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1. Introduction 

Districting, geographic demand zone segmentation, and customer clustering subjects, in 
their different varieties, are rather common and well studied problems within the literature 
of design and planning of logistic and supply chain networks, mainly focused on 
distribution/collection supply chain subsystems. Moreover, when a product distribution 
fleet must be defined and designed, customer-vehicle assignments appear as relevant 
decisions to be addressed, which can be indirectly considered as a customer 
clustering/segmentation method. Finally, other kinds of company operations might require 
some type of demand segmentation, such as territory sales balance as in Zoltners and Sinha 
(1983), among others. 
These problems have been addressed with a wide variety of approaches, such as cluster 
analysis, that are a collection of statistical methods and graphic/computational tools (such 
as Geographic Information System, GIS). For instance, in Barreto et al. (2007) a clustering 
analysis was employed to solving a capacitated location-routing problem. GIS systems are 
commonly used in districting problems, such as in (Kalcsiscs et al. 2005) where the 
integration of districting models into Geographic Information Systems is discussed. 
Within the field of operations research (focus of the present chapter), several techniques 
have been considered to deal with this type of problems. The main approaches are: vehicle 
routing problems (Crainic and Laporte, 1998; Laporte and Osman, 1995), continuous 
approximation of routing cost (Novaes and Graciolli, 1999, Novaes et al., 2000), and 
location-allocation modeling structures (Koskosidis and Powell, 1992; Miranda and Garrido, 
2004a; Gonzalez-Ramirez et al., 2010-2011). In all these cases, the general framework 
requires defining a set of decision variables and a mathematical optimization model (e.g. 
inclusion of customers into demand zones), in which a single or a set of performance 
indicators should be optimized (e.g. expected routing costs, workload balance, fleet size, 
demand zone compactness, etc.). These previously mentioned tasks must be addressed 
observing several practical, logical or mathematical constraints, in order to assure that the 
optimal solution found is feasible to be implemented. 
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In addition to the previously mentioned modeling process, the need to solve these models 
must be addressed by building and implementing computational algorithms for searching 
optimal or near optimal solutions. Moreover, let us note the high complexity of this type of 
problems (usually considered NP-Hard), which means that the majority of the employed 
methods are heuristics and meta-heuristics (i.e. near optimal algorithms). Among the 
heuristic techniques are those based on evolutionary techniques (Novaes et al., 2000), 
construction and improvement algorithms (Gonzalez-Ramirez et al., 2010-2011; Koskosidis 
and Powell, 1992), and those based on mathematical programming (Miranda and Garrido, 
2004a). 
Based on the different problems and formulations observed, several criteria have been 
considered as performance indicator for the customer clustering, depending on the stage 
and level within Supply Chain Planning process addressed (i.e., strategic, tactical, or 
operational level). For example, when customer grouping is developed in order to reduce 
the size of the problem, or when the objective is designing preliminary areas for sale 
purposes or physical distribution, concepts such as compactness and closeness between 
customers appear as relevant criteria (in the objective function or as restrictions of the 
optimization model). On the other hand, considering the case of distribution/collection fleet 
sizing, transportation cost generated by different routes defined for each vehicle is 
considered as one of the most frequently used criterion to be optimized, along with vehicle 
capacity constraints.  
Finally, given the wide variety of criteria observed to address customer clustering and 
geographic demand zoning problems, multi objective optimization appears as a rather 
common approach in the related literature, in which a set of Pareto efficient or Pareto 
optimal solutions must be found. A Pareto efficient solution is one for which it is not 
possible to reach any other feasible solution presenting a better performance for a single 
criterion, without observing a worse performance of any other criterion. According to the 
aforementioned concerns, this chapter presents a review and taxonomy of different criteria 
and modeling approaches employed to address different customer clustering problems, 
along with a review of solution approaches observed in the literature.  
Section 2 presents a literature discussion focused on districting or customer clustering 
problems, including analyses of problem context, design criteria, and modeling and solution 
approaches. Particularly, this section includes a description of different cost modeling 
structure for vehicle routing based customer clustering problems. Section 3 summarizes two 
researches addressing districting/customer clustering problems, with different context, 
design criteria and solution approaches, considering a similar Mixed Integer Programming 
(MIP) modeling structure, based on location-allocation decision variables. Section 4 
proposes a general framework for addressing the problem of strategic supply chain network 
design problems, including integrated districting/customer clustering decisions, based on 
vehicle routing considerations within a more general inventory location modeling structure. 
Finally, Section 5 presents the main conclusion of this chapter, along with a discussion of 
further research, perspectives, and final remarks. 

2. Literature review and discussion 

2.1 Districting /customer clustering applications  

Districting or territory design is a geographical problem that involves the partitioning of a 
region into smaller areas in order to optimize operations for a given criterion (Muyldermans 
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et al., 2003). A district is designed to be used for a long period of time (at least one year) 
because of the big effort required for adapting the system, physically, operationally and 
managerially.  For this reason, districting is considered a strategic or tactical decision with 
the aim of yielding good performance of the operations and system robustness to deal with 
small changes in a variety of environmental factors.  
Districting emerges in different contexts such as politics, health care, sales territory 
planning, covering planning for emergency centers (fireman and police stations), public 
schools planning, logistics and routing applications. In each case, the districting process 
serves different purposes and can be economically motivated or have socio-demographic 
aims (Kalcsics et al., 2005). For instance, in political districting problems, the region under 
consideration is partitioned into smaller regions to which each candidate belongs. On the 
other hand, logistics districting is mainly associated with the routing activities of a 
company, having a strong impact in their performance (Van Oudheusden et al., 1998). The 
most common contexts of the logistics districting problem are: distribution/collection 
services, emergency services, medical, fire and police (Moonen, 2004). 
Tavares-Pereira et al. (2007a) highlight that districting problems can be classified in terms of 
two factors: the number of criteria and the solution method (exact and non-exact 
algorithms). However, since Altman (1997) showed that districting problem belongs to the 
class of NP-Complete problems (a very complex class of problems which cannot be solved 
by polynomial algorithms), all the reviewed works propose heuristic methods. According to 
Grilli di Cortone et al. (1999), there are two main constructive techniques for districting 
problems: division and agglomeration. In the former, the service region is considered as a 
whole and divided into pieces. In the latter, a region is already split into small areas, which 
are aggregated to build the districts. Accordingly, in this chapter heuristic approaches are 
also presented. 

2.1.1 Contributions in logistics districting problems 

One of the earliest works in the area of logistics districting is proposed by Keeney (1972). He 
addresses the problem of partitioning an area such that each district is assigned to an 
existing facility, considering a single greedy criterion. Hardy (1980) compares the method 
for vehicle routing proposed by Clarke and Wright (1964) with a methodology based on a 
districting approach. Wong et al. (1984) consider a problem very similar to districting 
known as the Vehicle Routing Using Fixed Delivery Areas (VRFDA), where a service area is 
divided into fixed sub areas in which the daily route may change from day to day. The 
authors propose a methodology in which total travel distance is minimized. A special case 
of the VRFDA is the Fixed Routes Problem (FRP) studied by Beasley (1984) in which the 
service region is divided into sub areas in which the route is fixed from day to day. 
Daganzo (1984a) proposes an approximation method for the design of multiple-vehicle 
delivery zones, seeking tours of minimum total length. The objective of his work is to 
explore the impact that the zone shape has on the expected length of each route. Daganzo 
(1984b) presents a methodology in which the region is partitioned into zones of nearly 
rectangular shape elongated toward the source. In his work, the number of points is large 
compared to vehicle capacity. Newell and Daganzo (1986a) analyze the districting of a 
region in which the underlying network of roads is a dense ring-radial network. They 
propose an approximation method for the design of multiple-vehicle delivery tours in 
which the aim is to minimize total travel distance. Han and Daganzo (1986) investigate 
the design of delivery zones for distributing perishable freight without transshipment.  
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Daganzo (1987a, 1987b) investigates and models distribution problems with time 
windows.  
Langevin and Soumis (1989) study the problem of designing multiple vehicle delivery tours 

satisfying time constraints for the letter and parcel pick-up and delivery problem using a 

continuous approximation model. The authors propose a methodology that involves 

partitioning the region into approximately rectangular delivery zones that are arranged into 

concentric rings around the depot.   Rosenfield et al. (1992) study the problem of planning 

service districts with a time constraint and derive analytical expressions to determine the 

optimal number of service districts for the U.S. postal system.  Robusté et al. (1990) employ 

continuous approximations for fleet design vehicle routing problems. Novaes and Graciolli 

(1999) present a methodology to design multi-delivery tours associated with the servicing of 

an urban region of irregular shape, assuming a discrete grid-cell representation of the 

served region. In contrast, Novaes et al. (2000) present a methodology for solving the same 

problem but using continuous approach to represent the region. Both, Novaes and Graciolli 

(1999) and Novaes et al. (2000), assume a polar coordinate system (known as a ring-radial 

system), model capacity probabilistically based on chance constraint programming, and 

employ a continuous approximation to determine routing costs and times. 
Muyldermans et al. (2002, 2003) address the problem of districting for salt spreading 
operations on roads. They present a graph based model, assuming that each district is 
served by a single facility. The objective is to minimize the deadheading distances, and the 
number of vehicles required. Miranda and Garrido (2004a), extending the work of 
Koskosidis and Powell (1992), propose a Location-Allocation modeling structure along with 
a Lagrangian relaxation based heuristic, in which a Hub and Spokes cost structure is 
considered as a performance indicator to be optimized. Their research addresses a fleet 
design problem within a supply chain network, with a set of fixed and known distribution 
centers. Each distribution center will be assigned to a set of vehicle routing zones, which is a 
set of problem decision variables. A greedy assignment non-capacitated criterion is 
considered for assigning fleet zones or clusters to existent distribution centers. 
Haugland et al. (2005) consider the districting problem for vehicle routing problems with 

stochastic demands, along with a Tabu Search (TS) and a multistart heuristic to solve the 

problem. They address a two-stage stochastic problem with recourse that seeks to minimize 

the expected travel time for each district. Galvao et al. (2006) extend the model presented by 

Novaes et al. (2000) and present a special case of a Voronoi diagram. Tavares-Pereira et al. 

(2007a) consider the districting problem with multiple criteria. They propose a method to 

approximate the Pareto front based on an evolutionary algorithm with local search.  

Tavares-Pereira et al. (2009) propose metrics to compare partitions obtained in a districting 

configuration, specifically for the case of a connected, undirected, with a graph 

representation. Novaes et al. (2009) develop two continuous location-districting models 

applied to logistics problems combining a Voronoi diagram with an optimization algorithm.   

González-Ramírez et al. (2010, 2011) analyze a logistics districting problem for package pick-

up and delivery within a region, motivated by a real-world application. The region is 

divided into districts, each served by a single vehicle that departs from a central depot. The 

districting process aims to optimize two criteria: compactness and workload balance, but the 

problem is formulated as a single objective problem, with the weighted sum of the two 

criteria under consideration. The authors propose a heuristic solution approach combining 

elements of Grasp and Tabu Search. 
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2.1.2 Contributions in other fields 

Some applications of districting include politics. In this field we can mention the work of 
Hess et al. (1965), who present a Location-Allocation heuristic under population equality, 
compactness, and contiguity considerations.  Garfinkel and Nemhauser (1970) present an 
exact algorithm to solve this problem under contiguity, compactness, and limited 
population deviation. Hojati (1996) proposes a three-stage approach and Mehrotra et al. 
(1998) propose a column generation approach based on branch and price. A review on 
political redistricting is presented by Williams (1995).   
Regarding sales territory design, the first reviews are provided by Zoltners, (1979) and 
Zoltners and Sinha, (1983). Fleishman and Paraschis, (1988) study a sales territory alignment 
for a German company for consumer goods and develop a procedure based on a location-
allocation.  Drexl and Haase (1999) study the problem simultaneously with sales force 
sizing, salesman location, and sales resource allocation. More recently, a commercial 
territory design was introduced by Rios-Mercado and Fernandez (2009) that differs from 
traditional sales territory design in that rather than placing salesmen in territories the 
authors are interested in locating service centers.  
Regarding school districting problems, Diamond and Wright (1987) consider the case where 
a limited number of schools are allowed. Church and Murray (1993) consider the problem of 
redesigning school districts to achieve racial balance. Elizondo et al. (1997) present a model 
to minimize the travel distances of the students. For a review of the most relevant work on 
this problem refer to Caro et al. (2004).   
Within health care system applications, Blais et al. (2003) study a districting problem for a 
local community health clinic optimizing “visit personnel mobility” and “workload 
equilibrium”, both criteria combined into a single objective function. Baker et al. (1989) 
study the redistricting problem of primary response areas for county ambulance services. 
Regarding the police context, Bodily (1978) designs patrol sectors using multi attribute 
utility theory to include preferences of the interest groups. More recently, D'Amico et al. 
(2002) present a simulated annealing algorithm for the redistricting police command 
boundaries. For a more extensive review of the districting problem in the context of 
emergency sites, refer to Moonen (2004). 

2.2 Design criteria issues 

As can be observed in the previous section, there are several research works and 
applications addressing decisions of districting/customer clustering, routing and location 
issues, motivated and based on a wide variety of criteria for solution performance 
evaluation. According to Muyldermans (2002), objective functions for evaluating the 
performance of location and routing decisions are very intuitive, and usually strongly 
related to the optimization of economic criteria. For instance, facility location models 
typically deal with minimizing total or maximal distance from depots to customers, and 
vehicle routing problems normally aim to optimize the number of tours or vehicles, the total 
distance traveled, time spent on service and travel, violation of capacity an time constraints, 
etc. (some details about these performance indicators and modeling approaches are 
presented in sections 2.4, for routing problems, and 4.2, for location problems).  
However, as stated by Muyldermans (2002), it seems to be much more difficult to specify 
measurements for achieving a good districting configuration, due partially to the fact that 
these measurements rely strongly on the districting context and practical concerns. For a 
districting problem, the most common requirement is the workload balance among districts 
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(or population equality for some other applications), and geographic compactness of the 
districts. Compactness definition may vary according to the districting context, but in 
general, it implies districts to be as round or square as possible, avoiding elongated shape 
districts. Another metric that is commonly found in the literature is contiguity, which is 
related to the possibility of walking from any point to any other location within the same 
district without leaving it, as if it were a single land parcel (Ricca, 2004). Another criterion is 
the inner variance, which looks for districts composed of customers as homogeneous as 
possible. Naturally, homogeneity may be defined according to the problem context and 
features. Others requirements in districting are integrity, which means that a point should 
not partially allocated to different districts, and hole absence, which means that if one draws 
any closed curve in a district, all points within the inner domain of the curve belong to the 
same district. This last constraint has been shown to be fully satisfied when the problem is 
modeled as a connected graph in (Ricca, 2004). Some other common requirements are to 
satisfy time or capacity constraints or a maximum budget for routing costs. 

2.3 Modeling approaches 

We distinguish in the literature two main modeling approaches: Mixed Integer 
Programming (MIP) and Continuous Modeling (CM). Within MIP, districting/clustering 
decisions are usually modeled through binary variables, which model the inclusion of 
customers, demand points, or nodes, to each district. Some works using MIP modeling 
approaches are Hardy (1980), Haugland et al. (2005),  Tavares-Pereira et al. (2007a), 
González-Ramírez et al. (2010, 2011), Koskosidis and Powel (1992), Miranda and Garrido 
(2004a), Marianov and Serra (2003) and Caro et al. (2004). On the other hand, CM assumes a 
continuous segmentation of the region, in which districts are defined by a specific shape, 
representing decision variables of the problem. For example, in CM category we can 
mention Newell and Daganzo (1986a), Langevin and Soumis (1989), Novaes et al. (2000), 
Galvao et al. (2006), Novaes et al. (2009), Novaes and Graciolli (1999). In addition, MIP and 
CM can be considered as Mathematical Programming (MP) approaches. 
Finally, we define a third category refereed to as the “Algorithmic Approach (AA)”, which 
does not explicitly model the problem as a standard optimization problem (mono or multi 
criterion objective function, mathematical constraints, decision variables, etc.), but pays 
more attention to performance indicators (mono or multi criterion) and solution 
methodologies to obtain well performing districting configurations (usually consisting of 
heuristic approaches). Some examples are Keeney (1912), Deckro (1977), Wong et al. (1984), 
Muyldermans et al. (2002, 2003). 

2.4 Vehicle routing modeling structures for districting/customer clustering 

Focusing on vehicle routing based clustering, four main approaches can be found in the 
literature, which model routing costs and decisions explicitly, but based on different 
objectives, hierarchical levels, problem characteristics and assumptions: standard Vehicle 
Routing Problems (VRP), Hub and Spokes Structures (H&S), Continuous Approximation 
(CA), and more recently, the Probabilistic Traveling Salesman Problem (PTSP). 

2.4.1 Standard vehicle routing modeling structure  

Vehicle Routing Problems (VRP), one of the most studied problems in Operation Research 
and Mathematical Programming, are based on the well known Traveling Salesman Problem 
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(TSP). In the TSP, an optimal visit sequence for a known set of customers must be found, as 
indicated in Figure 1, minimizing total cost, distance, time, or any other related metric. In 
general, for the VRP under deterministic assumptions, a specific visit sequence for each 
vehicle considered is the standard output or decision modeled. In the VRP with time 
windows, the specific instant in which every single customer is visited is specified, instant 
that must observe minimum and maximum values. We refer to Crainic and Laporte (1998), 
Laporte and Osman (1995), Dantzig, Fulkerson and Johnson (1954), Hoffman and Wolfe 
(1985), for thorough reviews on the VRP and other related problems.  
However, when a strategic perspective is considered, and moreover when assuming 
stochastic behavior in customer demand and appearance, this modeling structure 
diminishes in attractiveness and appropriateness, mainly due to: 
- Specific visit sequences are not required in the long run, and they are usually modified 

and re-optimized in the short run, according to customer requirements. 
- Specific visit sequences are not feasible and applicable in all days, due to the set of 

customer to be visited each day is not the same, and more over, not known in 
advance. 

- Routing costs provided by standard deterministic VRP models may not be a good 
estimate of expected costs in stochastic long-run scenarios. 

 

 

Fig. 1. TSP Modeling Structure 

2.4.2 Hub & spokes cost structure  

Recently, Miranda et al. (2009) analyze the inclusion of fleet design decisions and routing 
costs within a known inventory location model, based on a Hub & Spokes cost structure. 
These modeling structures for routing costs and decisions are previously developed in 
Miranda and Garrido (2004a), assuming a fixed and known distribution network 
configuration. These models propose the inclusion of an approximated cost estimation for 
fleet design and customer clustering (demand zoning) into previous Inventory-Location 
Problems, which address supply chain network design problems, neglecting specific visit 
sequences decisions as in the VRP and TSP. 
The Hub & Spokes modeling structure, as shown in Figure 2, models two types of 
transportation costs: a direct cost from each warehouse to a hub or centroid of each 
customer cluster; and a second inner cluster cost, from each hub or centroid to each 
customer included in the respective cluster. Accordingly, hub selection and customer-hub 
assignments, define entirely the routing system and costs. Hub & Spokes cost structure and 
models are studied and analyzed by Marianov and Serra (2003), Sasaki et al. (1999), Mayer 
and Wagner (2002), Koskosidis and Powell (1992),  and Campbell (1994), among several 
other works in the Hubs and Facility Location literature.  
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Distribution Center

Routing Zones

 

Fig. 2. Hub And Spokes Cost Structure 

2.4.3 Continuous approximation of routing costs 
One of the main contributions in the last decades, within Logistics and Supply Chain 
Management, is the computation of the expected distance or cost of vehicle routing systems 
(similar to the TSP and its extensions), based on Continuous Approximation (CA). These 
computations are usually required previous to the design and operation of distributing 
systems. Daganzo (1984a, 1984b, 2005) propose the use of CA in order to develop simple 
closed mathematical expressions for TSP, and also for other logistic issues, presenting good 
empirical results.  
Figure 3 indicates that routing cost, RC, is estimated by a continuous approximation RCCA 
(Routing Cost Continuous Approximation), in terms of the number of points or nodes (N) 
and the dimension of the area involved (A).  
For example, in the most basic case, for a given compact and convex area A containing n 
demand points or customers, the optimal TSP distance can be accurately approximated by 

A n   , where  is a proportionality constant equal to 0.75 when the Euclidean metric is 
considered (different values must be considered for other metrics). As extensions and 
variations of this basic model, several studies have been developed, addressing different 
routing scenarios. See for example, Newell and Daganzo (1986a, 1986b), Novaes et al. (2000), 
Robusté et al. (1990, 2003), and Robusté (2003). 
 

Area A; N Demand Points

Distribution Center Routing Zones

 ,RC RCCA N A

 

Fig. 3. Routing Cost Continuous Approximation 

2.4.4 Probabilistic traveling salesman problem 

The Probabilistic Traveling Salesman Problem (PTSP), introduced by Jaillet (1985, 1988) and 
reviewed later by Powell et al. (1995), is an extension of the TSP. In this problem each 
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known existent customer i has a probability pi to require a visit in a specific routing period. 
Accordingly, an optimal a-priori solution must be found in which all customers must be 
included (independent of their requirements), for which an a-posteriori solution is defined 
for each possible scenario or realization, just skipping each absent customer, as shown in 
Figure 4. The optimal a-priori solution is defined by the minimization of the expected costs 
considering all possible realizations, in which a weighted summation of distances is 
considered, where the occurrence probabilities of the realizations are the weights. Thus, the 
expected cost of any given a-priori tour can be obtained estimating the cost for each possible 
realizations of the problem. For n nodes this has a complexity of O(n.2n), which makes the 
simple process of computing the costs of a single a-priori tour prohibitive. 
However, the tour length can also be computed with a lower complexity. Without loss of 

generality, it is assumed that in the a-priori sequence (τ), the nodes are visited in an 

ascending numbering order, namely, τ = 1, 2, 3, … , n. Then, the expected value of the 

associated costs of this a-priori sequence can be computed with the following expresion: 

  
(1)

 

In expression (1), E[L()] is the expected cost of an a-priori tour ; pi is the node i appearance 

probability; and qi is the probability of node i not appearing in the problem’s realization (1-

pi). In the first summation of (1), the term multiplying dij represents the probability of 

making a trip between i and j for any realization of the problem, where pipj is the probability 
of nodes i and j being present, and  is the probability of all nodes between i and j being 

absent in the realization. Similarly, in the second summation, the term that multiplies dij is 

associated to the return trip made from the last visited node, i, to the node where the tour 

started, j. This calculation of E[L()] can be obtained with O(n2) complexity.  

Given the high complexity of PTSP (NP-Complete Probabilistic Combinatorial Optimization 

Problem), it has been solved mainly by heuristic approaches, which usually are extensions 

of well known heuristics of the TSP, as presented in Bianchi and Campbell (2007), Bianchi et 

al. (2005), Lamas et al. (2007), Tang and Miller-Hooks (2005), and Branke and Guntsch 

(2004). However, Laporte et al. (1994) developed an exact algorithm to solve the PTSP, but it 

is applicable only for small instances. 

 

Distribution Center Routing Zones

Present Nodes

Absent Nodes

 

Fig. 4. PTSP Modeling Structure 
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3. Two cases for logistics districting and customer clustering  

In addition to a review of different approaches that can be employed to address clustering 
problems, we present two different cases based on MIP approaches, assuming location-
allocation decision variables, and addressing different practical concerns. 
The first one, based on Gonzalez-Ramirez et al. (2010 and 2011), is focused on a general view 
of the districting problem, in which routing costs are not considered, and where district 
shapes and workload balancing issues are the main focus of the research. The number of 
districts is known and predetermined by a planner, and a known single depot is considered. 
In contrast, in Miranda and Garrido (2004a), a similar modeling structure is proposed to 
design a distribution system, in which approximated routing costs and stochastic vehicle 
capacity constraints are modeled explicitly as design criteria. In this problem, the number of 
districts (equivalent to the fleet size) is a decision to be optimized. Finally, in this paper a set 
of pre-existent warehouses is considered, and a simple greedy criterion is consider to assign 
the clusters to the existent warehouses.  

3.1 District design for a parcel and pickup problem 
3.1.1 Problem description and mathematical formulation 

Consider a connected, undirected graph G(V,E) where V is the vertex set and E the edge set. 
The graph is generally not complete.  We assume that all the edges  ers=( vr, vs) have a 
positive length and represent a real road between adjacent points vr and vs. Distances 
between points are edge lengths for those points that are connected in the graph and 
shortest path distances for other pairs of points.  A district is defined as a subset of the 
points. Each vertex may require either a pickup or a delivery. The aim of the districting 
procedure is to optimize two criteria: balance of the workload content among the districts 
and compactness of district shapes. The mathematical model proposed for this problem 
consists of a single objective model in which the weighted sum of both criteria is minimized.  
Compactness is not defined precisely for all the districting problems in the literature and it 
is generally defined according to the application context. For this problem we define it as the 
distance between the two furthest apart points in a district and we proposed a minimax 
objective in which we attempt to obtain compact districts when the maximum compactness 
metric is minimized. 
The workload content of a district is defined as the time required to perform all required 
pickups and deliveries plus the time needed to drive from the depot to the farthest point in 
the district. In order to balance the workload content among districts, we propose to 
minimize the maximum workload allocated to a district. We also attempt to obtain districts 
with balanced workload content by minimizing the dispersion of the workload assigned to 
each district, which is represented by the sum of the absolute value of the differences 
between the workload content of each district with respect to the average workload. 
We propose a single objective mathematical formulation in which the weighted sum of the 
compactness metric and the maximum workload content assigned to a district is minimized, 
each of them normalized.  The following notation is defined: 
 : Maximum number of pickups for each district. 

 : Maximum number of deliveries for each district. 
J : District set, J={1,…,m}. 
wpi, wdi : Number of pickups or deliveries respectively, requested by 

 demand point i, i V. 
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Stp, Std : Stopping time per pickup and delivery respectively in each node. 
dik : Distance from point i to point  k, i,k V,λ= Scale factor, 0≤λ≤1. 
d0i : Distance from the depot to the point i, i V. 
Sp : Average speed. 
Nz : Normalization parameter for the compactness metric. 
Nw : Normalization parameter for the workload metric.  
                 The following decision variables are defined: 
Xij : Binary variable. 1 indicates that customer i is assigned to district j. 
                And the following auxiliary variables are defined: 
W : Continuous variable that represent the maximum workload content   
                 assigned to a district. 
Z : Continuous variable that measure the compactness as the maximum 
                 travel time between the furthest apart points of a district. 
Dj : Continuous variable that takes the value of the traveling time from the     
                 depot to the farthest point of district j. 
Mj : Continuous variable that takes the value of the traveling time between the  
                 two furthest apart points of district j. 
The mathematical formulation model is as follows: 
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Equation GR–(1) is the objective function that minimizes a weighted average of the 
maximum workload and maximum compactness metrics. The objectives are normalized and 
the relative weighting is given by λ. Constraints GR–(2) guarantee that each demand point is 
assigned to only one district. Constraints GR–(3) and GR–(4) guarantee that each district has 
a maximum of  pickups and  deliveries, respectively. These constraints help to balance the 
number of pickups and deliveries allocated to a district so that the capacity of the vehicles is 
not exceeded.  Constraints GR–(5)  guarantee that Mj takes the value of the maximum travel 
time between the points assigned to each district in time units. Constraints GR–(6) guarantee 
that Z takes the maximum value over Mj. Constraints GR–(7) guarantee that Dj takes the 
value of the time from the depot to the farthest point of each district j. Constraints GR–(8) 
guarantee that W takes the maximum amount of workload of a district. Constraints GR–(9) 
are the binary requirements. Normalization parameters are estimated with respect to the 
optimal values of the compactness and workload content 
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3.1.2 Solution approach 
A multi-start heuristic algorithm that hybridizes GRASP with Tabu Search is proposed. It 
consists of two phases as it is typical of a GRASP approach: construction of a feasible initial 
solution and improvement by local search.  
GRASP is a multi-start constructive metaheuristic proposed by Feo and Resende (1989) in 
which a single iteration consists of two phases: i) construction of an initial solution, and then 
ii) improvement of the solution by a local search approach. The construction phase includes 
greedy criteria, and it is randomized by the definition of a list with the best candidates, from 
which a candidate is selected randomly. Among all the solutions created, the best solution is 
reported as the final step of the algorithm. For a detailed description of GRASP, see Resende 
and Ribeiro (2002), in which the authors present details of different solution construction 
mechanisms, techniques to speed up the search, strategies for the implementation of 
memory, hybridization with other metaheuristics, and some applications. 
Tabu Search (TS), proposed by Glover (1977), is a technique based on an adaptive memory, 
which enhances the performance of a basic local search procedure, aiding to escape from 
local optima by accepting even non-improving moves. To prevent cycling to previously 
visited solutions, last moves are labeled as “tabu-active” during a predetermined number of 
iterations. However, good quality solutions that are currently tabu active may be visited 
under some criteria that are referred to as “aspiration criteria”. Comprehensive tutorials on 
Tabu Search are found in Glover and Laguna (1993) and (1997).    
In the combined GRASP-Tabu Search algorithm, a solution is considered to be feasible if all 
the points are allocated to a district and the capacity limits with respect to both services 
(pickups and deliveries) are respected for all the districts, as established by constraints RG-
(2), RG-(3) and RG-(4). Among all the solutions created and improved, the best one is 
reported as the final solution for a given instance. In case of ties, the solution that provides 
the lowest dispersion value for the workload content among districts is selected.  
A key concept is the adjacency among points and districts, which is a condition that should 
be updated when a point is assigned or moved to a district. This requirement is imposed as 
part of the procedure with the aim of constructing districts of compact shape.  A point is 
considered adjacent to a district if there exists at least an edge connecting the point with one 
of the points already allocated to the district. Knowledge of the adjacency helps to avoid 
unnecessary evaluations that may result in long computational times and also enhance 
compactness of the solution constructed. Each time that a point is assigned to a district, 
adjacency among districts needs to be updated.  

a) Construction phase 

We propose two main steps to construct the initial feasible solution: Selection of a set of m 
seeds and allocation of points to the districts formed by a seed. Throughout the procedure, 
every time that a point is assigned to a district, the adjacency among points and districts is 
updated. To enhance compactness, points are attempted to be assigned to the closest seed as 
long as adjacency conditions are fulfilled. In a number of iterations, points are attempted to 
be assigned to an adjacent district respecting capacity constraints. Then, if required, the 
remaining points are assigned to an adjacent district even if capacity constraints are violated 
and a local search procedure is applied with the aim of achieving feasibility. If no feasible 
solution is constructed, then the solution is discarded. 

b) Local search phase 

This procedure implements a TS short term memory with an aspiration criterion that allows 
a tabu active move only if the resulting solution is better than the current best solution. The 
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search space consists of the solutions yielded after transferring a point between adjacent 
districts. The best solution found is reported after a number of iterations. In the case of ties, 
the solution with the less dispersion on the workload content of the districts is selected.  
The neighborhood structure is a greedy approach that consists of a quick evaluation of all 
the feasible moves between adjacent districts. The best solution is selected and the 
corresponding move of a point is performed during each of the iterations. Given that the 
best move may result in a worse solution than current solution, during the procedure a list 
of the three best solutions is maintained. At the end of the procedure a final attempt is made 
to improve these three best solutions in hopes of finding a better solution with a small 
amount of additional effort. The overall best solution found is reported as the final solution 
for the given initial feasible solution. 

3.1.3 Results and discussion 
To test the performance of the proposed solution procedure, a set of instances was randomly 
generated. All problem instances were solved on a 2.00 GHz Pentium processor with 2 GB 
of RAM running under Windows XP. Five different instance sizes were defined, which are 
classified by the number of points and districts: 50_5, 200_10, 450_15, 1000_20 and 1500_30.  
The instances were solved by the proposed heuristic and CPLEX 11.0. 
Points were uniformly generated over a plane, and a set of edges was generated by forming 
a spanning tree and adding additional edges. Euclidean distances were computed only for 
the points connected by an edge, and for the rest shortest paths are found using the Floyd-
Marshall algorithm (Floyd, 1962). Stopping times were fixed at a realistic value for all the 
instances generated, considering that the service activities are performed within an urban 
region and that a pickup usually requires more time than a delivery. Three levels of average 
speed were considered, assuming that all the vehicles assigned to the districts travel on 
average at the same speed over the entire service region: 25, 30 and 35 kilometers/hour. 
Two levels of capacity are defined: tight and less restricted. The relative weighting factor 
was varied over three values: λ=0.25, 0.5 and 0.75.  Three replicates were generated for each 
of the five instance sizes. Each instance was solved varying the three values of the relative 
weighting factor, the two levels of capacity limits and the three values of speed resulting in 
a total of  53323 = 270 instances. A limit time of 3600 seconds was set for the instances, 
both for CPLEX and the heuristic.  
For each instance solved by CPLEX and the heuristic, we compute a gap between the best 
integer solution reported by CPLEX (that in some cases corresponds to the optimal) and the 
heuristic. Positive gaps are obtained when CPLEX finds a better solution than the heuristic. 
A negative gap indicates that the solution found by the heuristic is better than the best 
integer solution found by CPLEX under the limit time that was set. 
Table 1 presents the results of the heuristic with respect to CPLEX solutions by instance size 
in which we can observe that CPLEX found at least an integer solution only for the instances 
of size 50_5 and 200_10. The maximum, average, and minimum gap is shown.  We can 
observe that CPLEX did not find the optimal solution for the 200_10 instances, for which the 
heuristic found a better solution. For the smaller size instances of 50_5, CPLEX found the 
optimal solution for almost all the instances. We can also observe that on average, the 
heuristic yielded small gaps, with a maximum gap of less than 8.7%.  
For further research, we propose the formulation of a stochastic version of the problem and 
the analysis of different demand scenarios. A model containing chance constraints could 
also be formulated. The problem may also be solved as a bi-objective optimization problem 
to find the efficient frontier instead of a single solution. We also propose to analyze different 
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metrics of the workload content of a district (such as the closest point or a centroid line hauls 
metric) and their effects on the performance of the heuristics. We could also analyze 
different metrics to measure the compactness of the districts. Another extension is to 
propose a decomposition approach in which the sub problems consist of defining each of 
the districts and the master problem selects a set of districts so that all the points are 
allocated to a district. We may also try to find a better mathematical formulation for the 
problem that may allow CPLEX to solve larger instances.  We could also try to find a tight 
lower bound for the procedure.  
 

SIZE Metric 
Computational Time 

GAP 
CPLEX Heuristic 

50_5 

Max 3603.24 0.563 0.087 

Average 3200.69 0.414 0.0158 

Min 166.485 0.296 0 

200_10 

Max 3609.93 16.437 -0.197 

Average 4604.938 14.005 -0.402 

min 0.641 12.172 -0.555 

450_15 

max 

 

140.048 

 

average 116.517 

Min 95.877 

1000_20 

Max 1173.827 

Average 1032.099 

Min 924.799 

1500_30 

Max 3829.187 

Average 3733.512 

Min 3608.015 

Table 1. Gaps with respect to CPLEX by instance size. 

3.2 Fleet design and customer clustering based on a hub & spokes costs structure 
approximation 
3.2.1 Problem description and mathematical formulation 
Miranda and Garrido (2004a) propose an approach for the design of a fleet for delivery or 
distribution, considering a known set of depots or distribution centers, and including 
stochastic constraints for vehicle capacity for each zone or district. Two additional 
distinctive elements compared to the model presented in section 3.1 are that the number of 
zones or vehicles is a decision variable, and an approximated routing cost function is 
included based on a hub and spokes modeling structure, as stated in Section 2.5.2. 
The model notation is the following: 
Xj : Binary variable. 1 indicates that customer j is a hub. 
Wjl : Binary variable. 1 indicates that customer l is assigned to cluster j. 
Dj : Mean daily demand for the whole cluster j (variable). 
Vj : Variance of the daily demand for the whole cluster j (variable). 
RCap : Vehicles capacity (parameter). 

j :  Mean of the daily demand for customer j (parameter). 
j2 : Variance of the daily demand of customer j (parameter). 
TCij : Transportation cost between the customer j and depot i (parameter). 
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RCjl : Transportation cost between the customer l and the hub j (parameter). 
FC : Fixed daily cost due to operate each vehicle (parameter). 
Z1-    : Standard normal value, accumulating a probability of 1- (parameter). 
Potentially, each customer can be chosen as a hub, then, CRjl must be defined for each pair of 
customers. Furthermore, in this paper we assume each hub is assigned to its closest depot or 
warehouse, representing a debatable assumption, but it suggests an important opportunity 
for future research: it is possible to integrate this model into a facility location problem, in 
which the optimal assignment of hubs to depots will be solved by the model, considering 
some kind of capacity constraint.  
Then the cost of choosing the customer j as a hub is defined as: 

 j ij
i

FC TC FC Min TC    (2) 

Thus, the optimization model can be formulated as follows: 
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Expression MG-(1) represents the total system cost, considering a cost structure based on a 
Hub & Spokes approximation. The first term considers the total fixed cost associated to each 
vehicle and the transportation cost between the depots and the hubs. Note that each cluster 
is assigned to the nearest depot (with respect to its hub). The second term represents the 
total transportation cots between hubs and customers, grouped into the respective clusters. 
Constraints MG-(2) assure that each customer is assigned to a single cluster. Note that each 
customer j can also be assigned to itself, with zero transportation cost. Constraints MG-(3) 
state that if some customer was not chosen as a hub, it is not possible assign customers to 
him. Constraints MG-(4) represent the stochastic capacity constraints, which assure that the 
probability of violating the vehicle capacity for each cluster does not exceed . These 
constraints assume normality for demand of clusters. Finally, constraints MG-(5) assure the 
integrality of the variables X and Y. 

3.2.2 Solution approach 

The solution approach proposed comprises two subroutines: A construction-improvement 
local search heuristic and a Lagrangian relaxation-based algorithm to compute upper 
bounds to errors for heuristic solutions provided by the first subroutine. 
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a) Construction-improvement local search heuristics 

The construction-improvement heuristic, defined by Steps I to V, iteratively improves 

(based on Steps III, IV and V) an initial feasible solution (obtained through Step I and II), 

using a local search algorithm. 

 Step I :  Selecting an initial set of hubs. 

 Step II  :  Greedy assignment of customers to initial hubs. 

 Step III :  2-Opt hubs update within each cluster. 

 Step IV :  1-Opt customers interchange (between each pair of clusters). 

 Step V :  2-Opt customers interchange (between each pair of clusters). 

b) Lower bounds with lagrangian relaxation 

This section describes a Lagrangian relaxation (LR) approach used to obtain a lower bound 

for the optimal value of the SMDCCP. The LR technique gives the optimal value of the dual 

problem, which sets a lower bound for the optimal value of the primal SMDCCP. 

Furthermore, the difference between the optimal value of the dual problem and the primal 

objective function (found through the heuristic stated in the last section), represents an 

upper bound for the duality-gap and heuristic solution error.  

The LR implemented in this paper relies on the subgradient method to update and optimize 

dual penalty variables, 1, 2, and3 (see Crowder, 1976, Nozick, 2001, and Miranda and 

Garrido, 2004b, among others). 

Next the relaxation method is described, in which the constraints MG-(2), MG-(5) and MG-

(6) are relaxed, obtaining M sub-problems, one sub-problem for each customer j. If 1, 2, 

and3 are the vectors of the dual variables associated with each relaxed constraints, the dual-

lagrangian function can be written as follows: 
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Clearly, the problem of minimizing expression (3), in terms of X, W, D, and V, for fixed 

values of 1, 2, and 3, is equivalent to solve one sub-problem for each cluster j, given by: 
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This problem can be easily solved, as described in Miranda and Garrido (2004a), by a 

procedure very similar to basic applications of lagrangian relaxation to standard facility 
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location problems, as shown in Daskin (1995) and Simchi-Levi et al. (2003). This procedure, 

for a set of known values of 1, 2, and 3, relies on observation of weather benefits (or 

negative costs) related to expressions 2 3
j j j jD V      and 2 3 2 1

jl j l j l lRC          in (4)-

(i), compensate fixed costs FC+TCj. Aforementioned benefits are previously computed 

observing constraints (4)-(ii), (4)-(iii), and (4)-(iv), assuming Xj=1 

3.2.3 Results and discussion 

The procedures described in previous sections were applied to a numerical example, 

considering 20 depots, and 200 customers. The customers were located randomly in a square 

area with sides 1,000 km long.  The depots were uniformly distributed over this area. The 

daily fixed cost, FC, was set to $16, $19.2, $22.4, $25.6, $29.8 and $32, while the transportation 

costs (TCij and RCjl) were estimated based on a unitary cost of 8 cents/km. The customers 

mean demands were randomly simulated around 14 units, and the variances were 

generated considering a coefficient of variation close to 1. For the vehicle capacities we 

considered values of 150, 170, 190, 210, 230 and 250 units, while the level of service for 

capacity constraints was fixed at 85%, 90%, and 95% (1.036, 1.282 and 1.645). Thus, we 

consider 108 instances. 

Figure 5 and Figure 6 show the evolution of the objective function obtained by the heuristic, 

and through Lagrangian relaxation (dual bound), in terms of the fixed cost FC, for capacity 

values of 150 and 250, respectively. Each figure shows these results for level of service 

values of 85% and 95%. Firstly, we observe that both functions vary in a reasonable way in 

terms of fixed cost, capacities, and level of service. Second, we observe that the dual bound 

is always lower than the objective function of the heuristic solutions, with an optimal 

objective value between the heuristic and dual bound values. It must be noted that the 

difference between these functions is the sum of the error of heuristic and the duality gap 

(the difference between primal and dual optimums). Thus a small difference between these 

functions indicates that the solutions found are nearly optimal.  

 

 

Fig. 5. Evolution of the Objective Function of Heuristic and Dual bound, For RCap = 150 

In terms of heuristic quality, Figure 7 shows a histogram of error upper bound for the 108 

instances considered, obtaining an average of 2.76%. It is worth noting that in 65.4% of the 

cases, we obtain an error upper bound lower than 3%. Finally, only for 6.37 % of cases the 

error upper bound was greater than 5%, and in all cases lower than 7.5%. 
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Fig. 6. Evolution of the Objective Function of Heuristic and Dual bound, For RCap = 250 

 

Fig. 7. Histogram of Error Upper Bounds for 108 Instances 

4. Integrative approaches for supply chain network design 

4.1 Hierarchical discussion of supply chain network design 

In this final section, we discuss the districting or customer clustering problem in a wider 
context, focusing on an integrative approach for addressing strategic network design and 
planning problems within the scope of Supply Chain Management (SCM) and Logistics. In 
this context, districting or customer clustering problems are usually conceived based on fleet 
design and vehicle routing considerations. More specifically, customer clustering decisions 
consist of assignment of customers into routing zones or vehicle routes, where the number 
of vehicles, zones, or clusters might be considered as an additional required outcome of the 
problem. For the aforementioned reasons, MIP based methodologies (modeling and solution 
techniques) arise as very common and widely studied approaches, mainly based on VRP 
modeling structure. 
In terms of existent problems and state of the art literature and methodologies, Logistics and 
SCM comprises several problems at different hierarchical levels of decision making. Some 
problems at the strategic long-run level are production capacity planning and supply chain 
network design. At a tactical level, the most relevant examples are fleet design problems and 
production and inventory planning. Finally, the operational short-run level includes daily 
routing decisions and daily ordering and inventory decisions. For a thorough review of 
hierarchical levels and problems in SCM see Miranda (2004), Miranda and Garrido (2004c), 
Garrido (2001), Simchi-Levi et al. (2003), Coyle et al. (2003), Ballou (1999), Mourits y Evers 
(1995) and Bradley and Arntzen (1999).  
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One of the main problems in Logistics and SCM is Distribution or Supply Chain Network 
Design (SCND). This problem consists of finding optimal sites to install plants, warehouses, 
and distribution centers, as well as assigning the customers to be served by these facilities, 
and finally how theses facilities are connected with each other. One likely objective for these 
networks is to serve customer demands for a set of products or commodities, minimizing 
system costs and maximizing, or observing, specific system service levels. Usually, 
customers are geographically distributed in wide areas, requiring significant efforts for 
distributing their products from immediate upstream facilities (distribution centers and 
warehouses), typically based on a complex vehicle routing systems. 
The specific problem that must be modeled and solved strongly depends on several features 
of the real application. Some examples are: customer requirements and characteristics, 
logistic and technological product requirements, geographic issues, and operational and 
managerial insights of the involved firms, among others elements.  
Although SCND, along with its decisions and costs, has been considered as strategic in 
Logistics and SCM, it strongly interacts with other tactical and operational problems such as 
inventory planning, fleet design, vehicle routing, warehouse design and management, etc. 
However, standard and traditional approaches to tackle SCND might consider only a 
sequential approach, in which tactical and operational decisions are only attended once 
strategic decisions have already been solved. For example, inventory planning and control 
are solved only assuming the pre-existent locations. The same happens with fleet design and 
routing decisions, which are addressed only for each existent distribution center or 
warehouse. Several published works focus on specific SCND problems considering only 
strategic, tactical and operational viewpoint. 
This sequential approach is described by Figure 8, considering routing and inventory 
decisions in addition to SCND problem, and considering the three hierarchical levels: 
strategic, tactical, and operational. As suggested by the dotted lines, several interactions 
among the decisions involved are not modeled, in contrast to the continuous lines, which 
represent standard interactions usually modeled by a sequential approach. 
 

 

Fig. 8. Three Hierarchical Levels View of the Distribution Network Design Problem 

Being consistent with this viewpoint, this section focuses on an integrative approach 
including tactical routing and inventory decisions into the SCND modeling structure, as 
suggested in Figure 9, where continuous lines represent interactions modeled by the 
proposed approach. Naturally, it is possible to consider, at least for future research, the 
inclusion of operational costs and decisions within the framework; however, including these 

Supply Chain Network Design
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Fleet Design and
Customer Clustering
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Inventory
Planning

(tactical level)

Daily Inventory and 
Ordering decisions

(operational)
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is expected to provide less significant results compared to the present proposal. Therefore, 
operational modeling is not considered in the proposal. 
 

 

Fig. 9. Hierarchical Level Representation of the Proposed Methodology 

Mainly assuming the sequential approach stated in Figure 8, SCND is one of the most 
studied problems in SCM. Related literature includes numerous reports addressing diverse 
aspects of the general problem, considering a wide range of degrees of interaction between 
strategic and tactical decisions. 
At the strategic level, facility location theory is one of the most commonly used approaches. 
For a comprehensive review of Facility Location Problems (FLP), see Drezner and Hamacher 
(2002), Drezner (1995), Daskin (1995), and Simchi-Levi et al. (2005). Traditional FLP consider 
deterministic parameters, demands, constraints, and an objective function within a mixed-
integer modeling structure. However, based on the traditional FLP framework, it is hard to 
model interactions with other tactical and operational issues of SCM, such as inventory 
control and fleet design problems. These potential interactions are shown in Figure 9, where 
inventory control and vehicle routing decisions (within tactical and operational levels) 
interact with the strategic SCND problem. 
Accordingly, any integrative approaches for coping with strategic network design problems 
should incorporate VRP decision and costs into Facility Location based models. 

4.2 Standard facility location modeling structure 

As stated in previous sections, Supply Chain Network Design problems are traditionally 
tackled within facility location literature, assuming a strategic perspective in its modeling 
structure and costs. In this framework, main decisions are modeled using binary decisions 
variables for selecting facilities and assigning customers to these facilities. The objective 
function expressed in (5) represents a typical cost function to be minimized in a FLP. 

    
1 1 1

N N M

i i i j ij ij
i i j

Min F X R d T Y
  

        (5) 

In this expression, M is the set of customers to be served, each one having an expected 
demand dj, in the specific considered planning horizon; N is the set of potential sites to 
install warehouses; Fi is the total fixed cost when installing a warehouse in site i; Ri is the 
transportation unit costs from a single existent plant to each warehouse i, and Tij  is the full-
truckload transportation cost from each warehouse i to each assigned customer j; Xi is the 
binary variable that models locating decision on each site i; and finally Yij is the binary 
variable that models assignment decisions between each customer j and each potential 
warehouse on site i. First term of (5) represents warehouse fixed setup cost, and the second 

Supply Chain Network Design

(strategic level)

Fleet Design and
Customer Clustering

(tactical level)

Inventory
Planning

(tactical level)
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expression represents the system transportation costs, including plant-warehouse and 
warehouse-customer flows. According to these definitions, the network is entirely defined 
by the binary decisions variables X and Y. 
Depending on the specific problem assumptions and features, some standard constraints 

that can be found in well known FLP, based on the previous notation, as follows: 

 
1

1 1,...,
N

ij
i

Y j M


     (6) 

 1,..., 1,...,ij iY X i N j M       (7) 

 
1

1,...,
M

ij j i
j

Y d WC i N


      (8) 

  , 0,1 1,..., 1,...,ij iY X i N j M       (9) 

Equation (6) assures that each customer j is served by exactly one warehouse. Equation (7) 

assures that customers are assigned to previously installed warehouses (Xi = 1). Equation (8) 
assures that the expected demand assigned to each warehouse does not exceed the 
corresponding warehouse capacity, WCi. Finally, constraints (9) enforce the integrality (0-1) 
of the decisions variables. The highly unrealistic nature of this basic modeling structure is 
evident due to the lack of modeling of other cost elements and more general cost structures, 
such as those related to warehouses inventory and fixed ordering costs. 

4.3 Simultaneous modeling of facility location and inventory planning decisions 

The need for modeling interactions between locations and inventory decisions, as 

introduced in previous sections, has generated several works, yielding simultaneous 
inventory-location models to address SCND. For example, Miranda and Garrido (2004b), 
Daskin et al. (2002), Shu et al. (2005), Shen et al. (2003), and Erlebacher and Meller (2000), 
present similar of inventory-location models, along with different solution approaches. 
In general terms, in all the above inventory-location models, the two costs terms of the 
equation (10) are incorporated into the objective function (5): expected safety stock costs, 
corresponding to the first term in (10), and expected cyclic inventory costs, second term in 
(10), both per time unit (daily, monthly or yearly). 

 1
1 1 2

N N
i i

i i i i
ii i

Q D
HC Z LT V HC OC

Q


 

 
       

 
   (10) 

Expression (10) is based on the following notation: 
LTi :  Deterministic lead time when ordering from the warehouse i (parameter).  
Di : Mean daily demand to be assigned to the warehouse i (dependent  
                 variable). 
Vi  :  Variance of the daily demand assigned to the warehouse i (dependent 
                 variable).  
HCi  :  Inventory holding cost at warehouse i ($/unit-time).  
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OCi  :  Fixed ordering cost at warehouse i ($/order). 
Qi  :  Order size for each warehouse i (items / order). 
1 –   :  Service level associated to warehouse safety stocks, service level that 
                     corresponds to the probability that demand during lead time does not 
                     exceed the reorder point. 

This service level is strictly related to the safety stock at each warehouse, given by 

expression 1 i iZ LT V   ; where Z1- is the value of the Standard Normal distribution, 

which accumulates a probability of  1 – . 
Dependent variables Di and Vi are strictly related to, and defined by, the mean and variance 
of the assigned customer demand. Accordingly, expressions (11) and (12) link the mean and 
variance of warehouse demands to the mean and variance of demand for each customer j, dj 

and vj, assuming independency. It is worth noting that these sets of constraints link facility 
location decisions (X and Y) to inventory decisions and costs as stated in equation (10). 

 
1

1,...,
M

ij j i
j

Y d D i N


     (11) 

 
1

1,...,
M

ij j i
j

Y v V i N


     (12) 

Ozsen (2004) and Ozsen et al. (2008) propose a deterministic 100% service level constraint 
for inventory capacity, which requires the inventory capacity be observed every ordering 
period. In this constraint, maximum inventory levels are defined as the reorder point (initial 
inventory level just prior to an order) in addition to the order quantity. Consequently, this 
maximum level is required to respect inventory capacity, ICap, as stated in in (13). 

 i iRP Q Icap   (13) 

The peak inventory level considered in (13), (RPi + Qi) corresponds to the maximum 
inventory level when “no demand has arisen during the lead time”. Consequently, this 
constraint might be considered extremely protective, because a no-demand situation is, in 
general, quite unlikely. Considering previous observation, and based on Chance Constraint 
Programming, Miranda (2004) and Miranda and Garrido (2006, 2008) propose an inventory 
capacity constraint based on a probabilistic service level, in which a minimum probability, 
1-, is required for observing inventory capacity. It is assumed that the maximum inventory 
level is a stochastic variable, as a consequence of stochastic nature of demand during lead-
time, SD(LTi), as shown in equation (14). 

 
 

Pr 1  

    

i i iRP SD LT Q Icap

Stochastic Maximum Inventory

Level for each warehouse i

   
 

  
 
 


 (14) 

Miranda, (2004) and Miranda and Garrido, (2008) showed that this constraint can be 
reformulated as a deterministic nonlinear constraint (which assures that the probabilistic 
constraint is satisfied) as follows: 

  1 1 1,...,i i i iQ Z Z LT V ICap X i N          (15) 
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Finally, Miranda and Garrido (2009) propose an iterative approach to optimize inventory 
service level, based on the integrative inventory location models previously described. For a 
deep review and analysis of Stochastic Programming methodologies, see Birge and 
Louveaux (1997). 

4.4 Simultaneous modeling of inventory, location and routing decisions 

One of the problems and remaining inconsistencies of the previously described inventory 
location modeling structure, which as inherited from standard FLP literature, is related to 
the routing costs and the modeling structure considered in SCND models. As suggested by 
expression (5), transportation costs from warehouses to customers are modeled as a direct 
shipment - full truckload strategy or approximation, ignoring routing costs and decisions, 
particularly in less-than truckload situations. 
Quite earlier, Webb (1968), Christofides and Eilon (1969), and Elion et al. (1971) made an 
explicit discussion about the error of not considering explicitly the routing costs when 
warehouses serve assigned customers in FLP. More recently, Salhi and Rand (1989) analyze 
and evaluate the effects of ignoring routing costs and decisions. Their work, based on a 
sequential approach, shows that an effectively local optimal facility location solution 
(consistent to the first strategic stage in Figure 8 and Figure 9) does not necessarily represent 
the optimal solution when exact routing costs are included. In addition, and in agreement 
with these results, several works have been focused on simultaneous modeling of location 
and routing decisions and costs, in order to achieve simultaneously optimal solutions. 
Laporte (1988), Perl and Daskin (1985), and Min et al. (1998), present reviews of several 
formulation for different Location Routing Problems (LRP), considering deterministic 
demands and standard VRP formulations of routing costs between warehouses and 
customers. For examples of different LRP formulations, along with related heuristic and 
exact solution approaches, see Laporte, Nobert and Taillefer (1988), Laporte and Nobert 
(1981), Laporte et al. (1986), Prins et al. (2006), and Prins et al. (2007). 
Finally, recent works in Location-Routing literature are: 
Albareda-Sambola et al. (2007) and Albareda-Sambola (2004): A stochastic LRP is proposed. 
The stochastic nature considered is focused on customer appearance, similar to the 
Probabilistic Traveling salesman Problem, PTSP (discussed later in section II.2), as 
introduced by Jaillet (1985-1988). The remaining costs, decisions and assumptions, are based 
on the previously described deterministic LRP, without considering inventory control 
decisions and costs. Additionally, fleet design and related demand zoning decisions are not 
considered as outcomes. 
Orman (2005): In this research a LRP formulation with inventory decisions is proposed in 
which customers display stochastic demand, but whose appearance is considered 
deterministic (in contrast to Albareda-Sambola et al., 2007). Consequently, routing costs are 
modeled based on a standard VRP modeling structure. Fleet design decisions are considered 
assuming deterministic warehouse and vehicle capacity constraints. 
Shen and Qi (2007): The authors proposed a model that deals simultaneously with inventory 
control and routing costs within a FLP model, considering nonlinear routing and inventory 
costs and stochastic demands. The proposed model is based on a continuous approximation 
of routing costs for a multi-vehicle distribution system. The model does not consider the 
number of vehicles or routing zones as decision variables. Warehouse and vehicle capacity 
constraints are not considered in the formulation. 
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Miranda et al. (2009): The authors propose an integrative model for addressing Inventory, 
Location and Customer Clustering, based on a Hub & Spokes cost structure, as in 
Koskosidis and Powell (1992) and Miranda and Garrido (2004a). The customer clustering 
decisions are aimed at defining a preliminary solution for fleet design within SCNDP. 

4.5 A General integrative approach for customer clustering within SCNDP 

Based on the discussion about different routing modeling structures presented in Section 
2.4, and similar to the model presented in Miranda et al. (2009), the present section proposes 
a general modeling framework to include routing costs and clustering decisions within 
existent models in the facility location and inventory location literature. 
Considering the aforementioned inventory location modeling structure of Section 4.3 , a 
preliminary objective function proposed for a simultaneous inventory location model with 
routing costs and decisions might be as follows: 

 

   

1
1 1 1

1

2

N N N
i i

i i i i i i
ii i i

N

i j ij ij
i j M

Q D
Min F X HC Z LT V HC OC

Q

R d T Y SRC W


  

 

 
         

 

    

  


 (16) 

In expression (16), W is a matrix of binary decision variables, where element Wjl indicates if 
customer l is assigned to cluster j, which also defines the customer clusters of the 
distribution network; M is a variable set of customer clusters to be assigned to installed 
warehouses; dj is the mean demand for each customer cluster, which is actually a dependent 
variable defined by matrix W; and finally SRC(W) represents System Routing Costs as a 
function of the decision variable matrix W. All other elements (parameters and variables) are 
as previously defined in Sections 4.2 and 4.3. 
One advantage of this formulation is that it allows considering a general modeling structure 
for routing costs and decisions. For instance, when modeling routing costs via a continuous 
approximation, we should include the following constraint: 

    ,j j j
j M

SRC W RC C A


    (17) 

where Cj is the variable set of customers included on each cluster j, Aj is the area defined by 
assigned customers, and RCj is the respective approximation routing cost of each cluster j, as 
a function of Cj and Aj. For example, following Shen and Qi (2007), an acceptable expression 
for routing costs within a cluster with multiple vehicles, RCj, might be as follows: 

 

   , 2 1 1 /
j

l jl j
j j j j

l C

d A
RC C A q q C

n M

   
               


 (18) 

In (18), q is the capacity of the vehicles employed; n is the number of visits in a year; l is the 
expected yearly demand for each customer l; djl is the distance between the cluster hub j and 

the customer l, and  is a scale factor depending on the considered metric. For example, 

when a Euclidean metric is used, =0.75.  
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Furthermore, in case of a Hub & Spokes cost structure, the following constraints should be 
included, assuming an additional variable Hl, which indicates if customer l is selected as a 
hub of a cluster: 

  
1 1

L L

kl kl
k l

SRC W R W
 

    (19) 

 1,...,kl lW H l L     (20) 

Equation (19) computes total routing costs within all clusters, in accordance with the Hub & 
Spokes structure, and constraints (20) assure that customers are assigned to cluster hubs that 
are effectively selected. Notice that the consideration of a variable set of clusters should be 
consistent with facility location decisions, X and Y. For example, it is possible to include a 
constraint to ensure that each cluster hub is assigned to a single warehouse, as stated in (21). 

 1,...,
N

ij l
j i

Y H l L


    (21) 

5. Conclusions 

In this chapter we present an updated literature review for works related to districting or 
customer clustering problems, and we classify the different contributions according to the 
modeling and solution approaches. Additionally, we illustrate a wide variety of 
applications, models, solution approaches and design criteria, focused on logistic operations 
and supply chain network planning. One of the main difficulties found in the literature are 
the definitions and measurements of objectives and criteria, for achieving good districting 
configurations, which in general are much more difficult to specify, compared to other 
problems within Supply Chain Management and Supply Chain Network Design problems. 
For instance, compactness is a common metric in districting,which implies to design districts 

as square or circular as possible. As an estimate, some examples of compactness metrics 

observed in the literature are the length of the minimum spanning tree formed within each 

district, or the maximum distance between two points that belong to the district, or based on 

a Hub & Spokes structure (line-haul and inner transportation costs). None of these metrics is 

exact and only approximates the desire shape of the district, in contrast to other logistic 

problems (e.g. vehicle routing or facility location problems), in which a usual metric consists 

of a sum of costs.  Hence there is room for improvements for estimating the performance 

metrics of a districting configuration. 

We conclude that the representation of an instance based on a graph topology is also a 
difficult task, because there are no clear and obvious criteria for setting the node adjacency 
or the set of edges. Finally, we observed that only few works present a solution approach 
based on mathematical programming techniques, and most of the proposed methodologies 
are based on heuristic approaches. 
Two application examples of Mixed Integer Programming models are presented, both of 

them based on a location-allocation modeling structure. 

The first example consists of a pickup and delivery parcel logistics districting problem for 

which a hybrid metaheuristic is proposed. The aim of the procedure is to optimize two 
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criteria: balance the workload content among the districts and obtain districts of compact 

shape. Workload content is defined as the sum of the required time to perform the service 

(either pickup or delivery a package), the required time to travel from the depot to the 

district (line-haul cost), and an estimated time of inner transportation costs within the 

district. Compactness metric is defined as the travel time between the furthest apart points 

within the district. The mathematical formulation presented is a weighted sum of both 

criterion, with the aim of minimize the maximum workload and compactness metrics of a 

district. The solution approach is based on a GRASP and Tabu Search procedure with two 

phases: construction and local search. Numerical results showed a good performance of the 

algorithm with low computational times.  

It is suggested as an extension of this work to analyze different modeling structures, 

especially for the compactness metric, which is approximately estimated by the maximum 

distance between a pair of points within the district. Also, provided the stochastic nature of 

the problem it is desired to extend the work and consider different demand scenarios 

instead of using a single and representative day and provide a more robust configuration. 

More realistic issues of the geographical region should be also considered, such as 

geographical barriers and the street configuration of the city. 

A second example is presented, in which customer clustering is addressed focused on fleet 

design. In this problem, vehicle capacity constraints are explicitly modeled based on chance 

constraint programming with stochastic demands. Solution approach is based on lagrangian 

relaxation with valid inequalities, along with a two-step local search heuristic. This work 

shows that vehicle routing issues can be effectively considered as criteria to address 

districting problems, in which vehicle capacity and routing cost can be considered as 

relevant performance measurements to design districts or customer clusters. Additionally, it 

illustrates the usefulness of decomposition methods based on mathematical programming 

and dual relaxation, to address districting/customer clustering models. In both cases, 

modeling and solution approaches, we highlight the consideration of stochastic demands. In 

this work, a known set of existent warehouses is considered, assuming a greedy cluster-

warehouse assignment criterion, yielding a promising modeling approach to be integrated 

in a more general framework to address strategic network design problems. 

For districting and customer clustering problems, we propose as a further research to 

explore solution methods based on mathematical programming such as relaxation and 

decomposition approaches based on Column Generation, Lagrangian Relaxation, Branch 

and Cut, among others. This is mainly motivated from that few contributions of this type 

have been observed in the literature. We also propose to explore different modeling 

structures and define clear metrics to compare different districting configurations over a 

defined operation horizon. For these matters, simulation techniques might be employed. We 

also propose to explore stochastic programming models and approaches, such as chance 

constraint programming, scenarios analysis, and two stages stochastic program with 

resource.  

As a further challenge we propose a basic and general framework to analyze the inclusion of 

logistics districting and customer clustering within strategic Supply Chain Network Design 

problems, integrating this type of decisions into some other strategic problems such as 

facility location. This framework should be based on vehicle routing consideration, along 

with the modeling of inventory planning and control considerations. This research might be 
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useful to analyze the impacts of customer clustering and districting decision into strategic 

Supply Chain Network Design problems. 
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