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1. Introduction 

Throughout their life plants have to adapt to variable environmental conditions. Changes in 

photoperiod, light intensity and quality, nutrient abundance and starvation, drought and 

flooding, variation in temperature, air and soil pollution and osmotic changes are among the 

abiotic factors that can cause stress (Apel & Hirt, 2004). To ensure constant monitoring of 

environmental conditions and a quick and appropriate response, plants have developed 

elaborate and robust perception and signal transduction mechanisms. The importance of the 

ability to adapt to a changing environment has been described in numerous research articles 

and reviews (Hirayama & Shinozaki, 2010). Recent years have seen tremendous progress in 

our understanding of the mechanisms and processes underlying abiotic stress adaptation 

and defence in different plant species (Hirayama & Shinozaki, 2010; Jaspers & Kangasjärvi, 

2010). Importantly, the analysis of abiotic stress tolerant varieties of Arabidopsis and also rice 

has led to novel ideas for improving the stress resistance of crop species. The diversity of 

abiotic stresses implies that there should be a strong specific component in the individual 

stress responses (Jaspers & Kangasjärvi, 2010). However, there is a striking common 

component in the general response to all abiotic stresses (Vaahtera & Brosché, 2011). 

Essentially all abiotic stresses lead to the production of reactive oxygen species (ROS) albeit 

different forms and in different subcellular compartments (Jaspers & Kangasjärvi, 2010). In 

contrast to their presumed role as simply damaging agents in cells ROS act as signalling 

molecules in the regulation of stress adaptation but also in developmental regulation (Apel 

& Hirt, 2004; Jaspers & Kangasjärvi, 2010; Møller et al., 2007). For reviews on other aspects 

of abiotic stress we refer to reviews (Jaspers & Kangasjärvi, 2010; Miller et al., 2008; Munns 

& Tester, 2008; Vaahtera & Brosché, 2011; Zhu, 2002). 

Despite the wealth of information on abiotic stress defence in plants the mechanisms of 
stress sensing have remained relatively elusive. In this review we turn our attention to the 
mechanisms of abiotic stress perception. Generally, stresses, as well as other stimuli, can be 
perceived in a direct or an indirect manner. In direct perception, the agent causing the stress 
is perceived through a receptor. Alternatively, in indirect perception, specific effects leading 
to stress caused by an agent are perceived. Evidence suggests that in abiotic stress 
perception plants use both modes in parallel. In indirect stress perception ROS are 
components frequently used  as signalling molecules. However, ROS themselves can be 
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subject to direct or indirect perception mechanisms (Figure 1). Since ROS are a response to 
common to  many abiotic stresses particular emphasis will be placed on their role in stress 
perception. For general reviews on ROS signalling we refer the reader to recent reviews 
(Foyer et al., 2009; Foyer & Noctor, 2005; Foyer & Noctor, 2009; Foyer & Noctor, 2011; 
Jaspers & Kangasjärvi, 2010; Møller et al., 2007). 
 

 

Fig. 1. Hypothetical model of the pathways involved in ROS perception in plants.  Abiotic 
stress or its perception through transmembrane or intracellular receptors results in the 
overproduction of ROS, including singlet oxygen (1O2), superoxide (O2.-), hydrogen peroxide 
(H2O2), or hydroxyl radicals (HO.). The increase of ROS levels can be directly sensed by 
cellular sensors such as redox-sensitive proteins, e.g. transcription factors which can activate 
signal transduction to induce expression of stress-responsive genes. This results in 
differential regulation of gene expression that will affect pathways including the induction 
of the ROS scavenging system and repression of the ROS-producing mechanisms. 
Ultimately this sensing, signalling and transcriptional reprogramming will be critical for the 
future fate of the cell leading to adaptation to the stress or to cell death. 

2. Perception of salt and osmotic stresses 

Salt stress is an abiotic stress, for which some perception components have been identified. 

Salt stress, as induced by elevated concentrations of NaCl, can be separated into two 

components: an osmotic stress component and an ionic stress component, i.e., Na toxicity 

(Munns & Tester, 2008). Osmotic stress can also be caused by other osmotically active 

substances; mannitol is a frequently used chemical to analyze osmotic stress perception and 

regulation under laboratory conditions. To sense osmotic stress, a cell could employ either 
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direct or indirect perception mechanisms. A direct sensing of osmotic stress would be 

difficult to imagine. If a putative direct osmosensor would act like a classical ligand-specific 

receptor, it would have to detect water activity (Wood et al., 2001). Alternatively, through 

indirect perception mechanisms, an osmosensor could sense other cellular properties that 

are affected by osmotic changes including cell volume, turgor pressure, membrane strain, 

individual solute concentrations, ionic strength and crowding of macromolecules in the 

cytoplasm (Wood et al., 2001).  

Promising candidates as receptors for salt and osmotic stress are histidine kinases and their 
cognate response regulators. Histidine kinases are well known for their roles in hormone 
responses, e.g. cytokinin and ethylene perception (Urao et al., 2000; Urao et al., 2001). In 
prokaryotes and in yeast histidine kinases have been identified as osmosensors but the 
system is also conserved in other organisms (Heermann et al., 2009; Heermann & Jung, 2010; 
Maeda et al., 2006). In the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 several 
different histidine kinases together with their response regulators (Hik33-Rre31, Hik34-Rre1, 
Hik10-Rre3, Hik16-Hik41-Rre17, Hik2-Rre1) regulate the transcription of distinct gene sets 
in response to osmotic and salt stress and are likely involved in stress perception 
(Paithoonrangsarid et al., 2004; Shoumskaya et al., 2005). In the model plant species 
Arabidopsis thaliana a hybrid-type histidine kinase ARABIDOPSIS THALIANA HISTIDINE 
KINASE 1 (ATHK1) has been proposed as an osmosensor as early as the late Nineteen-
Nineties (Tran et al., 2007; Urao et al., 1999). Interestingly, ATHK1 is also involved in the 
regulation of the desiccation process during seed maturation, a process which seems to be 
connected to drought tolerance (Wohlbach et al., 2008). Similar osmosensors have also been 
identified in other plant species including the woody plant Populus deltoides (Chefdor et al., 
2006). While the evidence supports a role for histidine kinases as sensors for salt and 
osmotic stress, the mechanism of this stress perception is still unclear. Much information 
originates from gene expression analysis of stress responses and from phenotypic analysis 
of mutant plants; direct biochemical evidence for salt or osmotic stress sensing is however 
lacking. Investigation of the homologous histidine kinase-response regulator system 
KpdD/KpdE from Escherichia coli identified different parts of the proteins in the perception 
of low potassium conditions compared to osmotic stress (Heermann et al., 2009). It has been 
proposed that histidine kinases as transmembrane proteins might perceive changes in 
turgor or some associated effect (Epstein, 1992; Laimins et al., 1981). However, for the 
bacterial histidine kinase KpdD turgor reduction appears not to be the stimulus; and 
similarity of the histidine kinases suggests that this might be the case also for other species 
(Hamann et al., 2008). It is abundantly clear, that histidine kinases have important roles 
during the regulation of salt and osmotic stress responses in addition to their roles in 
hormone signalling and they are probably very early elements in the perception machinery. 
However, their precise biochemical roles have yet to be clarified.  
Histidine kinases are not the only candidates for sensors for osmotic and ionic stress. There 

is evidence linking several transporters to osmosensing thereby unifying osmoperception 

and osmoregulation in bacteria (Wood et al., 2001). Receptor-transporters in E. coli seem to 

respond specifically to internal solvents (Culham et al., 2003a; Culham et al., 2003b; 

Rübenhagen et al., 2000; van der Heide et al., 2001; Wood et al., 2001). Several 

transmembrane transporter proteins have been identified in plants including the plasma 

membrane Na+/H+ antiporter SALT-OVERLY-SENSITIVE 1 (SOS1) and the HIGH-

AFFINITY K+ TRANSPORTER 1 (HKT1), which mediates Na+-K+ co-transport (Horie et al., 
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2009; Mäser et al., 2002a; Mäser et al., 2002b; Schachtman & Schroeder, 1994; Shi et al., 2000; 

Shi et al., 2002). SOS1 interacts with an important regulator of abiotic stress responses, 

RADICAL-INDUCED CELL DEATH 1 (RCD1; Katiyar-Agarwal et al., 2006). Another group 

of transporters, the Na+/H+ EXCHANGER AtNHX1, and the close orthologues AtNHX2, 3, 

4, 5 and 6 are involved in compartmentalization of Na+ to the vacuole (Horie et al., 2009; Qiu 

et al., 2004; Yokoi et al., 2002). While these transporters are critical determinants of salt 

tolerance there is only little evidence linking them to salt stress perception (Horie et al., 

2009). SOS1 is regulated through phosphorylation of its autoinhibitory C-terminal domain 

by the SALT-OVERLY-SENSITIVE 2 (SOS2) protein kinase, a member of the Sucrose non-

fermenting 1-related protein family (Quintero et al., 2011). SOS2 is regulated through 

interaction with the Ca2+-sensing protein SALT-OVERLY-SENSITIVE 3 (SOS3). This 

suggests that calcium is a critical regulator of Na+-transport and osmotic/ionic stress 

regulation. It is still unclear however, which sensory mechanism and which signaling events 

lead to the required changes in cellular Ca2+ concentrations that subsequently result in 

differential regulation of SOS1. Other Ca2+ signalling proteins seem to be involved in the 

acclimation to abiotic stresses as well. The Ca2+-DEPENDENT PROTEIN KINASE 3 (CPK3) 

provides a parallel pathway to MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) 

signalling in Arabidopsis thaliana (Mehlmer et al., 2010; Wurzinger et al., 2011). In these cases, 

just as in the example of SOS1, the importance of Ca2+ signalling is recognized, but the 

components that induce Ca2+ signalling in response to the initial stress remain unknown. 

Recent research suggests a novel mechanism of osmoperception through salt-dependent 

protein-nucleic acid interactions (Novak et al., 2011). In the cyanobacterium Synechocystis sp. 

PCC6803 the key enzyme of the glucosyl-glycerol pathway (GgpS) can be non-competitively 

inhibited by nucleic acids in a sequence- and length-independent manner via a salt-

dependent electrostatic interaction. The intracellular salt concentration thus could serve as a 

trigger for GgpS regulation leading to inactivation through nucleic acid binding at low salt 

concentrations. An increase in salt concentration leads to liberation of GgpS and the 

accumulation of glucosyl-glycerol facilitates the acclimatization to salt stress. It is unclear if 

this mechanism is also conserved in plants and other organisms, future research will have to 

answer this question. 

3. Heavy metal sensing 

Heavy metals (HMs) have biological importance in plant development and growth, where 
they play key roles affecting cellular processes such as homeostasis and photosynthesis 
(Terry, 1980). Many cellular processes are regulated by enzymes whose activities require the 
presence of heavy metals such as Fe, Zn, Mn, and Cu in the active site or in another position 
important for the proper enzyme functioning (Hänsch & Mendel, 2009). Thus, some HMs 
serve as cofactors of different enzymes and are important micronutrients, essential for plant 
growth. The variety and concentration of HMs depend on different sources. Natural sources 
include volcanic activity and continental dust. Alternatively HM can originate from human 
activities. Increased availability (concentration) of HMs strongly affects plant growth and 
development, resulting mostly in the inhibition of plant growth and toxicity symptoms. 
Toxic effect of HMs can be subdivided into production of ROS and oxidative stress, 
inhibition of enzyme activities via displacement of essential cofactors, and blocking of 
protein or metabolite functional groups, for example, by binding to thiol, carboxyl, and 
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histidyl groups (Sharma & Dietz, 2009). The identification and characterization of heavy 
metal transporters in plants is still ongoing and the mechanisms underlying HM perception 
through “sensor proteins” are poorly understood. However evidence suggests the existence 
of HM sensors in plants to perceive the availability of HMs in the environment.  
Among HMs iron is of a special importance for plants due to its requirement for 

photosynthesis and most of the cellular redox-dependent processes. Many studies have been 

focusing on the iron deficiency response (Briat et al., 2007; Walker & Connolly, 2008; Wintz 

et al., 2003), less is known about signalling pathways induced by iron excess. Excess of iron 

is harmful for cells due to its high reactivity with oxygen which leads to ROS production. 

Accumulation of ferritins, iron storage proteins, in plastids is one of the early responses to 

iron excess in plants (Lobreaux et al., 1992; Petit et al., 2001). Ferritin gene expression is 

regulated by other environmental factors including drought, cold, and light intensity (Briat 

et al., 2010). Recent studies have shown that ferritins participate in defence against oxidative 

stress by buffering and sequestering free iron (Arosio et al., 2009; Ravet et al., 2009). Detailed 

gene expression analyses have allowed the identification of HM stress-specific 

transcriptional profiles and suggested the existence of HM sensors. Transcriptional analysis 

of plant responses to different HMs suggested the presence of a Zn2+ sensor in the cell. 

Interestingly, this Zn2+ sensor might have an important role in response to Cd2+ through 

competitive binding of Cd2+ or Zn2+. However, this Zn2+ sensor is not yet identified. 

Following Cd2+ exposure expression of AtZIP9, a putative Zn2+/Cd2+ transporter, increased 

in Arabidopsis thaliana (Weber et al., 2006). AtZIP9 is also known as a marker of Zn2+ 

depletion (Wintz et al., 2003). Although Zn2+ depletion is also rapidly observed under Cd2+ 

treatment, Cd2+-induced gene expression is suggested to be rather a consequence of the 

competitive binding of Cd2+ to the Zn2+ sensor in response to Cd2+ exposure. Recently, 

HEAVY METAL ATPase 4 (AtHMA4), a heavy metal pump in Arabidopsis thaliana, has been 

proposed to have a dual role as Zn2+ and Cd2+ sensor and as a regulator of Zn2+ and Cu2+ 

export (Baekgaard et al., 2010). AtHMA4 has an extended C-terminal domain which exhibits 

high affinity to Zn2+ and Cd2+. Heterologous expression of the C-terminal domain, 

containing 13 cysteine pairs, in the Zn2+-sensitive zrc1 cot1 yeast strain confers zinc and 

cadmium tolerance and decreased the accumulation of Zn2+ and Cd2+. Another Zn2+/H+ 

antiporter, METAL TOLERANCE PROTEIN 1 (AtMTP1), localizes to the vacuolar 

membrane and is involved in Zn2+ homeostasis. It drives Zn2+ detoxification and 

accumulation in the leaves. Interestingly, a histidine-rich loop might serve as a Zn2+ 

buffering pocket and Zn2+ sensor thus being crucial in maintaining proper levels of 

cytoplasmic Zn2+ (Kawachi et al., 2008). It is clear that metal transporters perform the task of 

metal sensing to regulate import or export of metal ions. How that subsequently translates 

into a downstream response as reflected in transcriptional adaptation however, is still 

unclear.  

Detoxification of HMs occurs in the cytosol where high affinity targets of HM, so called 

chelators, bind and sequester HM in order to detoxify the cell. A variety of molecules are 

able to chelate HM, including both low molecular weight molecules such as organic acids, 

amino acids, peptides, as well as proteins, such as metallothioneins or phytochelatins (PC). 

After chelation, HM are transported and further sequestered in the vacuole (Hong-Bo et al., 

2010). Indeed, vacuolar compartmentalization is considered as the major tolerance 

mechanism allowing HM accumulation in plants, mainly in the vacuoles of root cells. 

However, it has been demonstrated for some HM hyperaccumulator species, that shoots can 
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contain higher HM levels than roots (Hong-Bo et al., 2010). It is possible that chelators act as 

HM sensors and that the modification of these HM sensors/scavengers might be recognized 

by other proteins to decipher the information. On the other hand, indirect HM sensing via 

ROS signalling is well documented. After Cd2+ transport into the plant cell, glutathione 

(GSH) could act as an initial ligand to form GS2-Cd2+ complexes. Cd2+ can also interact with 

GSH-derived peptides such as phytochelatins (PC) (Cobbett & Goldsbrough, 2002; Grill et 

al., 1985). The GS2-Cd2+ and PC-Cd2+ complexes formation lead to GSH depletion which will 

induce oxidative stress through redox imbalance (De Vos et al., 1992; Ortega-Villasante et 

al., 2005; Schützendubel & Polle, 2002). Arabidopsis mutants deficient in GSH such as cad2 are 

very sensitive to Cd2+ and other HMs (Howden et al., 1995; Hugouvieux et al., 2009). To 

date, PC synthesis is suggested to be at least one of the specific responses to heavy metal 

accumulation, since it has been described only after metal excess challenges. Indeed, 

although the PC synthase gene is constitutively expressed, the protein activity depends on 

metal ions and/or metal-GS complexes (Maier et al., 2003; Vatamaniuk et al., 2000). PC 

generation can thus be considered as a direct sensor of the presence of metal in plant tissues. 

In addition to PCs other potential metal binding targets might be used as markers of the 

metal perception if their activity and or function are altered after reacting with metal. 

However, their specificity to heavy metal stress should be assessed. Moreover, reverse 

genetic will help to understand the role of the specifically induced genes in response to 

heavy metal during metal stress signalling.  

4. Sensing light stress 

Similarly to salts and some heavy metals, which are important nutrients required for plant 
life, plants require light in order to thrive. However, excessive exposure to high light 
intensities can cause considerable damage to plants. Plants utilize light as their primary 
source of energy converting light to usable chemical energy through photosynthesis. Light is 
an essential prerequisite for Chlorophyll (Chl) biosynthesis and chloroplast development; 
events that do not take place in darkness. Early light perception involves three classes of 
wavelength-specific photoreceptors, phytochromes (PHYs), cryptochromes (CRYs) and 
phototropines (PHOTs).  
PHYs, sensing red and far-red light, are synthesized in darkness in an inactive Pr form and 

localize to the cytosol. Upon light perception, PHYs are converted into the biologically 

active Pfr form and translocate to the nucleus to initiate signalling pathways through direct 

interaction with PHYTOCHROME INTERACTING FACTORS (PIFs), a subfamily of basic 

helix-loop-helix (bHLH) transcription factors (Castillon et al., 2007; Leivar & Quail, 2011). 

Arabidopsis contains 5 genes encoding PHY apoproteins, PHYA-E, with PHYA and PHYB 

playing the main role in the photomorphogenetic response. Isolation of a quintuple mutant 

lacking all five PHY genes has shown that the PHYs are the major but not the sole sensors of 

red-light in Arabidopsis since the mutant is able to respond to red light and accumulate 

chlorophyll (Strasser et al., 2010). The quintuple mutant has several developmental defects; 

some of these defects can be bypassed by blue light exposure indicating functional CRYs in 

the absence of PHYs. In contrast to the red light receptor complement in Arabidopsis thaliana, 

PHYs are the only red light photoreceptors in rice, since phyA phyB phyC triple mutant lack 

chlorophyll biosynthesis and changes in gene expression in response to red light (Takano et 

al., 2009). Inactive CRY1 and CRY2 are localized to the nucleus where they interact with 
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CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), an E3 ubiquitin ligase, a key 

regulator of light signalling. Blue light induces activation and translocation of CRY1 to the 

cytoplasm, whereas CRY2 remains in the nucleus.  

The proteins acting downstream of PHYs and CRYs are mainly transcription factors 

regulating photosynthesis-related genes necessary for chloroplast biogenesis 

(Vandenbussche et al., 2007; Waters & Langdale, 2009). PIFs are transcriptional inhibitors, 

and their degradation upon phytochrome activation promotes the expression of 

photomorphogenesis-related genes. PIF1 regulates the expression of PORC, encoding 

Pchlide oxidoreductase, an enzyme in chlorophyll biosynthesis pathway (Huq et al., 2004). 

PIF3 is a negative regulator of genes HEMA1 and GENOMES UNCOUPLED 5 (GUN5), 

encoding enzymes of Chl biosynthesis, and also genes encoding for components of 

Photosystem I (PSI) (Shin et al., 2009). Consequently, pif1 and pif3 mutants accumulate high 

amounts of the Chl intermediates when grown in darkness which leads to photobleaching 

after transfer to light. Quadruple mutant pif1 pif3 pif4 pif5 (pifQ) is constitutively 

photomorphogenic and the gene expression profiles of the dark-grown pifQ mutant and the 

red-light-grown wild type Arabidopsis are similar (Shin et al., 2009). LONG HYPOCOTYLS 5 

(HY5) is a bHLH transcription factor, acting downstream of light signalling cascades 

induced by activation of photoreceptors. HY5 positively regulates a number of 

photosynthesis-related genes (Andronis et al., 2008; Lee et al., 2007a). Activity of HY5 is 

mediated by protein phosphorylation and degradation, where COP1 plays an important 

role. CRY1 and HY5 have been shown to regulate many highlight responsive genes, 

including EARLY LIGHT INDUCIBLE PROTEINs (ELIPs) and ASCORBATE PEROXIDASE 

2 (APX2), in young seedlings (Kleine et al., 2007). The cry1 mutant has enhanced sensitivity 

to high irradiance which is demonstrated by photobleaching and increased photoinhibition 

of the photosystem II (PSII) under high light (Kleine et al., 2007).  
Belonging to another class of blue light photoreceptors, PHOT1 and PHOT2 have a minor 
role in blue light dependent photomorphogenesis compared to CRYs. However, PHOT1 and 
PHOT2 play a key role in blue light-dependent chloroplast movement, which serves as a 
rapid response to different light regimes (Celaya & Liscum, 2005; Demarsy & Fankhauser, 
2009). Knockout of both PHOTs is sufficient to eliminate all chloroplast movements (Sakai et 
al., 2001). Analysis of single phot mutants demonstrated the exclusive role of PHOT2 in high 
light response and redundant role of both PHOT proteins in low light response (Ohgishi et 
al., 2004). PHOTs have also partially redundant functions in the regulation of phototropism 
and stomatal opening (Kinoshita et al., 2001). PHOT proteins are plasma membrane 
localized protein kinases, containing two light oxygen voltage (LOV) domains, essential for 
their function. PHOT1 and PHOT2 can autophosphorylate (Inoue et al., 2008; Matsuoka & 
Tokutomi, 2005). This autophosphorylation mediates in vivo interaction of PHOT with 14-3-3 
proteins (Sullivan et al., 2009). In addition, PHOT interacts directly with PHYTOCHROME 
KINASE SUBSTRATE family proteins (de Carbonnel et al., 2010). 
Unlike light in the visible spectrum, even moderate levels of UV-B irradiation cause 
oxidative stress. Studies of UV-B light signalling suggested its perception by a specific 
receptor, different from those discussed above (Ulm & Nagy, 2005). UV RESPONSE LOCUS 
8 (UVR8) was recently shown to be a direct sensor of UV-B in Arabidopsis (Rizzini et al., 
2011). The signalling pathway leading to transcriptional response includes also COP1 and 
HY5 (Brown & Jenkins, 2008; Oravecz et al., 2006). In the absence of UV-B UVR8 localizes to 
the nucleus and to the cytosol (Kaiserli & Jenkins, 2007). Upon UV-B irradiation UVR8 
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translocates to the nucleus where it interacts directly with COP1 in a UV-B dependent 
manner which, in turn, affects the interaction between COP1 and HY5 (Favory et al., 2009; 
Kaiserli & Jenkins, 2007).  
Mature chloroplasts, in turn, work as environmental sensors regulating stress response 
and dynamic acclimation of the photosynthetic mechanism to environmental fluctuations. 
Environmental factors such as light, temperature and nutrient availability exert a strong 
effect on the function of plant chloroplasts. Changes in light intensity lead to 
rearrangement of the light harvesting antenna complexes and changes in composition of 
the two photosystems. Low light requires optimizing of light harvesting whereas high 
light leads to increased energy dissipation and photoinhibition. Mechanisms of regulation 
are referred to as nonphotochemical quenching (NPQ) (Bailey & Grossman, 2008; Holt et 
al., 2004). The Arabidopsis npq4 mutant, lacking the minor subunit S of PSII (PSBS), is 
deficient in dissipation of excess energy and is more sensitive for photoinhibition during 
high light. Overexpession of PsbS leads to enhanced resistance to high light stress (Li et 
al., 2002). Moreover, the transcript and protein levels of PsbS are elevated upon exposure 
of Arabidopsis to high light (Giacomelli et al., 2006; Kimura et al., 2003). Screens for npq 
mutants in Chlamydomonas identified stress-related chlorophyll a/b binding proteins 2 
and 3 as proteins required for proper energy dissipation (Bonente et al., 2011; Peers et al., 
2009). 
Changes in light quality induce imbalanced excitation of the two photosystems which have 

distinct absorption spectra. The mechanisms of acclimation include reversible 

phosphorylation and migration of a part of the light-harvesting antenna complexes between 

photosystems to balance the energy distribution (so-called state transitions). The process is 

controlled by the redox status of the plastoquinone pool (PQ). The genetic screen for 

mutants with impaired state transitions in Chlamydomonas resulted in identification of Stt7 

protein kinase responsible for phosphorylation of LHCII (Depège et al., 2003). Two 

orthologs of Stt7 with different substrate specificity exist in Arabidopsis: STN7 protein kinase 

phosphorylates Light Harvesting Complex II (LHCII), and STATE TRANSITION 8 (STN8) 

protein kinase is involved in phosphorylation of PSII core proteins (Bonardi et al., 2005; 

Vainonen et al., 2005). STN7, activated by the reduced PQ pool, is required for state 

transitions (Bonardi et al., 2005) and supposed to be involved in retrograde signalling via a 

yet unknown mechanism (Pesaresi et al., 2010; Pfannschmidt, 2010). Oxidation of the PQ 

pool inactivates the STN7 kinase which leads to dephosphorylation of light-harvesting 

proteins by THYLAKOID-ASSOCIATED PHOSPHATASE 38 (TAP38/PPH1) protein 

phosphatase identified in a reverse genetics screens (Pribil et al., 2010; Shapiguzov et al., 

2010). Thus, the pair STN7/TAP38(PPH1) is a key regulator of state transitions and short-

term acclimation in Arabidopsis. The lack of STN8 protein kinase in stn8 and stn7 stn8 single 

and double mutants results in ineffective repair of PSII and higher susceptibility to 

photoinhibition under high light stress (Tikkanen et al., 2008).  

The photosynthetic reactions in chloroplasts are a continuous source of ROS: several 
different ROS are produced inside plastids as by-products of photosynthesis. Superoxide 
(O2.-) is converted to hydrogen peroxide (H2O2) by a chloroplast-associated superoxide 
dismutase (SOD). Singlet oxygen (1O2) is produced at PSII by energy transfer from excited 
chlorophyll molecules to oxygen. Imbalanced electron flow due to high light or 
environmental stress favour production of 1O2 inside plastids. Production of ROS in 
chloroplasts leads to dramatic changes in nuclear gene expression including genes encoding 
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for photosystem subunits (Bechtold et al., 2008; Fey et al., 2005). The extensive study of the 
molecular mechanisms of signalling suggests several partially overlapping and redundant 
pathways (Nott et al., 2006).  
The Arabidopsis fluorescent in blue light (flu) mutant (Meskauskiene et al., 2001) has played a 
key role as a tool in dissecting signalling pathways specific to singlet oxygen generation 
within plastids and it has been used to identify genes specifically regulated by singlet 
oxygen release within plastids (op den Camp et al., 2003). FLU is a nuclear-encoded plastid 
protein and a negative regulator of Chl biosynthesis. Dark-grown flu seedlings 
overaccumulate protochlorophyllide (Pchlide), an intermediate in the Chl biosynthetic 
pathway. Pchlide acts as a photosensitizer and produces singlet oxygen upon illumination. 
Transfer of flu seedlings from dark to light leads to their rapid bleaching and death. Light is 
required for the induction of early responsive genes and the onset of programmed cell death 
(PCD) in flu seedlings after the dark-light shift. CRY1 was shown to mediate the 
transcriptional response, thus, linking ROS signalling to photomorphogenesis (Danon et al., 
2006). Under continuous light the flu mutant grows as wild type; however, placing mature 
flu plants in darkness followed by transfer to light, results in growth inhibition. 
Extensive mutant screens have been made with mutagenized flu seeds to identify second-site 
mutants that do not show bleaching of seedlings or growth inhibition of mature plants after 
the dark-to-light shift (Lee et al., 2007b; Wagner et al., 2004). Another approach has utilised a 
transgenic line of the flu mutant with a 1O2-responsive reporter gene (Baruah et al., 2009a; 
Baruah et al., 2009b). The majority of mapped mutations targets genes encoding for chloroplast 
proteins. EXECUTER 1 (EX1), identified in a suppressor screen, is required for induction of a 
larger part of 1O2-responsive genes. The double mutant ex1 flu accumulates the same level of 
the chlorophyll intermediate in darkness, but grows similarly to wild type and does not bleach 
after a transfer to light. This result suggests that in ex1 flu the signalling pathway from 1O2 in 
chloroplasts to the nucleus is impaired. The closely related EXECUTER 2 works as a 
modulator of EX1 activity. Both nuclear-encoded proteins are localized to the thylakoid 
membranes inside chloroplasts; the molecular mechanism of their action is so far unknown.  
Another group of second site mutants, soldat mutants, suppress the PCD of flu seedlings after 
the dark-light shift. Both characterized mutants (soldat8 flu, soldat10 flu) accumulate the same 
level of Pchlide and exhibit almost the same transcriptional response as the parental flu plants 
but their seedlings remain green after illumination. Identification of impaired genes resulted in 
SIGMA6 factor of plastid RNA polymerase in soldat8 and mTERF-related plastid protein in 
soldat10. The only non-plastid regulator identified so far in the mutant screens is 
PLEIOTROPHIC RESPONSE LOCUS 1 (PRL1) protein, localized to the nucleus and known to 
mediate multiple stress responses, including energy deprivation (Baruah et al., 2009a). The 
mutant was isolated by constitutive expression of a 1O2-responsive gene. Gene expression data 
showed that PRL1 regulates only a subset of 1O2-responsive genes and, in addition, it regulates 
other genes. The prl1 mutant has enhanced resistance to combined (cold/high light) stress than 
wild type (Baruah et al., 2009a). In summary, using the flu mutant and genetic approaches, it 
has been shown that 1O2 signalling from plastids is mediated by several signal transduction 
pathway and is linked to a variety of environmental stresses.  

5. ROS are a common factor of abiotic stresses 

A common factor between most stresses is the active production of reactive oxygen species 

(ROS) (Jaspers & Kangasjärvi, 2010). Also salt acclimation and osmotic stress result in the 
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increased production of ROS (Miller et al., 2010). It has become clear that ROS are not only 

toxic to cells but serve important functions as signalling molecules. However, we do not 

currently have a clear understanding of how ROS signalling works and how ROS signals are 

perceived. The regulation of ROS production occurs in different subcellular locations 

including the chloroplasts, peroxisomes, mitochondria and in the apoplast. Important 

components of the apoplastic oxidative burst are the NADPH oxidases respiratory burst 

oxidase homologues (AtRBOH). AtRBOHD and AtRBOHF have important functions during 

the defence against pathogens but also in the response to abiotic stress (Miller et al., 2009). It 

has been proposed that the ROS produced by the NADPH oxidases in the extracellular 

space serve mostly as signalling molecules rather than being directly cytotoxic (Jaspers & 

Kangasjärvi, 2010). While the importance of ROS in signalling during stress adaptation and 

development in plants has been recognized, their perception has remained largely elusive. 

Several regulators of transcription have been found to be redox regulated in plants, most 

notably NONEXPRESSER OF PR GENES 1 (NPR1) and the transcription factor TGA2 (see 

below)  (Després et al., 2003; Fan & Dong, 2002; Fobert & Després, 2005). In addition, 

methionine oxidation of proteins might be another way to regulate the enzymatic activity of 

proteins directly through redox control (Hardin et al., 2009). These proteins however rely on 

intracellular ROS for redox regulation. The perception of apoplastic ROS is so far not well 

understood. Extracellular ROS might be perceived in different ways. Either proteins might 

be redox modified leading to ROS sensing, or other components of cell wall or membranes 

might be oxidized and those in turn sensed by receptors, leading to signalling into the 

cytosol (Hancock et al., 2006; Jaspers & Kangasjärvi, 2010). In particular cysteine-rich 

proteins have been proposed as candidates for ROS perception in the apoplast (Reddie & 

Carroll, 2008). Candidates include receptor-like kinases (RLKs) and small apoplastic 

proteins and peptides. The members of the Cysteine-rich receptor-like kinase (CRKs) 

subfamily of the receptor-like kinases (RLKs) contain two copies of a conserved cysteine 

motif C-8X-C-2X-C which has been proposed to serve as a suitable target for redox 

regulation (Acharya et al., 2007; Chen et al., 2003; Chen et al., 2004; Czernic et al., 1999). 

CRKs have been found to be transcriptionally regulated by oxidative stress, pathogen attack 

and plant hormones (Chen et al., 2004; Czernic et al., 1999; Wrzaczek et al., 2010). Plants 

ectopically overexpressing CRKs have altered responses to pathogens and show 

spontaneous induction of cell death (Acharya et al., 2007; Chen et al., 2003; Chen et al., 2004). 

The small extracellular GRIM REAPER (GRI) protein is another candidate for ROS 

perception (Wrzaczek et al., 2009a; Wrzaczek et al., 2009b). A peptide derived from GRI can 

induce cell death in plants in the presence of superoxide. Interestingly cell death induced by 

GRI-peptide is dependent on superoxide produced by AtRBOHD but not AtRBOHF which 

could point to different timing of ROS production by different NADPH oxidases and 

different functions. However, while evidence could support a role for CRKs and GRI in ROS 

perception, this hypothesis has yet to be experimentally tested. 

The intracellular redox status is sensed also by transcription factors. Interestingly, in yeast 
and bacteria redox-sensitive transcription factors are involved in the transcriptional 
regulation of genes encoding for antioxidant enzymes (Georgiou, 2002). However, only few 
studies have reported the presence of such sensors in plants. During plant immunity, NPR1 
plays a critical role in the activation of defence related gene expression, such as 
PATHOGENESIS-RELATED 1 (PR1). The monomerization of NPR1 occurred upon redox 
state changes, allowing the translocation of the protein to the nucleus, thereby enhanced the 
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transcription of defence genes after interaction with TGAs (TGA2). The conformation 
changes of NPR1 have been demonstrated to result from thioredoxin activity and S-
nitrosylation (Tada et al., 2008). Recently, the use of cytosolic ascorbate peroxidase1 (apx1) 
mutants, Catalase (Cat) antisense lines and pharmacological approach demonstrated that 
cytosolic H2O2 accumulation prevents the translocation of NPR1 protein to the nucleus 
(Peleg-Grossman et al., 2010), suggesting the important role of NPR1 in the sensing of redox 
state changes which occur in the cell. Based on the literature in mammals and yeast, other 
transcription factors, such as heat shock transcription factors have been suggested to act as 
direct H2O2 sensors (Miller & Mittler, 2006). 
Another indirect mechanism through which ROS are perceived is via the oxidatively 
modified molecules that are produced by the action of ROS. In principle any oxidatively 
damaged biomolecule has the potential to act as a signal. In particular the lipids represent a 
rich source of potential ROS dependant signals. Oxidative membrane damage, especially the 
process of membrane lipid peroxidation chain reactions are a common and very well 
documented consequence of oxidative stress. Oxidized lipids are generally themselves 
highly reactive and toxic; however, many have demonstrated biological activity, especially 
at low concentrations (Mueller & Berger, 2009). Reactive oxylipins are thiol reactive and able 
to modify thiol groups on a large number of proteins. Accordingly, similar sets of genes are 
regulated in transcriptomics experiments by reactive oxylipins as are by other thiol active 
compounds such as ROS and reactive nitrogen species (RNS) (Mueller & Berger, 2009). 
Oxylipins represent good example of how oxidized lipids can act as signal molecules. 12-
oxo-phytodienoic acid (12OPDA) is a cyclopentone oxylipin intermediate on the jasmonic 
acid biosynthesis pathway. Interestingly, 12OPDA can be produced both enzymatically and 
non-enzymatically via a free radical catalyzed peroxidation pathway. 12OPDA induces 
physiological responses similar to those of jasmonates including upregulation of stress and 
general detoxification pathways. 

6. Antioxidant systems 

As described above, ROS are actively produced and used as signalling molecules by cells in 
response to most abiotic stresses. In addition, ROS are continuously produced as by-
products during different metabolic pathways in plants. Due to the highly reactive nature of 
ROS their production and detoxification needs to be strictly controlled. ROS production 
occurs in virtually all cell compartments; but most notably, in different organelles including 
mitochondria, chloroplasts and peroxisomes, due to their highly oxidizing metabolic 
activity, and also in the apoplast.  
Plants have developed various antioxidant systems which are specifically localized to 
different subcellular loci and can be induced upon a stimulus. Diffusion of ROS is typically 
limited due to their high reactivity. This property requires ROS scavenging and 
detoxification to take place at or close to the location of ROS production. The ubiquitous 
presence of the antioxidant system is critical in order to prevent and survive oxidative 
stress. However, due to its presence and flexibility, the antioxidant systems could also 
present an efficient means to sense ROS through the antioxidant status of the cell.  
Oxidative stress is defined as a disturbance in the equilibrium status of oxidants and 
antioxidants. Most of the antioxidant components act as free radical scavengers. By binding 
and inactivating the free radicals, antioxidants protect against oxidative stress.  The tight 
cooperation between enzymatic and non-enzymatic antioxidant systems provides to the cell 
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an elaborated and efficient system to regulate ROS levels (De Gara et al., 2010; Foyer & 
Noctor, 2009; Miller et al., 2010; Shao et al., 2008). 
The non-enzymatic antioxidant system includes ascorbic acid (AsA), GSH and α-tocopherol. 

AsA and GSH, the most abundant soluble antioxidants in plants, play a key role in plant 

defence against oxidative stress (Foyer & Noctor, 2011). These antioxidants are present 

predominantly in the reduced form in the majority of subcellular compartments. In response 

to stress, GSH can be oxidized into its disulphide form, GSSG, which can accumulate to high 

levels in plant cells. Glutathione redox status (GSSG/GSH ratio) reflects the level of 

oxidative stress, therefore GSH is frequently considered to be a suitable oxidative stress 

marker (Foyer & Noctor, 2009; Foyer & Noctor, 2011). GSH is also able to react with nitrous 

acid to form S-nitrosothiols called S-nitrosoglutathione (GSNO), which constitute a nitric 

oxide (NO) reservoir and are emerging to play key role in NO signalling pathways in plants 

(Besson-Bard et al., 2008; Del Rio, 2011; Lindermayr et al., 2005). In addition, 

glutathionylation of proteins can modify their activity (Palmieri et al., 2010). GSH and AsA 

are thought to function in a coordinated manner to regulate redox homeostasis plants 

during development and environmental responses (Foyer & Noctor, 2005; Foyer & Noctor, 

2009; Foyer & Noctor, 2011). α-tocopherol, an abundant vitamin E compound, is a lipid 

soluble antioxidant found in chloroplasts where it counteracts lipid peroxidation through 

scavenging of lipid peroxyl radicals and detoxifies singlet oxygen and hydroxyl radicals 

(Munné-Bosch, 2005).  

The major elements of the enzymatic antioxidant system are summarized in the Table 1. 

SOD, APX and CAT are three main enzymes present ubiquitously permitting the tightly 

control of ROS levels by scavenging directly ROS and converting them into less reactive and 

less harmful species. They can be considered as intracellular ROS sensors due to their direct 

interaction with ROS. Another group of enzymes, monodehydroascorbate reductase 

(MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR), is involved 

in the reduction of oxidized AsA or GSH, thus, balancing the redox status of the cell (Asada, 

1999; Foyer & Noctor, 2011). Up-regulation of the enzymes involved in the antioxidant 

system both at the transcript and the protein levels in response to ROS accumulation has 

been shown for a variety of abiotic stresses (Gill & Tuteja, 2010). 

The low molecular-weight antioxidants and the enzymatic antioxidant system constitute a 

complex and diversified antioxidant system which participates efficiently in all the different 

organelles of plant cells to maintain redox state. The antioxidant system is one of the first 

barriers against ROS overproduction during abiotic stresses. The ratios between the 

oxidized and the reduced forms of antioxidants have been suggested to play a key role in 

the oxidative stress response and the control of the antioxidant systems (Karpinski et al., 

1997). Other studies have underlined the importance of low ascorbate levels and variations 

of GSH pools during pathogen response, cell death and dormancy (Barth et al., 2004; Gomez 

et al., 2004; Kranner et al., 2002; Kranner et al., 2006; Mou et al., 2003; Parisy et al., 2007; 

Pastori et al., 2003)  

7. Beyond signal perception and ROS detoxification 

So far this review has addressed the perception mechanisms of abiotic stress. However, after 

a given stress has been perceived the various signals need to be integrated and transmitted 

www.intechopen.com



 
Reactive Oxygen in Abiotic Stress Perception - From Genes To Proteins 

 

39 

into an appropriate response for adaptation. Protein kinases are important components of 

the signal transduction cascade that links abiotic stress perception to signal integration and 

transcriptional reprogramming of the cell (de la Fuente van Bentem et al., 2008; Nakagami et 

al., 2010; Sugiyama et al., 2008). MAPKs and phosphatases alongside with CPKs are 

prominent participants in the abiotic stress signalling network (Ichimura et al., 2000; Jonak 

et al., 2004; Mehlmer et al., 2010; Miller et al., 2008; Mizoguchi et al., 1997; Takahashi et al., 

2011; Wurzinger et al., 2011; Yuasa et al., 2001).  

 

Enzyme Reaction catalyzed 
Subcellular 
localization 

References 

Superoxide dismutase 
(SOD) 

O2.- + O2.- + 2H+ = 

2H2O2 + O2 

cytosol (Cu/Zn-SOD) 
chloroplast (Cu/Zn-SOD, 

Fe-SOD) 
mitochondria  and 

peroxisome (Mn-SOD) 

(Alscher et al., 
2002; Del Rio, 

2011) 

Catalase (CAT) H2O2 = H2O + ½  O2 peroxisome 

(Mhamdi et 
al., 2010; 

Willekens et 
al., 1997) 

Ascorbate peroxidase 
(APX) 

H2O2   + AsA = 
H2O + DHA 

chloroplast, cytosol, 
mitochondria 

(Santos et al., 
1996) 

Monodehydroascorbate 
reductase (MDHAR) 

MDHA + NAD(P)H = 
AA + NAD(P)+ 

chloroplast, mitochondria, 
cytosol 

(Asada, 1999) 

Dehydroascorbate 
reductase (DHAR) 

DHA + 2GSH =         
AsA + GSSG 

chloroplast, cytosol 
(Urano et al., 

2000) 

Glutathione reductase 
(GR) 

GSSG + NAD(P)H = 
2GSH + NAD(P)+ 

cytosol,peroxisomes 
(AtGR1) 

chloroplast, mitochondria 
(AtGR2) 

(Kaur & Hu, 
2009) 

Table 1. Major enzymes involved in ROS detoxification in plants. 

Also forward genetic screens have yielded significant insight into the metabolism and 

signalling in response to abiotic stress and in ROS signalling. Paraquat (methyl viologen) 

and ozone (O3) are two of the most commonly used stress inducers in these screens. 

Paraquat leads to ROS production in the chloroplast as it unlinks the electron transport 

chain in PSI and is used as a model to address the role and metabolism of chloroplastic ROS. 

A large-scale screen has identified several new proteins of mostly unknown function 

involved in the response to oxidative stress (Luhua et al., 2008). O3 breaks down in the leaf 

apoplastic space to form secondary ROS that both mimic and induce an apoplastic oxidative 

burst similar to that of other stresses, most notably the pathogen response. Therefore O3 is 

used as a model to investigate the signalling processes associated with apoplastic ROS. 

Many mutants isolated in screens for O3-sensitivity are related to antioxidants (Conklin et 

al., 1996; Conklin & Last, 1995), stomatal biology (Vahisalu et al., 2008) and stress hormones 

(Ahlfors et al., 2008; Mahalingam et al., 2003; Vahala et al., 2003a; Vahala et al., 2003b), 

which are covered elsewhere in this chapter or have been previously reviewed (Overmyer et 

al., 2003). Some mutants have helped to define novel ROS signalling pathways; such as the 

rcd1 mutant. The rcd1 mutant was originally identified in a screen for O3-sensitivity 

(Overmyer et al., 2000). The RCD1 gene is also highly induced during high light stress 
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(Bechtold et al., 2008) providing a link to light induced chloroplastic ROS signalling. 

Intriguingly rcd1 shows enhanced tolerance to paraquat (Ahlfors et al., 2004; Overmyer et 

al., 2000). RCD1 also shows a subtle salt-sensitive phenotype and is able to interact with the 

Na+/H+ antiporter SOS1 in yeast 2-hybrid (Katiyar-Agarwal et al., 2006). SOS1 is crucial for 

salt stress tolerance and sos1 mutants are hypersensitive to salt stress, thus the interaction 

with RCD1 provides one more link between salt stress and ROS signalling. RCD1 is able to 

interact with several transcription factors in yeast 2-hybrid analysis (Jaspers et al., 2009; 

Jaspers et al., 2010b). This together with physiological data makes RCD1 a promising 

candidate as a central integration node for ROS signalling and indicates that highly 

divergent perception mechanisms, such as those described here for highlight, salt, 

dehydration (stomatal), and herbicide induced stresses, all converge into a common 

pathway (Jaspers et al., 2009; Jaspers et al., 2010a; Jaspers & Kangasjärvi, 2010). 

8. Conclusions 

The signalling pathways leading to an appropriate and coordinated response to abiotic 
stress have been the target of intensive research in the past decades. Global warming and 
intensive farming make it necessary to understand the underlying mechanisms and modify 
plant stress tolerance through selective breeding or genetic modification. However, with the 
exception of light perception, relatively little is known about the mechanisms of abiotic 
stress sensing. Recent research has identified several potential candidates as sensors for salt 
and heavy metals but a final proof of their function as true receptors is still needed. 
Similarly to biotic interactions, the production of ROS in abiotic stress has been well 
established in the last years. Increasing amount of evidence suggests that the generation of 
specific types of ROS in defined subcellular compartments is an important component of the 
stress response. Rather than being just cytotoxic by-products of biochemical processes ROS 
are likely to play central roles as regulators of stress adaptation, PCD, and even plant 
development (Apel & Hirt, 2004; Jaspers & Kangasjärvi, 2010; Miller et al., 2008). While ROS 
are biochemically simple molecules the intricate specificity observed during ROS signalling 
is still insufficiently understood (Gadjev et al., 2006). Some components of ROS perception 
inside the cell through modification of transcription factors and monitoring of the oxidative 
potential by means of ROS scavengers have been identified. However these do not explain 
the high specificity of transcriptional reprogramming induced by production of different 
ROS in specific subcellular locations.  
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