automatically converted to a continuous ODE model
by our approach, making them suitable for quantitative analysis and comparison to real data.
Figure taken from Wittmann et al. (2009a)

Section Biological system Odefy techniques

4 Toy example the graphical user interface, the toolbox’s main
functionalities, definition of Boolean models
in the yEd graph editor, adjustment of initial
values and parameters, Boolean and ODE
time-course simulations

5 The genetic toggle switch advanced model input, advanced
functionalities from the MATLAB command
line, generating the Boolean state-transition
graph, finding Boolean steady-states,
phase-plane visualizations

6 Differentiation of mid- and hindbrain automated model selection

7 Large-scale model of T-cells export options, connecting Odefy to the SB
toolbox, model to .mex compilation

Table 1. Overview of the biological systems and Odefy techniques explained in sections 4–6.

2.1 Boolean models

In a Boolean model, the actual concentration or activity of each factor is abstracted to be either

’on’ or ’off’, active or inactive, 1 or 0. In a system of N factors with discretized time, regulatory

interactions can be described by a set of Boolean update rules that determine the value of each

factor xi at the next time step t + 1, dependent on all factors in the current time step:

xi(t + 1) := Bi

(

xi1(t), xi2(t), . . . , xiNi
(t)

)

∈ {0, 1} , i = 1, 2, . . . N .

Boolean update functions Bi could, for instance, be represented as multidimensional truth

tables, containing an assignment of zero or one for each combination of input factors. A

37From Discrete to Continuous Gene Regulation Models � A Tutorial Using the Odefy Toolbox
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more convenient and intuitive way of representing Boolean update functions is the usage

of symbolic equations with logical operators. For example,

A(t + 1) = (B(t) ∨ C(t)) ∧ ¬D(t)

represents a regulatory interaction where A will be ’on’ in the next time step if and only if at

least one of the activators B and C is present and the inhibitor D is absent. For simplicity, we

leave out time dependencies in the Boolean equations:

A = (B ∨ C) ∧ ¬D

Some exemplary evaluations for this equation: (i) if B=1,C=0,D=0 then A will be 1; (ii)

likewise, if B=0,C=1,D=0 then A=1; (iii) if D=1, then A=0 regardless of the values of B and

C.

When computing the follow-up state for the next time point t + 1 from the current time point

t, two principal updating schemes can be employed (cf. Fauré et al. (2006)). When following

a synchronous updating policy, the states of all factors are updated at the same time. On the

other hand, when performing asynchronous updating, the value of only one factor is changed

during each time step. For the latter case, an update order for the players in the system is

required. In Odefy, one can either provide a predefined update order (e.g. B, A, D, C) that will

be followed, or one can let the toolbox randomly select a player at each new time step.

2.2 From Boolean models to ordinary differential equations

We now describe how to generate a system of ordinary differential equations (ODEs), given a

set of Boolean update functions Bi. The main idea is to convert the above discrete model into

a continuous ODE model, where each species xi is allowed to take values xi ∈ [0, 1], and its

temporal development is described by the ordinary differential equation

ẋi =
1

τi

(

Bi

(

xi1, xi2, . . . , xiNi

)

− xi

)

.

The right-hand side of this equation consists of two parts, an activation function Bi describing

the production of species xi and a first-order decay term. An additional parameter τi is

introduced to the system, which can be understood as the life-time of species xi. Bi can be

considered a continuous homologue of the Boolean update function. The key point is how it

can be obtained from Bi in a computationally efficient manner. We present here three concrete

approaches of extending a Boolean function to the continuous interval [0,1]. The basis of all

three transformation methods are the so-called BooleCubes:

B
I
(x1, x2, . . . , xN) :=

1

∑
x1=0

1

∑
x2=0

· · ·
1

∑
xN=0

[

B(x1, x2, . . . , xN) ·
N

∏
i=1

(xixi + (1− xi) (1− xi))

]

which we obtain by multilinear interpolation of the Boolean function B, cf. Figure 3A.

The functions B
I
are affine multilinear. Many molecular interactions, however, are known

to show a switch-like behavior, which can be modeled using sigmoidal Hill functions

f (x) = xn/ (xn + kn), see Figure 3B. Hill functions are a generalization of the well-known
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Michaelis-Menten kinetics assuming multiple binding sites (Alon, 2006). The two parameters

n and k have a direct biological meaning. The Hill coefficient n determines the slope of the

curve and is a measure of the cooperativity of the interaction. The parameter k corresponds

to the threshold in the Boolean model, above which one defines the state of a species as ’on’.

Mathematically speaking, it is the value at which the activation is half maximal, i.e. equal to

0.5. If not otherwise specified, Odefy assumes the default parameters n=3, k=0.5 and τ=1 for

all equations.

We now introduce a Hill function fi with parameters (ni, ki) for every interaction and define

a new continuous function

B
H
(x1, . . . , xN) := B

I
( f1 (x1) , . . . , fN (xN)) ,

which we call HillCubes, see Figure 3C. One can show that for sufficiently large Hill exponents

n, there will be a steady state of the continuous system in the neighborhood of each Boolean

steady state Wittmann et al. (2009a). In other words, the continuous model is capable

of reproducing the Boolean steady states, but of course displays a much richer dynamical

behavior.

Note that Hill functions never assume the value 1, but rather approach it asymptotically.

Hence, the HillCubes are not perfect homologues of the Boolean update function B. If this

is desired a simple solution is to normalize the Hill functions to the unit interval. This yields

another continuous (perfect) homologue of the Boolean function B

B
Hn

(x1, . . . , xN) := B
I
(

f1 (x1)

f1 (1)
, . . . ,

fN (xN)

fN (1)

)

,

which we call normalized HillCube, see Figure 3D.

Fig. 3. A Multilinear interpolation of a two-variable OR gate (BooleCube) as the continuous
homologues of Boolean functions. B Hill functions with Hill coefficients n = 2, 4, 8, 16 and k =
0.5 as continuous relaxation of a Boolean step function. C Composition of BooleCube from A
with Hill functions (HillCube). D Normalized HillCube which actually assumes a value of 1
at the corners of the cube. Figure taken from Krumsiek et al. (2010).

3. The Odefy toolbox

This section explains how to start up the Odefy toolbox, and how Boolean models are
represented as MATLAB structure variables. Note that the non-GUI functionality of Odefy

39From Discrete to Continuous Gene Regulation Models � A Tutorial Using the Odefy Toolbox
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is compatible with the freely available Octave toolbox1. After downloading and unpacking

Odefy2, we navigate to the respective directory in MATLAB and call

InitOdefy

which should display a startup message like this:

Odefy initialized

For detailed usage instructions type ’OdefyHelp’

or open /home/jan/work/odefy/doc/index.html in your webbrowser.

Odefy is now ready-to-use. The core object in the toolbox is a Boolean model which can be
defined in various ways (Figure 4), two of which we will get to know in the example section 4.
We will here discuss a small example, namely an incoherent feed-forward loop (Alon, 2006)
defined by a set of Boolean equations:

model = ExpressionsToOdefy(...

{’A=<>’, ’B=A’, ’C=A&&~B’});

In this model, A is defined as an input species without regulators (denoted by the <>), which
never changes its current activity value. B is directly activated by A and will thus closely
follow A’s expression. Finally, C is activated by A and inhibited by B. Note the use of MATLAB
Boolean operators in the Boolean expression. The equation reads ”C will be active if A is active
and B is not active”. The command generates a MATLAB structure variable containing the
Boolean model:

>> model

model =

species: {’A’ ’B’ ’C’}

tables: [1x3 struct]

name: ’odefymodel’

The tables field contains the actual Boolean update functions encoded as multidimensional
arrays, that is as hypercubes of edge length two:

>> model.tables(3).inspecies

ans =

1 2

>> model.tables(3).truth

ans =

0 0

1 0

The third factor, C, has two input species 1 and 2, that is A and B. The four-element truth table

precisely describes the above-mentioned “A and not B“ logic defined in the symbolic Boolean

equation. In order to update the state of a factor, Odefy looks up the corresponding value in

the truth table, based on the current system state, and returns the new expression value.

With the defined Boolean model variable we can now access the full functionality of the

toolbox, like simulations of the Boolean model and, of course, the conversion of Boolean

1 http://www.gnu.org/software/octave/
2 http://hmgu.de/cmb/odefy
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models to ODE systems as described in section 2. The rest of this chapter provides

various sample applications of the toolbox based on both Odefy’s GUI dialogs and MATLAB

command-line programming. For a complete reference of all Odefy features, we refer the

reader to the Odefy online documentation at http://hmgu.de/cmb/odefydocs.
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Fig. 4. General structure of the Odefy toolbox. Boolean models can be defined by various
input formats. In this chapter, we will introduce both the usage of Boolean formulas and
graphs created in the yEd graph editor. Once a Boolean model is created, the user can either
concentrate on analyzing the Boolean model, or convert it to a system of ODEs and perform
continuous analyses. The resulting models can be exported to several external formats.
Figure taken from Krumsiek et al. (2010).

4. A toy example: First steps in Odefy

We will now familiarize the reader with the graphical user interface of the Odefy toolbox,

which provides convenient access to the toolbox’s main functionalities. In particular, we

show how Boolean models can be defined in the yEd graph editor, how initial values and

parameters can be adjusted and how Boolean and ODE time-course simulations are run. Note

that the Boolean model employed here does not have a real biological background, but was

rather constructed to contain important features of gene regulatory networks, like negative

feedback, positive feedback, and different wirings of AND and OR logics.

41From Discrete to Continuous Gene Regulation Models � A Tutorial Using the Odefy Toolbox
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Fig. 5. Two ways of defining the same Boolean model. A Graphical representation of the
regulatory interactions created in the yEd graph editor. Note the usage of “&“ labeled nodes
in order to create AND gates. Regular arrows represent activation whereas diamond head
arrows stand for inhibition. B Boolean equations for the same model. We use <> to indicate
input species with no regulators, and MATLAB Boolean operators ||, && and ∼ to define the
Boolean equations.

4.1 Definition of the Boolean model

The most convenient methods to define Boolean models in the Odefy toolbox are Boolean

equations and the yEd graph editor3. A simple graph, where each node represents a factor
of the system and each edge represents a regulatory interaction, is not sufficient to define
a Boolean model, since we cannot distinguish between AND and OR gates of different
inputs. Therefore, we adapted the intuitive hypergraph representation proposed by Klamt
et al. (2006), as exemplarily demonstrated in Figure 5A. All incoming edges into a factor are
interpreted as OR gates; for instance, C will be active when B or E is present. AND gates are
created by using a special node labeled ”&”, e.g. E will be active when I2 is present and I1 is
not present. We now load this model from a pre-created .graphml file which is contained in
the Odefy materials download package. Ensure that Odefy is initialized first:

InitOdefy;

We can now call the LoadModelFile command, which automatically detects the underlying
file format:

model = LoadModelFile(’cnatoy.graphml’);

As mentioned previously in this chapter, Boolean equations are a convenient alternative for
constructing a Boolean model. While obviously the graphical depiction of the network is lost,
Boolean equations can be rapidly setup and altered (Figure 5B). We can either load them from
a text file containing one equation per line, or directly enter them into the MATLAB command
line:

model = LoadModelFile(’cnatoy.txt’);

or

model = ExpressionsToOdefy({’I1 = <>’, ’I2 = <>’,

’A = ~D’, ’B = A && I1’, ...

’C = B || E’, ’D = C’, ’E = ~I1 && I2’, ’F = E || G’,

’G = F’, ’O2 = G’});

3 http://www.yworks.com/en/products_yed_about.html
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At this point, the model variable contains the full Boolean model depicted in Figure 5, stored

as an Odefy-internal representation in a MATLAB structure.

4.2 Boolean simulation using the Odefy GUI

After defining the Boolean model within the Odefy toolbox, we now start analyzing the
underlying system using Boolean simulations. We open the Odefy simulation GUI by
entering:

Simulate(model);

A simulation window appears, in which we now setup a synchronous Boolean update policy,

change some initial values and finally run the simulation (red arrows indicate required user

actions):

When the input species I2 is active while I1 is inactive, the signal can steadily propagate

through the system due to the absent inhibition of E. All species, except for B and A, eventually

reach an active steady state after a few simulation steps. A displays an interesting pulsing

behavior induced by the negative regulation from C towards A. Initially, A is turned on since

its inhibitor D is absent, but is then downregulated once the signal passes through the system.

The system produces a substantially different behavior when both input species are active:

Interestingly, we now observe oscillations in the central part of the network, while the

right-hand part with E, F, G and O2 stays deactivated. The oscillations are due to a negative

feedback loop in the system along A, B, C and D. Negative feedback basically denotes a

regulatory wiring where a player acts as its own inhibitor. In our setup, for example, A

indirectly induces D via B and C, which in turn inhibits A. Our obtained results demonstrate

that already a simple model can give rise to entirely different behaviors when certain parts

of the system are activated or deactivated - here simulated via the initial values of the input

species I1 and I2.
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4.3 Continuous simulation

In the next steps we will learn how the automatic conversion of Boolean models to ODE

systems allows us to quantitatively investigate the pulsing and oscillation effects observed

in the Boolean simulation from the previous section. Again, we use the simulation GUI of

Odefy, but this time we choose the normalized HillCube variant. In the GUI variant of Odefy,

the conversion to an ODE system is automatically performed prior to the simulation.

Note that the simulation runs with a set of default parameters for the regulatory interactions:

n=3, k=0.5, tau=1. Similarly to the Boolean variant, we observe that all factors are successively

activated except for A, which in the continuous version generates a smooth expression pulse

lasting around 10 time steps. We also get quantitative insights now, since A does not go up to

a full expression of 1.0, but reaches a maximum of only 0.8 before being deactivated. Next, we

simulate the oscillatory scenario where both input species are present:

Again, the simulation trajectories show oscillations of the central model factors A, B, C, D and

subsequently O1. Note that - in contrast to the Boolean version - the oscillations here display

a specific frequency and amplitude. As will be seen in the next section, such quantitative

features of the system are heavily dependent on the actual parameters chosen.

4.4 Adjusting the system parameters

As described at the beginning of this chapter, the ODE-converted version of our Boolean

networks contain different parameters that control how strong and sensitive each regulatory

interaction reacts, and how quick each species in the system responds to regulatory changes.

In the following, we will exemplarily change some of the parameters in the oscillatory toy

model scenario (the following GUI steps assume you already have performed the quantitative

simulations from the previous sections):

44 Applications of MATLAB in Science and Engineering
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In this example, we changed two system parameters: (i) the tau parameter of C was set to

a very small value, rendering C very responsive to regulatory changes, (ii) the k threshold

parameter from B towards E is set to 0.95, and thus the activation of E by B is only constituted

for very high values of B. The resulting simulation still shows the expected oscillatory

behavior, but the amplitude, frequency and synchronicity of the recurring patterns are altered

in comparison to the previous variants. This is an example for a behavior that could not have

been investigated by using pure Boolean models alone, but actually required the incorporation

of a quantitative modeling approach.

5. The genetic toggle switch: Advanced model input and analysis techniques

While the last section focused on achieving quick results using the Odefy graphical user

interface, we now focus on actual MATLAB programming. This provides far more power and

flexibility during analysis than the fixed set of options implemented in a GUI. Furthermore,

we now focus on a real biological system, namely the mutual inhibition of two genes (Figure

6). Intuitively, only one of the two antagonistic factors can be fully active at any given time.

This simple wiring thus provides an elegant way for a cell to robustly decide between two

different states. Consequently, mutual inhibition is a frequently found regulatory motif in

cell differentiation processes. For example, the differentiation of the erythroid and myeloid

lineages in hematopoiesis, that is the production of blood cells in higher organisms, is

governed by the two transcription factors PU.1 and GATA-1, which are known to repress each

other’s expression (Cantor & Orkin, 2001). Once the cell has decided to become an erythroid

cell, the myeloid program is blocked, and vice versa.

The switch model will be implemented in MATLAB by specifying the regulatory logic

between the two genes as sets of Boolean rules and subsequent automatic conversion into

a set of ODEs. The resulting model state space is analyzed for the discrete as well as the

continuous case (for the latter one we use the common phase-plane visualization technique).

We particularly investigate how different parameters affect the multistationarity of the system,

and whether the system obtains distinct behaviors when combining regulatory inputs either

with an AND or an OR gate.

5.1 Model definition

We have already seen that defining a Boolean model from the MATLAB command line is
straightforward, since we can directly enter Boolean equations into the code. We will generate

45From Discrete to Continuous Gene Regulation Models � A Tutorial Using the Odefy Toolbox
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Fig. 6. Mutual inhibition and self-activation between two transcription factors.

two versions of the mutual switch model, one with an AND gate combining self-activation
and the inhibition, and one with an OR gate:

switchAND = ExpressionsToOdefy({’x = x && ~y’, ’y = y && ~x’});

switchOR = ExpressionsToOdefy({’x = x || ~y’, ’y = y || ~x’});

Similar to the GUI variant, we could also define the model in a file (yEd or Boolean expressions

text file) and load the models from these files. While the definition directly within the code

allows for rapid model alteration and prototypic analyses, the saving of the model in a file is

the more convenient variant once model generation is finished.

5.2 Simulations from the command line

We want again to perform both Boolean and continuous simulations, but this time we control
the entire computation from the MATLAB command line. First, we need to generate a
simulation structure that holds all information required for the simulation, like initial states,
simulation type and parameters (if applicable):

simstruct = CreateSimstruct(switchAND);

Within this simulation structure, we define a Boolean simulation for 5 time steps with
asynchronous updating in random order (cf. section 2.1), starting from an initial value of
x=1 and y=1:

simstruct.timeto = 5;

simstruct.type = ’boolrandom’;

simstruct.initial = [1 1];

The actual simulation is now performed by calling the OdefySimulation function:

y = OdefySimulation(simstruct);

resulting, for example, in:

y =

1 1 1 1 1

1 0 0 0 0

While this result might not look to be very exciting, it actually reflects the main functionality
of this regulatory network. The system falls into one of two follow-up states and stably stays
within this state (→ a steady state). The player being expressed at the end of the simulation is
randomly determined here, another simulation might result in this trajectory:

y =

1 0 0 0 0

1 1 1 1 1

Obviously, this very sharp switching is an effect of the Boolean discretization. For comparison,
we will now create a continuous simulation of the same system:
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simstruct.timeto = 10;

simstruct.type=’hillcubenorm’;

simstruct.initial = [0.6 0.4];

[t y] = OdefySimulation(simstruct);

We employed the normalized HillCube variant with 10 simulated time steps. Note that we
could now use real-valued initial values instead of just 0 and 1. The simulated trajectory looks
like this:

plot(t,y)

legend(switchAND.species);

xlabel(’time’);

ylabel(’activity’);

We observe a similar decision effect as for the Boolean variant, but this time in a fully

quantitative fashion. Although both factors have similar activity values at the beginning of

the simulation, the small excess of X is sufficient to drive the system to a steady state where

X is present and Y is not. With reversed initial values, X would have gone to 0 and Y would

have been fully expressed.

5.3 Exploring the Boolean state space

In the previous sections we learned how Boolean and continuous simulations of a regulatory
model can be interpreted. However, it is important to understand that such simulations
merely represents single trajectories through the space of possible spaces, and do not reflect
the full capabilities of the system. Therefore, it is often desirable to calculate the full set of
possible trajectories of the system, the so-called state-transition graph (STG) in the case of a
discrete model. We will now learn how to calculate the Boolean steady states of a given model
along with its STG using Odefy. The primary calculation consists of a single call:

[s g] = BooleanStates(switchAND);

The variable s now contains the set of steady states of this system where as the STG is
represented a sparse matrix in g. Steady states are encoded as decimal representations of their
Boolean counterparts and can be conveniently displayed using the PrettyPrintStates

function:
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>> PrettyPrintStates(switchAND,s)

x 0 1 0

y 0 0 1

3 states

We see that the system has three steady states which are intuitively explainable. If one of the
factors is on, the activation of the respective other factor is prohibited, so the state is stable
(second and third column). Furthermore, if no player is active then the system is dead, which
also represents a stable state (first column). Instead of PrettyPrintStates you can also
use the StateMatrix function which stores the same results in a matrix variable for further
working steps:

>> m = StateMatrix(switchAND,s)

m =

0 1 0

0 0 1

The variable g contains the STG encoded as a sparse adjacency matrix of states, which can be
readably displayed using the PrettyPrintSTGraph function:

>> PrettyPrintSTGraph(switchAND,g)

11 => 10

11 => 01

That is, from the state where both factors are active, either one of the two exclusive steady

states can be reached. No further state transitions are possible in this system. If we repeat

the procedure of BooleanStates calculation and printing of steady states and STG for the

switchOR variant, we get the result displayed in Figure 7. Both variants are capable of

switch-like decisions that end in a certain steady state. Whereas in the AND variant the 00

state is steady, the same holds true for the 11 state in the OR variant. At this point, we could

compare these observations to results from a real biological system, that is evaluating whether

the system switches from an activated or inactivated basal state, and thus select one of the two

variants as “closer“ to biological reality.

Fig. 7. State-transition graphs for the AND and OR variants of the mutual inhibition motif.
Note that states without transitions going towards other states are the steady states of the
system.
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Fig. 8. A Boolean steady states of the OR and AND version of the mutual inhibitory switch
model. B,C Phase planes visualizing the attractor landscapes of the AND and OR variants,
respectively. The plots display trajectories of both dynamical systems from various initial
concentrations. Trajectories with the same color fall into the same stable steady state. Both
systems comprise three stable continuous steady states, each of which belongs to one
Boolean steady state. Adapted from Krumsiek et al. (2010)

5.4 Exploring the continuous state space

Analogously to the Boolean state space described above, it is oftentimes desirable to
investigate the behavior of the whole system for various internal states rather than
concentrating on a single trajectory through the system. Since in the continuous case
the system does not consist of a finite set of discrete states, we need a complementary
approach to the state transition graphs introduced above. One possibility is the simulation
of the continuous system from a variety of initial values and subsequent visualization in a
two-dimensional phase plane (cf. Vries et al. (2006)):

simstruct = CreateSimstruct(switchAND);

figure;

OdefyPhasePlane(simstruct, 1, 0:0.1:1, 2, 0:0.1:1);

This code produces the phase plane plot displayed in Figure 8B. Depending on the initial

values, the system falls into one of three stable steady states, where either one of the

two factors is active while the other one is turned off, or where both players are inactive.

Importantly, the three steady states are qualitatively identical to the three Boolean steady

states (again shown in 8A). If we think of these trajectories as possible state trajectories in a

living cell, this phase plane could describe for which expression levels of the two transcription

factors the system will turn into either on of the two opposing differentiation lineages.

Furthermore, by observing if in the third state real cells rather have both factors active or

inactive, we could determine whether the AND or the OR variant is a more suitable model of

the underlying system.
We now change the Hill exponent n in all regulatory functions from the standard value of 3 to
1, and recalculate the phase-plane for the OR version:

simstruct = CreateSimstruct(switchOR);

simstruct = SetParameters(simstruct, [], [], ’n’, 1);

figure;

OdefyPhasePlane(simstruct, 1, 0:0.1:1, 2, 0:0.1:1);

producing the following phase plane plot:
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Interestingly, with this parameter configuration the system is not able to constitute a

multistable behavior anymore. All trajectories fall into a single, central steady state with

medium expression of both factors, regardless of the actual initial values of the simulation.

This result is in line with findings from Glass & Kauffman (1973), who showed the

requirement of cooperativity (n ≥ 2) in order to generate multistationarity. Again, by

comparing the system behavior with the real biological system we gain insights into the

possibly correct parameter ranges. For our example here, since we assume stem cells to be

able to obtain multistationarity, an n value below 2 seems rather unlikely.

5.5 Advanced command line usage: simulations using MATLAB’s numerical ODE solvers

The continuous simulations shown above used Odefy’s internal OdefySimulation function.
However, in order to get full control of our ODE simulations the usage of MATLAB ODE .m
files is desirable. We can generate such script files using the SaveMatlabODE function:

SaveMatlabODE(switchAND, ’myode.m’, ’hillcubenorm’);

rehash;

Note that rehash might be required so that the following code immediately finds the
newly created function. The newly created file myode.m contains an ODE compatible with
MATLAB’s numerical solving functions. Next we set the initial values and change some
parameters:

initial = zeros(2,1);

initial = SetInitialValue(initial, switchAND, ’x’, 0.6);

initial = SetInitialValue(initial, switchAND, ’y’, 0.4);

params = DefaultParameters(switchAND);

params = SetParameters(params,switchAND, [], [], ’n’, 1);

The SetInitialValue and SetParameters function can not only work on a simulation
structure, but can also be used to edit raw value and parameter matrices directly. Finally, we
run the simulation by calling:

paramvec = ParameterVector(switchAND,params);

time = 10;

r = ode15s(@(t,y)myode(t,y,paramvec), [0 time], initial);

For further information on the result variable r, we refer the reader to the documentation of
ode15s. Odefy’s Visualize method facilitates plot generation by taking care of drawing
and labeling:
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Visualize(r.x,r.y,switchAND.species);

resulting in the following trajectories, which we have already analyzed several times

throughout this example:

6. The differentiation of mid- and hindbrain: automatic model selection

A common problem in the modeling of biological systems is the existence of a plethora

of possible models that could explain the observed behavior. Therefore, methods for the

automatic evaluation of features on a whole series of models are often required. In our

third example of dynamic modeling using Odefy we investigate a multicellular system from

developmental biology. During vertebrate development, the differentiation of mid- and

hindbrain is determined by several transcription and secreted factors, which are expressed in

a well-defined spatial pattern (Prakash & Wurst, 2004), the mid-hindbrain boundary (MHB,

see Figure 9, left). While transcription factors control the regulation of genes within the same

cell, secreted factors are transported through the cell membrane in order to induce signaling

cascades in surrounding cells. The gene expression pattern is again maintained by a tightly

regulated regulatory network between the respective factors (Wittmann et al., 2009b). We will

here focus on four major factors from the MHB system: the transcription factors Otx2 and

Gbx2, as well as the secreted proteins Fgf8 and Wnt1.

From the technical point-of-view, we will learn how to create a whole ensemble of different

regulatory models, and subsequently how to iterate over all models in order to check whether

each regulatory wiring is capable of maintaining the sharp expression patterns at the MHB.

6.1 Modeling a multi-compartment system using Odefy

A substantial difference to the models we worked with in previous sections of this chapter

is the presence of multiple, linearly arranged cells in the modeled biological system (recall

Figure 9). Each of these cells contains the identical regulatory machinery which needs to

be connected and replicated as visualized in Figure 10. Note that this regulatory wiring

corresponds to the results published in Wittmann et al. (2009b); below we will discuss the

existence of further compatible models. The transcription factors Otx2 and Gbx2 inhibit each

other’s expression and control the expression of the secreted factors Fgf8 and Wnt1. The latter
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Fig. 9. Expression patterns at the mid-hindbrain boundary. While the anterior part of the
developing brain is dominated by Otx2 expression and Wnt1 signaling at the boundary, the
posterior part shows Gbx2 expression and Fgf8 signaling. Note that in the left panel fading
colors indicate secreted factors that do not translate into the discretized expression pattern on
the right. Adapted from Krumsiek et al. (2010)

ones in turn enhance each others activity in the neighboring cells, simulating the secretion

and diffusion of these proteins in the multicellular context. For our analysis, we will focus on

only 6 “cells” – which could also represent a whole region during development at the MHB –

linearly arranged next to each other.

Fig. 10. Six-compartment model representing the different areas of the developing brain.
Each unit contains the same regulatory network, neighboring cells are connected via the
secreted protein Fgf8 and Wnt1.

In Odefy, we first need to define the core model, again using simple Boolean formulas for the
representation of the regulatory wiring:

mhb = ExpressionsToOdefy({’Otx2=~Gbx2’,’Gbx2=~Otx2’,...

’Fgf8=~Otx2&&Gbx2&&Wnt1’,’Wnt1=~Gbx2&&Otx2&&Fgf8’});

Now, in order to automatically generate a connected six cell system, we make use of the Odefy
MultiModel function:

multiMHB=MultiModel(mhb, [3 4], 6);

From the regulatory model singlewe generate 6 cells, whereas the third and fourth factors of
the system are considered to be connected between neighboring cells. The variable multiMHB
now contains the complete multi-cellular model comprising of a total of 24 factors:

multiMHB =

tables: [1x24 struct]

name: ’odefymodel_x_6’

species: {24x1 cell}
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Fig. 11. All network variants known to give rise to a stable MHB boundary. For all networks
we observe a mutual inhibition of Otx2 and Gbx2 and have antagonistic effects of these two
factors on Fgf8 and Wnt1 expression. Moreover, we find that Fgf8 and Wnt1 require each
other for their stable maintenance. Adapted from Krumsiek et al. (2010)

6.2 Automatic model selection procedure

In the following we will assemble a set over 100 distinct models between the four factors in
our MHB system. We will have nine variants in total which indeed give rise to the correct
behavior and are compatible to biological reality, and 100 randomly assembled networks
which will obviously fail to produce a stable MHB. The following networks are the nine
“positive” variants, cf. Krumsiek et al. (2010):

eqs = {};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=~Otx2&&Gbx2&&Wnt1’,

’Wnt1=~Gbx2&&Otx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=Gbx2&&Wnt1’,

’Wnt1=~Gbx2&&Otx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=~Otx2&&Gbx2&&Wnt1’,

’Wnt1=~Gbx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=~Otx2&&Wnt1’,

’Wnt1=~Gbx2&&Otx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=~Otx2&&Gbx2&&Wnt1’,

’Wnt1=Otx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=Gbx2&&Wnt1’,

’Wnt1=~Gbx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=~Otx2&&Wnt1’,

’Wnt1=Otx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=Gbx2&&Wnt1’,

’Wnt1=Otx2&&Fgf8’};

eqs{end+1} = {’Otx2=~Gbx2’,’Gbx2=~Otx2’,’Fgf8=~Otx2&&Wnt1’,

’Wnt1=~Gbx2&&Fgf8’};

The initial network we discussed in Figure 10 is the first one in this list, while all other
networks represent subsets of the first one (Figure 11). Note that for now we only create
single-compartment variants, the MultiModel function comes into play later on. Next, we
need to generate actual Boolean models from these equations:

models={};

for i=1:numel(eqs)

models{i} = ExpressionsToOdefy(eqs{i});

end

Next, we add a thousand randomly generated networks by using the GraphToOdefy

function. This function takes the adjacency matrix of a regulatory network, interpreting 1
as activatory, -1 as inhibitory and 0 as no influence, and automatically generates an Odefy
model structure:

for i=1:100

models{end+1} = GraphToOdefy(randi(3,4,4)-2);

end
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The expression randi(3,4,4)-2 creates a 4x4 matrix of values between -1 and 1. Note that
if not explicitly specified, Odefy employs a standard logic to combine multiple inputs, where
a player will be active whenever at least one activator and no inhibitors are present. Our
models cell array now contains a total of 109 Boolean models, each of which we will test
for its capability to create the MHB expression pattern. The general idea is to first convert
each model to a multicompartment variant, and then let an ODE simulation run from the
known stable MHB expression pattern in order to check whether the system departs from this
required state. First, we need to define an initial state corresponding to the stable expression
pattern from Figure 9:

init = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0];

Next, we iterate over all networks and perform the actual testing:

for i=1:numel(models)

multi = MultiModel(models{i}, [3 4], 6);

simstruct = CreateSimstruct(multi);

simstruct.initial = knownstate;

simstruct.type = ’hillcubenorm’;

[t,y] = OdefySimulation(simstruct, 0);

if all(y(end,:)>0.5 == knownstate)

fprintf(’Valid: Model %d\n’, i);

end

end

Note the usage of CreateSimstruct and OdefySimulation to create a continuous ODE
simulation of the converted Boolean model, as previously described in this chapter. The final
validation statement if all(y(end,:)>0.5 == knownstate) determines whether each
player still fits to the known MHB expression state, considering each player above a value
of 0.5 to be active. Be aware that the execution of the model selection code might take a
few minutes, depending on your machine. Since it is very unlikely that any of the randomly
generated models is actually capable of obtaining the desired behavior, the final command
line result should look like this:

Valid: Model 1

Valid: Model 2

Valid: Model 3

Valid: Model 4

Valid: Model 5

Valid: Model 6

Valid: Model 7

Valid: Model 8

Valid: Model 9

Taken together, we demonstrated how to automatically test for a specific feature in a set of

models. For illustration purposes and in order to actually get a positive result here, we added

a set of models known to give rise to the desired behavior.

7. A large-scale model of T-cell signaling: connecting Odefy to the SB toolbox

In our final example we focus on a model of T-cell activation processes, which play a pivotal

role in the immune system. The model employed here has been previously described in the

literature and consists of 40 factors and 55 pairwise regulatory interactions (Wittmann et al.,

2009a). We will demonstrate how to convert the Boolean model to its ODE version and export
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the result to the popular MATLAB Systems Biology toolbox4. Fromwithin this toolbox we can

then conveniently perform simulations, steady state analysis as well as parameter sensitivity

analysis. Furthermore, we will see how the compilation of an SB toolbox model to a .mex file

MATLAB function dramatically increases the simulation speed of ODE systems.

7.1 The model

Fig. 12. Logical model of T-cell activation. The model contains a total of 40 factors and 49
regulatory interactions, with three input species - resembling T-cell receptors - and four
output species - the activated transcription factors. Screenshot from CellNetAnalyzer (Klamt
et al., 2006)

T-cells are part of the lymphoid immune system in higher eukaryotes. When foreign antigens,
like bacterial cell surface markers, bind to certain receptors these cells, signaling cascades
are triggered within the T-cell triggering the expression of several transcription factors in
the nucleus. Ultimately, this leads to the initiation of a specific immune response aimed at
eliminating the targeted foreign antigens (Klamt et al., 2006). The logical structure of the
T-cell signaling model is shown in Figure 12. There are three inputs to the system: the
T-cell receptor TCR, the coreceptor CD4 and an input for CD45; as well as four outputs:

4 http://www.sbtoolbox2.org/
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the transcription factors CRE, AP1, NFkB and NFAT. In total, the model comprises of 40
factors with 49 regulatory interactions. We will not provide a list of all Boolean formulas

in this system here. The model can either be downloaded from the Odefy materials page5, or

obtained along with the CellNetAnalyzer toolbox6. In the following, we assume the Odefy
model variable tcell to be existent in the current MATLAB workspace:

>> load tcell.mat

>> tcell

tcell =

species: {1x40 cell}

tables: [1x40 struct]

name: ’Tcellsmall’

7.2 Exporting the ODE version to SB toolbox

At this point we require a working copy of the SBTOOLBOX2 package which can be freely

obtained from the web7. We translate the Boolean T-cell model into its HillCube ODE
counterpart and convert the resulting differential equation system into an SB toolbox internal
representation:

sbmodel = CreateSBToolboxModel(tcell, ’hillcube’, 1)

The third argument indicates whether to directly create an SBmodel object, or whether to
generate an internal MATLAB structure representation of the model. Both variants should be
compatible with the other SB toolbox functions. The result should now look like this:

SBmodel

=======

Name: Tcellsmall

Number States: 40

Number Variables: 0

Number Parameters: 147

Number Reactions: 0

Number Functions: 0

We successfully created a HillCube ODE version of the Boolean T-cell model in SB toolbox.
This allows us to make use of the full functionality of this toolbox, like regular simulations
and steady state calculations for example:

init=zeros(numel(tcell.species),1);

init(strcmp(SBstates(sbmodel),’tcr’))=1;

init(strcmp(SBstates(sbmodel),’cd4’))=1;

init(strcmp(SBstates(sbmodel),’cd45’))=1;

sbmodel = SBinitialconditions(sbmodel,init);

SBsimulate(sbmodel);

ss=SBsteadystate(sbmodel);

We first set the initial values of the input factors TCR, CD4 and CD45 to 1 and then call the

SBsteadystate function. The ss vector now contains steady states for all 40 factors in the

system given the current initial states and parameters. SBsimulate will open the interactive

simulation dialog of SB toolbox:

5 http://hmgu.de/cmb/odefymaterials
6 http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
7 http://www.sbtoolbox2.org/
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In addition to these simple functionalities we could also have achieved with the Odefy

toolbox, we could now apply advanced dynamic model analysis techniques implemented in

the SB toolbox. This includes, amongst others, local and global parameter sensitivity analysis

(Zhang et al., 2010), bifurcation analysis (Waldherr et al., 2007) and parameter fitting methods

(Lai et al., 2009).

7.3 Compiling the model to .mex format – fast model simulations

As our final example of connecting Odefy with the SB Toolbox, we will compile the T-cell
model into the MATLAB .mex format. For this purpose we also need a copy of the SBPD

Toolbox8 in addition to the regulatory SB Toolbox. The compilation is performed in a single
function call as follows:

SBPDmakeMEXmodel(sbmodel);

which will create a file called Tcellsmall.mexa64 (the file extension might differ
depending on the operating system and architecture) in the current working directory. Since
the compiled SB toolbox functions employ a special numeric ODE integrator optimized for
compiled models, the compiled version outperforms the regular simulation by far. To verify
this, we let the system run from the initial state defined above and measure the elapsed time
for the calculation:

tic;

for i=1:10

r = SBsimulate(sbmodel,0:0.01:20);

end

toc;

yielding

Elapsed time is 13.585409 seconds.

on a Intel(R) Core(TM)2 Duo CPU P9700, 2.8 GHz. In contrast, the compiled model simulation
is substantially faster:

8 can also be obtained from http://www.sbtoolbox2.org/
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tic;

for i=1:10

r=Tcellsmall(0:0.01:20, init);

end

toc;

producing

Elapsed time is 0.100033 seconds.

That is, for the T-cell model the compiled version runs approximately 140 times faster than

a regular simulation employing MATLAB built-in numerical ODE solvers. This feature can

be particularly useful when a large number of simulations is required, e.g. for parameter

optimization by fitting the simulated curves to measured experimental data.

8. Conclusion

In this tutorial we learned how to use the Odefy toolbox to model and analyze molecular

biological systems. Boolean models can be readily constructed from qualitative literature

information, but obviously have severe limitations due to the abstraction of activity values to

zero and one. We presented an automatic approach to convert Boolean models into systems

of ordinary differential equations. Using the Odefy toolbox, we worked through various

hands-on examples explaining the creation of Boolean models, the automatic conversion to

systems of ODEs and several analysis approaches for the resulting models. In particular,

we explained the concepts of steady states (i.e. states that do not change over time), update

policies, state spaces, phase planes and systems parameters. Furthermore, we worked with

several real biological systems involved in stem cell differentiation, immune system response

and embryonal tissue formation. The Odefy toolbox is regularly maintained, open-source and

free of charge. Therefore it is a good starting point in the analysis of ODE-converted Boolean

models as it can be easily extended and adjusted to specific needs, as well as connected to

popular analysis tools like the Systems Biology Toolbox.
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