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1. Introduction 

The nervous system is an intricate and highly specialized network of neurons. Neuronal 
differentiation involves complex reprogramming of gene expression. Alternative splicing of 
precursor mRNAs increases the complexity of transcriptomes and diversifies protein 
functions at the post-transcriptional level. Indeed, alternative splicing plays an important 
role in neuronal differentiation, axon guidance, synaptogenesis, synaptic transmission, and 
plasticity. Because the delicate structure and function of neurons make them particularly 
susceptible to dysregulation of splicing, aberrant expression or function of splicing factors 
may cause neuronal disorders. Therefore, it is important to improve our understanding of 
the mechanisms and physiological functions of alternative splicing regulation in neurons. 
Regulation of alternative splicing primarily involves the binding of regulatory factors to 
specific cis-elements of precursor mRNAs, and interplay between splicing factors may lead 
to fine tuning of splicing regulation, thereby diversifying the cadre of mature products. In 
addition, transcription rate and the availability of the basal splicing machinery may also 
influence alternative splicing. Recently, our understanding of the mechanisms underlying 
alternative splicing have been advanced from studies of several neuronal splicing factors; 
these studies have utilized genetic knockout or disease models as well as genome-wide 
analysis of mRNA isoforms. In this chapter, we review current understanding of alternative 
splicing in neurons.  

2. Introduction to alternative splicing   

Recent estimates have indicated that as many as 95% of human genes generate alternatively 
spliced mRNAs (Pan, et al., 2008; E. T. Wang, et al., 2008). Alternative splicing of precursor 
mRNAs (pre-mRNAs) may alter the coding sequence and hence change the function or 
stability of the encoded proteins. Moreover, alternative splicing may create pre-mature 
termination codons within the coding region due to frame shift, thereby inducing mRNA 
destruction via the nonsense-mediated decay pathway (Isken & Maquat, 2007; McGlincy & 
Smith, 2008; Moore & Proudfoot, 2009). Alterative splicing may also occur in the 3' 
untranslated region of a pre-mRNA and thus create or eliminate cis-regulatory elements that 
may change the kinetics of mRNA decay or translation (Khabar, 2010; Thiele, et al., 2006). 
Therefore, alternative splicing is a mechanism that not only increases protein diversity but 
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also may post-transcriptionally modulate the level of gene expression. Moreover, a growing 
body of evidence suggests that coordinated control of alternative splicing of functionally 
related transcripts allows for proper orchestration of cellular processes and thus the 
maintenance of homoeostasis (Allen, et al., 2010; Calarco, et al., 2011; Licatalosi & Darnell, 
2010). 
Alternative splicing plays a critical role in many fundamental biological processes, such as 
cell differentiation and specification during development and specificity of function in 
diverse cell types (Keren, et al., 2010; Nilsen & Graveley, 2010). The nervous system also 
adopts alternative splicing for cell differentiation, morphogenesis, and even for formation of 
complex neuronal networks and delicate synapse formation/plasticity (Calarco, et al., 2009; 
Grabowski, 2011; Li, et al., 2007). An extreme case of alternative splicing is the gene 
encoding Drosophila Down syndrome cell adhesion molecule (Dscam), which potentially 
could generate >38000 mRNA isoforms by mutually exclusive selection of cassette exons 
(Hattori, et al., 2008). Dscam encodes neuronal recognition proteins that act as axon 
guidance receptors. Homotypic interaction between identical Dscam isoforms on opposing 
membranes causes repulsion between sister neurites (J. W. Park & Graveley, 2007). 
Therefore, accurate alternative splicing control is critical for establishment of neural circuits 
in Drosophila. In the mammalian brain, alternative splicing is also an important regulatory 
mechanism for creating the remarkable capacity for plasticity and adaptation. For example, 
the splicing-mediated splicing of exon 21 in the ionotropic glutamate receptor N-methyl D-
aspartate (NMDA) receptor subunit 1 mRNA affects the membrane trafficking of the NMDA 
receptor (Ares, 2007). Interestingly, inclusion of exon 21 can be suppressed, likely by the 
calmodulin-dependent protein kinase IV pathway, which is activated upon cell 
depolarization (Ares, 2007). Therefore, splicing control provides an intricate and rapid 
means for regulating mRNA isoform expression.  
Alternative splicing is primarily controlled by splicing regulatory factors that bind to cis-
elements within exons and/or introns of pre-mRNAs. Their binding may modulate the 
loading of the spliceosomal components to the splice sites and thereby influence alternative 
splice site utilization (Chen & Manley, 2009; Witten & Ule, 2011). Several neuron-specific 
splicing regulatory factors have been discovered; some of them, such as the neuro-
oncological ventral antigen (Nova), have been studied intensively (Licatalosi & Darnell, 
2010; C. Zhang, et al., 2010). In particular, identification of mRNA targets and potential 
binding sites of Nova have benefited greatly from recent genome-wide splicing arrays and 
sequencing technology. Therefore, the study of Nova has provided a detailed picture of a 
splicing regulatory network as well as the combinatorial action of multiple splicing factors 
(Nilsen & Graveley, 2010; Z. Wang & Burge, 2008).  
The repertoire of splicing factors is adjusted during neuronal differentiation and perhaps for 
functional specification of different neuronal cell types. For example, the switch in the 
expression of the polypyrimidine tract-binding protein (PTB) to its neuronal homolog, 
nPTB, may tune neuronal transcriptomes during differentiation (Coutinho-Mansfield, et al., 
2007; Tang, et al., 2011). In addition to RNA-binding factors, altered abundance of basic 
splicing machinery components may also modulate splice site selection (Calarco, et al., 2011; 
Saltzman, et al., 2011). The survival of motor neuron (SMN) protein is a key factor for the 
assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN deficiency may 
reduce snRNP abundance and thus influence splicing. Defective Nova and/or SMN 
proteins are associated with disease (Robert B. Darnell, 2011; Lorson, et al., 2010; Lukong, et 
al., 2008; G. H. Park, et al., 2010). Therefore, to understand how defects of Nova and SMN 
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induce pathological effects on neurons via misregulated splicing control is an interesting 
and important question. Therefore, a complete understanding of such diseases will require 
knowledge of how misregulated splicing control in Nova or SMN causes neuronal 
pathology. 
We hereby discuss our current knowledge of Nova, PTB/nPTB, and SMN with respect to 
their splicing regulation mechanisms, physiological roles, and functions. 

3. Nova 

3.1 Nova proteins and expression 

Nova was discovered as a target of the autoantibodies in cancer patients with paraneoplastic 
opsoclonus myoclonus ataxia, a type of rare paraneoplastic neurologic disease that causes 
motor disorders (Buckanovich, et al., 1993; R. B. Darnell & Posner, 2003; Yang, et al., 1998). 
The amino acid sequences of the two mammalian Nova proteins (1 and 2) are highly similar 
throughout their lengths, and both contain three heterogeneous nuclear RNP (hnRNP) K-
homology (KH) RNA-binding domains (Buckanovich, et al., 1996; Yang, et al., 1998). In 
mice, Nova-1 expression is restricted in subcortical regions of developing and mature 
neurons, whereas Nova-2 is more broadly expressed in the central nervous system 
(Buckanovich, et al., 1993; Buckanovich, et al., 1996; Yang, et al., 1998). Moreover, Nova-1 
and Nova-2 appear to be reciprocally expressed in the nervous system, i.e., the level of 
Nova-2 is generally low in regions where Nova-1 is abundant, which may reflect their 
distinct biological functions (Yang, et al., 1998). Nevertheless, Nova-1 and -2 primarily act as 
splicing regulatory factors and also play a role in alternative polyadenylation and mRNA 
trafficking in neuronal dendrites (Licatalosi, et al., 2008; Racca, et al., 2010). 

3.2 RNA-binding specificity of Nova 

The RNA-binding specificity of the Nova proteins has been examined by various methods. 
Initially, the results of in vitro systematic selection of ligands and RNP immunoprecipitation 
indicated that Nova-1 binds to long stem-loop RNAs containing UCAU repeats 
(Buckanovich & Darnell, 1997). Nova-2-selected RNA ligands also appear to form a stem-
loop structure encompassing the UCAU motif (Yang, et al., 1998). Structural studies have 
shown that both Nova-1 and -2 bind to UCAU-containing sequences via their KH3 domains, 
of which the residues involved in UCAU interaction are conserved (Lewis, et al., 2000). 
Nevertheless, the KH1 and KH2 domains of both Nova proteins can also bind to the UCAU 
motif (Musunuru & Darnell, 2004). Perhaps cooperativity between several KH domains 
promotes protein binding to RNAs (Chmiel, et al., 2006; Valverde, et al., 2008). The similar 
RNA-binding properties of Nova-1 and Nova-2 suggest that they may regulate common 
RNA targets.  
Next, ultraviolet cross-linking in conjunction with ribonucleoprotein immunoprecipitation 
(CLIP) was developed to identify in vivo targets of RNA-binding proteins. CLIP analysis has 
been applied to identify Nova-associated RNA fragments in mouse brain; approximately 
340 Nova-1/-2 CLIP tags (~70 nucleotides each) contained, on average, four YCAY repeats 
(Y, pyrimidine) (Ule, et al., 2003). Detailed analysis of these tag sequences revealed an 
overrepresentation of YCAU tetramers flanked by pyrimidines. It is currently believed that 
YCAY repeats are the principal elements in the mRNAs to which Nova proteins bind. More 
recently, an unbiased method using CLIP combined with high-throughput sequencing 
(HITS) of RNA was used to identify genome-wide functional protein-RNA interactions (R. 
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B. Darnell, 2010; Ule, et al., 2005a). A HITS-CLIP analysis showed that Nova-2 tags in mouse 
cortex, as expected, also harbor ~3.6 YCAY repeats per tag (Ule, et al., 2005a). The results of 
all these CLIP analyses of Nova coincide with previous observations from RNA selection 
experiments (Licatalosi, et al., 2008). 
Moreover, the aforementioned CLIP analyses also revealed that the largest set of Nova tags 
is located within introns and even flanking alternative exons (Licatalosi, et al., 2008), which 
is consistent with the primary role of Nova proteins in regulating pre-mRNA splicing (see 
below). In addition, Nova tags are also found in protein-coding regions and 3' untranslated 
region of mRNAs. The results of HITS-CLIP experiments have confirmed the high frequency 
of potential Nova-binding elements in 3' untranslated regions, thus disclosing a role for 
Nova in alternative polyadenylation and mRNA transport regulation in brain (Licatalosi, et 
al., 2008; Racca, et al., 2010).  

3.3 Alternative splicing regulated by Nova 

Earlier studies have shown that two neuronal transcripts, encoding the inhibitory glycine 
receptor 2 (GlyR2) and Nova-1 itself, contain the Nova-1-binding elements adjacent to the 
alternatively spliced exons and indeed bound to the Nova-1 protein (Buckanovich & 
Darnell, 1997). The role of Nova-1 in splicing regulation was first analyzed by genetic 

knockout of Nova-1 in mice (Jensen, et al., 2000); in those mice, selection of GlyR2 exon 3A 
is diminished. Further experiments demonstrated that Nova-1 binds to three consecutive 
YCAY repeats in the intron upstream of exon 3A and thereby increases exon 3A inclusion. 

Alternative exon selection in another neuronal ionotropic receptor, GABAA R2, is also 
impaired in Nova-1 null mice (Dredge & Darnell, 2003; Jensen, et al., 2000). Nova-1 was 

subsequently shown to promote GABAA R2 exon 9 inclusion via a distal downstream 
intronic YCAY-rich splicing enhancer. Notably, the Nova-1 gene itself harbors five YCAY 
repeats in its exon 4 that are indeed essential for Nova-1 autoregulation (Dredge, et al., 
2005). Inclusion of exon 4 in Nova-1 transcripts was increased in haploinsufficient Nova+/– 
mice. Accordingly, exon 4 inclusion in a Nova-1 splicing reporter was suppressed upon 
Nova-1 overexpression. In this case, Nova-1 acts via binding to the YCAY repeats in the 
alternative exon. Therefore, Nova can function either as a positive or negative splicing 
regulator via binding to intronic or exonic YCAY elements. Further study by swapping of 
Nova-1-binding sites between various splicing substrates of Nova-1 indicated that the action 
of Nova-1 is determined by the position of the Nova-binding elements (Dredge, et al., 2005). 
This positional effect has also been found in other splicing regulators (see below). 
Through CLIP and exon junction arrays, a large number of the potential targets of Nova, 
including some previously defined targets, have been identified (Ule, et al., 2003). 
Alternative splicing of several candidates was indeed altered in Nova knockout mice, 
confirming that those transcripts undergo Nova-mediated splicing control. This systematic 
and genome-wide identification also indicted that Nova may coregulate a set of synaptic 
and axonal transcripts by controlling alternative splicing. Such coordinated control of 
alternative exon usage may perhaps provide a powerful means to rapidly modulate 
synaptic function in response to stimuli.  
More recently, HITS-CLIP analysis established functional RNA binding maps of Nova 
(Licatalosi, et al., 2008). That analysis predicted ~600 differentially spliced exons in brain 
that are potentially targeted by Nova-2. The transcripts harboring some of the identified 
exons showed a severe splicing defect in the neocortex of Nova-2 null mice, where Nova-2 is 
exclusively expressed. However, minor effects were seen in the spinal cord, cerebellum, and 
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midbrain perhaps owing to redundancy of Nova-1 and Nova-2 in these tissues (Licatalosi, et 
al., 2008). Other work has indicated that Nova proteins regulate alternative splicing across 
all members of the spectrin-ankyrin-protein 4.1-CASK scaffold complex and the Cav2.2 
voltage-gated calcium channels and thereby may finely modulate synaptic function in a 
coordinated way (Licatalosi, et al., 2008; Ule, et al., 2005b). A genome-wide search in 
combination with gene ontology analysis revealed that Nova-2-regulated transcripts encode 
a group of synaptic proteins located at the cell membrane, most often at cell-cell junctions, 
and are implicated in synapse biogenesis and synaptic transmission. Therefore, Nova-1 and 
-2 may function analogously in regulating alternative splicing of pre-mRNAs encoded by 
functionally related genes in neurons.  
Drosophila pasilla is the homolog of mammalian Nova proteins (Seshaiah, et al., 2001). 

Pasilla localizes primarily to nuclear puncta in Drosophila cells, indicating its role in splicing. 

Interestingly, identification of the mRNA targets of pasilla also revealed an enrichment of 

YCAY repeats near pasilla-regulated cassette exons (Brooks, et al., 2011). Like Nova, pasilla 

suppresses alternative exon inclusion when it binds predominantly upstream of the exon, 

whereas it activates splicing when it binds downstream of the exon. Therefore, the RNA-

binding specificity and regulatory activity of Nova orthologs apparently have been 

preserved throughout evolution (Irimia, et al., 2011; Jelen, et al., 2007).  

3.4 Mechanisms of Nova-mediated splicing regulation  

The interplay between Nova proteins and cis-elements was revealed by CLIP-based 

analyses. CLIP followed by genome-wide detection has identified a considerable number of 

Nova-binding sites and Nova-regulated transcripts. Bioinformatics analysis revealed the 

mechanism of Nova-mediated alternative splicing regulation (Ule, et al., 2006). Consistent 

with previous reports using minigene splicing assays, the position of Nova-binding sites in 

pre-mRNAs determines the effect of Nova proteins on splicing (Dredge, et al., 2005). For a 

cassette exon, Nova binding to its downstream intronic YCAY clusters enhances exon 

inclusion, whereas exon skipping occurs when Nova binds either immediately upstream of 

or within the exon. Therefore, Nova binding to its target cis-elements may result in an 

asymmetric action on splicing regulation. Indeed, such a positional effect has also been 

observed for some other splicing regulatory factors (see below, (Konig, et al., 2010; Xue, et 

al., 2009; Yeo, et al., 2009)).  

Bioinformatic analysis of the Nova HITS-CLIP data using Bayesian networks has further 

provided a comprehensive view of alternative splicing coordinately regulated by Nova and 

cofactors (C. Zhang, et al., 2010). This analysis initially predicted more than 600 Nova-

regulated alternative splicing events. Gene ontology classification supported the hypothesis 

that Nova may regulate a subgroup of functionally coherent genes involved in synaptic 

plasticity. This analysis also revealed that the avidity with which Nova binds YCAY clusters 

may modulate how Nova affects splicing. Moreover, Nova binding to multiple regions may 

result in a different effect on alternative exon selection from binding to a single region 

(Figure 1). For example, Nova binding to both the regulated exon and its upstream intron 

increases the probability of exon exclusion. Moreover, it is estimated that ~15% of Nova 

targets harbor binding sites for the splicing factors Fox-1 and Fox-2, implying combinatory 

splicing regulation by Nova and Fox (C. Zhang, et al., 2010). Therefore, an intriguing issue is 

how the relative location of Nova and Fox binding sites dictates splicing regulation (Chen & 

Manley, 2009; Licatalosi & Darnell, 2010). 
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Fig. 1. Establishment of a Nova regulatory network. The binding sites and target mRNAs 
of Nova proteins are identified through in vitro RNA selection and in vivo crosslinking 
followed by sequencing or array analysis. In addition, comparative genome-wide 
transcriptome profiling of Nova knockout mutants also facilitates identification of the 
transcripts regulated by Nova. Bioinformatic and ontology analysis helps to establish 
binding and functional maps for Nova. Methods used are denoted by bold type. The bottom 
diagram shows a model of Nova-mediated splicing control. Positive and negative cis-
elements that appear with high frequency in CLIP datasets are depicted by red and blue 
rectangles, respectively. Red and blue cylinders are alternative and constitutive exons, 
respectively. 

Previous studies have also revealed how Nova proteins may modulate the activity of the 
spliceosome. For example, Nova binding to exons may interfere with U1 snRNP binding to 
the 5' splice site, thereby inhibiting splicing (Dredge, et al., 2005). When Nova binds to the 
downstream intron of a regulated exon, it may facilitate spliceosome assembly and promote 
exon inclusion (Dredge, et al., 2005). As described above, Nova and Fox proteins may 
coregulate alternative splicing of a considerable number of transcripts in a cooperative or 
antagonistic manner (C. Zhang, et al., 2010). Notably, neuronal depolarization can induce 
exon 19 exclusion of Fox-1, producing a Fox-1 isoform with higher splicing activity (Lee, et 
al., 2009). Therefore, under certain circumstances this Fox-1 isoform may function 
coordinately with Nova to modulate splicing of Fox-1/Nova-coregulated mRNAs. 
Moreover, the neuron-enriched nPTB can antagonize Nova action to increase inclusion of 

GlyR2 exon 3A (Polydorides, et al., 2000). The physical and functional interactions between 
Nova and other splicing regulatory factors certainly complicate Nova splicing networks, but 
the detailed mechanisms remain to be investigated.  
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3.5 Cellular signaling pathways affect Nova expression level and activity 
In contrast to the abundant information about Nova-target interactions, we have only 
rudimentary knowledge of whether Nova’s function can be modulated by cellular signaling 
pathways. However, several reports have indicated that Nova expression may be regulated 
at different gene expression levels. It has been shown that the neuronal protein embryonic 
lethal abnormal visual (nELAV) can increase the stability of the Nova-1 mRNA via binding 
to its AU-rich elements in the highly conserved 3'-untranslated region (Ratti, et al., 2008; 
Rossi, et al., 2009). In addition, protein kinase C–induced phosphorylation of nELAV can 
promote Nova-1 translation (Ratti, et al., 2008). Therefore, nELAV can increase Nova-1 
abundance. Moreover, nELAV can modulate the splicing activity of Nova-1 on its target pre-
mRNAs (Ratti, et al., 2008). Glucocorticoids can also regulate Nova-1-mediated alternative 
splicing by downregulating Nova-1 (E. Park, et al., 2009). Moreover, cholinergic stimulation 
may decrease Nova-2 transcripts but increase Nova-1 transcripts in striatum (Jelen, et al., 
2010). Therefore, the expression switch between these two Nova proteins may modify Nova 
activity in neurons. Finally, it is noteworthy that Nova-1 can autoregulate its exon 4 
inclusion by acting as a splicing repressor (Dredge, et al., 2005). Because exon 4 contains 
multiple phosphorylation sites for serine/threonine kinases, it would be interesting to know 
whether Nova-1 may modulate its own activity via autoregulation of alternative splicing in 
response to activation of specific cellular signaling pathways.  

3.6 Physiological function and pathological implications of Nova  
Early studies of Nova-1 and -2 showed that these proteins have a reciprocal expression 
pattern in the neocortex and hippocampus in postnatal mouse brain and may have slightly 
different RNA-binding specificity and/or affinity (Buckanovich & Darnell, 1997; Yang, et al., 
1998). Genetic knockout studies then provided further hints to their different physiological 
roles. Nova-1 knockout mice died 7-10 days after birth owing to a motor deficit caused by 
apoptotic death of spinal and brainstem neurons, indicating that Nova-1 is an essential gene 
in mice (Jensen, et al., 2000; Yang, et al., 1998). Nova-2 null mice died in the second postnatal 
week, whereas double Nova knockout caused perinatal death (Ruggiu, et al., 2009; Ule, et 
al., 2006). Microarray analysis revealed distinct splicing defects for Nova-1 vs. Nova-2 
knockout mice (Ule, et al., 2005b; C. Zhang, et al., 2010). These results indicate that these two 
Nova genes have non-redundant physiological functions.  
Identified targets of Nova have implicated a role for Nova in synaptic plasticity. As 
predicted, long-term potentiation induced by GABAB receptor-mediated slow inhibitory 
postsynaptic current in hippocampal neurons is abolished in Nova-2 knockout mice 
(Huang, et al., 2005). Moreover, a recent report showed a migration deficiency in cortical 
and Purkinje neurons in Nova-2 null mice (Yano, et al., 2010). These observations are 
consistent with the role of Nova-2 in alternative splicing regulation of GABA receptor 
subunits and of disabled-1, a regulatory factor of the reelin signaling pathway essential for 
cell positioning during neurogenesis. Therefore, Nova-2 can regulate neuronal migration 
and synaptic plasticity via its control of alternative splicing. 
Certain Nova targets have been implicated in genetic disorders. For example, reelin-
disabled-1 signaling may be associated with epilepsy, schizophrenia, and autism (Frotscher, 
2010; Pardo & Eberhart, 2007). Interestingly, Fox-1, a functional partner of the Nova 
proteins, has been implicated in autism (Martin, et al., 2007; Smith & Sadee, 2011). Indeed, 
the genes coregulated by Nova and Fox appear to be more frequently associated with 
autism (C. Zhang, et al., 2010). Therefore, aberrant regulation of Nova proteins may 
contribute to autism.  
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Fig. 2. PTB-mediated splicing regulation and autoregulation. Top diagram: PTB 
suppresses exon inclusion when bound to silencing elements located upstream or 
downstream of an alternative exon (red cylinder) or even within the exon. Blue cylinders 
represent constitutive exons. PTB may compete with U2AF for binding to the intron 3' end, 
prevent U1 snRNP recognition of the 5' splice site, or loop-out the regulated exon. However, 
PTB can promote exon inclusion when it binds downstream of an alternative exon or close 
to a strong constitutive splice site (not depicted). This model suggests a positional effect of 
PTB binding on splicing. (B) PTB activates exon 11 skipping in its own transcript via binding 
to phylogenetically conserved CU-rich sequences (green hatched boxes) surrounding exon 
11, which fits well with the model shown in panel A. The resulting mRNA contains a 
premature termination codon (PTC) and is degraded by nonsense-mediated decay. 
Therefore, PTB downregulates the level of its own mRNA. 

4. PTB and nPTB 

4.1 PTB/nPTB proteins  

PTB is a ubiquitously expressed RNA-binding protein containing four RNA recognition 
motifs with high affinity for CU-rich sequences (Xue, et al., 2009). nPTB is predominant in 
neurons although also present in other tissues and is remarkably similar to PTB in domain 
structure and RNA-binding specificity (Spellman, et al., 2007). Both PTB and nPTB primarily 
function as splicing regulators, and PTB can also regulate translation of specific mRNAs and 
internal ribosome entry site-mediated translation (Mitchell, et al., 2001; Sawicka, et al., 2008). 
PTB localizes primarily to the nucleus but can shuttle between the nucleus and cytoplasm 
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(Michael, et al., 1995). Protein kinase A-mediated phosphorylation of PTB can cause its 
accumulation in the cytoplasm, thereby promoting its cytoplasmic functions such as 
translation control and RNA transport (Ma, et al., 2007; Xie, et al., 2003).  

4.2 Mechanisms of PTB/nPTB-controlled alternative spicing  

Multiple mechanisms underlie PTB/nPTB-induced splicing regulation. In general, PTB and 
nPTB function as splicing inhibitors. Because CU-rich sequences frequently appear in the 3' 
end of most constitutive introns, binding of PTB to this region interferes with recognition of 
the 3' splice site by the essential splicing factor, U2AF, thus preventing spliceosome 
assembly (Sharma, et al., 2005). Moreover, CU-rich elements are also located in other 
discrete intronic regions surrounding alternative exons. PTB can loop out a regulated exon 
via binding to both its upstream and downstream intronic CU-rich sequences and forming 
homomultimers, which thus drives exon exclusion (Lamichhane, et al., 2010). Consistently, a 
recent genome-wide mapping of PTB-binding sites revealed a position effect for PTB-
mediated splicing regulation (Sawicka, et al., 2008) (Figure 2). When PTB binds near an 
alternative exon, it generally induces exon skipping. However, PTB can also promote exon 
inclusion when it binds close to a strong constitutive splice site. Besides self-interaction, PTB 
can also interact with other splicing factors to form complexes that often compete with the 
splicing machinery, thereby interfering with splicing (Sharma, et al., 2011). A recent report 
showed that PTB can interact with a pyrimidine-rich loop of U1 snRNA and alter its 
recognition of the 5' splice site (Coutinho-Mansfield, et al., 2007). nPTB may use similar 
mechanisms as PTB to suppress exon inclusion. However, nPTB appears to be a weaker 
splicing suppressor compared with PTB, and nPTB may interact with additional transcripts 
that are implicated in neuronal activity (Spellman, et al., 2007). Thus, PTB and nPTB have 
distinct properties in regulating alternative splicing.  

4.3 The PTB/nPTB switch during neuronal differentiation  

Immunocytochemistry has shown that PTB is detected in neuronal precursor cells as well as 
non-neuronal lineages of the brain whereas nPTB is specifically expressed in post-mitotic 
neurons (Boutz, et al., 2007). Therefore, a switch in expression from PTB to nPTB likely occurs 
during neuronal differentiation. To date, two post-transcriptional mechanisms have been 
implicated in mutually exclusive expression of PTB and nPTB (Boutz, et al., 2007; Makeyev, et 
al., 2007). One mechanism involves alternative splicing-coupled nonsense-mediated decay, 
and the other involves microRNA-mediated translation control. Skipping of exon 11 of PTB 
and exon 10 of nPTB generates transcripts containing a premature termination codon that 
subsequently undergo nonsense-mediated decay. PTB is responsible for such exon 
suppression by binding to highly conserved CU-rich elements flanking the alternative 
PTB/nPTB exons (Figure 2). Through this activity, PTB may negatively autoregulate its own 
expression, perhaps to maintain appropriate levels of the protein and restrict the expression of 
nPTB in non-neuronal cells. In addition, the neuron-specific microRNA miR-124 can directly 
target to the PTB mRNA and suppresses its translation (Makeyev, et al., 2007). Therefore, PTB 
expression is down-regulated in neurons, which thus relieves nPTB suppression.  

4.4 The PTB/nPTB switch reprograms specific splicing events 

Although nPTB and PTB have overlapping function, their different spatial and timely 
expression patterns in neurons suggest that they have diverse physiological functions in 
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splicing regulation. Indeed, a recent report showed that ~25% of neuron-specific alternative 
splicing events may result from a decrease of PTB and increase of nPTB during neuronal 
differentiation (Boutz, et al., 2007). The possible distinct target specificity of PTB and nPTB 
may be important for establishing unique and neuron-specific splicing programs during 
neuronal differentiation. Therefore, the PTB/nPTB switch may have evolved as a post-
transcriptional mechanism to fine tune the existing program and alter the transcriptome to 
promote cell differentiation. 
As described above, Nova-1 and Nova-2, although having highly similar sequences, 
contribute to neuron-specific splicing in different types of neurons (C. Zhang, et al., 2010). 
Given that Nova-1 can drive its own exon 4 skipping, the Nova-1/Nova-2 reciprocal 
expression may in part proceed through a negative feedback control mechanism similar to 
that used by PTB/nPTB (Coutinho-Mansfield, et al., 2007; Dredge, et al., 2005). Therefore, 
the switch between two highly similar but still distinct splicing factors may provide a potent 
and rapid means to adjust cellular function in a specific environment. 

5. SMN  

5.1 SMN genes and expression 

Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by 
degeneration of lower motor neurons in the spinal cord with subsequent muscle atrophy 
(Pearn, 1978). SMA is caused by deletions or mutations of the survival of motor neuron 1 
(SMN1) gene (Lefebvre, et al., 1995). In human, the SMN2 gene is almost identical to SMN1 
but contains a C to T transition at position 6 in exon 7. This nucleotide change induces 
SMN2 exon 7 skipping during splicing and results in an unstable truncated SMN protein 
(Cho & Dreyfuss, 2010). Therefore, SMN2 fails to produce a sufficient amount of functional 
SMN protein to compensate for the loss of SMN1 (Lorson, et al., 1999; Monani, et al., 1999). 
Multiple factors have been proposed to regulate exon 7 inclusion/exclusion of the SMN 
transcripts. In principle, SMN1 exon 7 harbors a splicing enhancer for the splicing activator 
SF2/ASF, which promotes exon 7 inclusion in the SMN1 transcript, whereas the C to U 
change in SMN2 pre-mRNA disrupts the binding of SF2/ASF but creates a recognition site 
for the suppressor hnRNP A1 that excludes exon 7 (Cartegni, et al., 2006; Cartegni & 
Krainer, 2002; Kashima & Manley, 2003; Kashima, et al., 2007). Besides, other SMN 
regulators may function via direct binding to exon 7 or even to intronic elements or through 
a protein complex to modulate exon 7 selection (Doktor, et al., 2011; Nlend Nlend, et al., 
2010; Pedrotti & Sette, 2010). SMN splicing regulation has been reviewed elsewhere; this 
section thus focuses on SMN function in pre-mRNA splicing and regulation.    

5.2 SMN and its cellular localization 

SMN expression is not restricted to neurons, and in fact it is expressed in all cell types 
Unlike Nova and PTB, SMN lacks a typical RNA-binding domain but contains a Tudor 
domain that mediates its interaction with the Sm proteins of spliceosomal snRNPs. Indeed, 
SMN participates in snRNP biogenesis, which is an important housekeeping function, and 
also in splicing, transcription, and neuronal mRNA trafficking (Burghes & Beattie, 2009; 
Coady & Lorson, 2011) (Figure 3). In the nucleus, SMN is particularly concentrated in 
discrete nuclear bodies that are very close to Cajal bodies (Carvalho, et al., 1999; Young, et 
al., 2000). This nuclear localization pattern suggests a role for SMN in nuclear snRNP 
maturation and regeneration. In neurons, SMN forms cytoplasmic granules in neurites and 
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growth cones and participates in active bidirectional transport of mRNAs (Fallini, et al., 
2011; Todd, et al., 2010; H. Zhang, et al., 2006). SMN deficiency disrupts Cajal bodies and 
impairs mRNA trafficking in motor neuron axons (Girard, et al., 2006; Rossoll, et al., 2003; 
Shpargel & Matera, 2005), indicating that the diverse subcellular distribution of SMN is 
functionally important. Moreover, a recent observation that SMN associates and colocalizes 
with the α subunit of “coatomer”, a protein coat for vesicles that mediate intracellular 
transport, indicates a role for Golgi-associated COPI vesicles in SMN transport (Peter, et al., 
2011).  
 

 

Fig. 3. Functions of SMN in neurons. In the cytoplasm, SMN forms a protein complex to 
facilitate snRNP biogenesis. Moreover, SMN along with other RNA-binding proteins 
participates in mRNA transport; the role of COPI-containing vesicles in SMN transport is 
unclear. In the nucleus, SMN is highly concentrated in Cajal bodies and possibly plays a role 
in snRNP maturation and multi-snRNP assembly. SMN deficiency may indirectly induce 
aberrant splicing. 

5.3 SMN in snRNP biogenesis 

The role of SMN in snRNP biogenesis has been well characterized. Assembly of the 
heptameric Sm cores with each spliceosomal snRNA occurs in a highly ordered manner 
(Burghes & Beattie, 2009; Cauchi, 2010; Coady & Lorson, 2011). Initially, the chaperon factor 
pICln brings methylated Sm protein subcomplexes to the SMN complex, which is composed 
of SMN, Gemin2-8, and unr-interacting proteins. The SMN complex facilitates the 
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arrangement of the Sm proteins on a single-stranded region of snRNA to form a ring-shaped 
structure of the snRNP. An initial report showed that ~80% depletion of SMN by RNA 
interference in cultured mammalian cells had no significant loss-of-function effect on snRNP 
assembly (Girard, et al., 2006). Perhaps excess SMN complex exists in cells to maintain 
normal levels of the basal splicing machinery. However, further reduction of SMN 
differentially impaired snRNP assembly (Gabanella, et al., 2007; Workman, et al., 2009; Z. 
Zhang, et al., 2008). In particular, the levels of several U12-type spliceosomal snRNAs 
decreased more significantly in SMA mice, and formation of the U12-type tri-snRNPs was 
also impeded in lymphoblasts derived from SMA patients (Gabanella, et al., 2007; 
Workman, et al., 2009; Z. Zhang, et al., 2008). The latter observation is also in accordance 
with the assumption that SMN is possibly involved in tri-snRNP assembly in Cajal bodies 
(Carvalho, et al., 1999; Novotny, et al., 2011; Young, et al., 2000). Although direct evidence 
for defective snRNP assembly or reduced snRNP levels in SMA pathogenesis is lacking, one 
hint has been provided by the observation that knockdown of SMN or other snRNP 
assembly factors in zebrafish causes motor axon defects (Winkler, et al., 2005).  

5.4 SMN in pre-mRNA splicing 

It is clear that SMN has an essential function for snRNP biogenesis, and possibly that 

insufficient SMN causes various degrees of snRNP assembly defects. However, whether loss 

of SMN affects splicing of a wide range or a specific set of transcripts and whether the effect 

of SMN in splicing, if any, indeed results from impaired snRNP assembly have just begun to 

be investigated.  

Exon array analysis has shown that splicing of numerous transcripts is affected in various 

tissues of late-symptomatic SMA mice (Z. Zhang, et al., 2008). It is unclear whether such a 

widespread splicing defect is caused by reduced levels of SMN. It is suspected that the 

decrease in SMN level may affect splicing of specific transcripts in motor neurons that are 

most vulnerable to degeneration in SMA (Briese, et al., 2005; Liu, et al., 2010; Monani, 2005). 

A recent report showed that the tri-snRNP of the U12-type splicing machinery is most 

affected in SMA patients and, consistently, the splicing of a subgroup of U12-type introns is 

affected (Boulisfane, et al., 2011). Because U12-type introns are present in a number of genes 

involved in cytoskeletal organization, defects in their excision may impair motor neuron 

function. Finally, the error rate of exon inclusion/skipping is higher in fibroblasts of SMA 

patients, perhaps owing to poor recognition of the splice sites by a low abundance of 

functional snRNPs (Fox-Walsh & Hertel, 2009).  

5.5 How does SMN deficiency cause SMA pathogenesis 

To date, two plausible possibilities have been raised to explain how SMN deficiency causes 
specific neurological defects of motor neurons. First, as discussed above, inefficient snRNP 
assembly may affect the splicing of a specific set of transcripts that are critical to motor 
neuron functions. However, issues such as which transcripts are most sensitive to SMN 
deficiency and whether their splicing defects lead to SMA pathogenesis remain to be 
investigated. In addition, it has been shown that SMN forms RNA granules with other 

RNA-binding proteins such as hnRNP R to deliver -actin mRNA in motor axons (Glinka, et 
al., 2010; Rossoll, et al., 2003). A recent report showed that clustering of Cav2.2 calcium 
channels is impaired in axonal growth cones of SMA animals, and such a defect can be 
restored by rescue of SMN expression (Jablonka, et al., 2007). It is possible that SMN plays a 
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role in actin filament formation via -actin mRNA trafficking, and such an activity of SMN 
is critical for motor neuron functions.  
SMA patients and animal models show a variable extent of defects in neuromuscular 
junction functions, axonal arborization, synaptic transport, and neurodevelopment. Such 
complexity may result from different residual levels of SMN in different systems as well as 
multiple cellular functions and interacting partners of SMN (Boyer, et al., 2010; Burghes & 
Beattie, 2009; Cauchi, 2010; Wu, et al., 2011). Nevertheless, restoration of SMN levels or 
function is certainly a primary therapeutic strategy for SMA treatment (Kolb & Kissel, 2011). 
For example, activation of SMN2 transcription and restoration of SMN2 splicing ameliorate 
symptoms of SMA mice and thus provide promise for future SMA treatment.  

6. Conclusions  

Our understanding of splicing regulation mechanisms and splicing regulatory networks has 
been advanced substantially by recent studies using gene inactivation techniques and 
genome-wide experimental and computational examination of alternative splicing events. In 
the past decade, CLIP in conjunction with various types of mRNA identification systems has 
been used extensively for in vitro study of splicing factors and their regulation mechanisms. 
Ablation of splicing factors in cultured cells by RNA interference has also been widely used 
for mechanistic studies of alternative splicing of endogenous or reporter minigene 
transcripts. Nevertheless, we are still at the beginning of our understanding of the 
mechanistic and, in particular, physiological aspects of alternative splicing regulation. 
Our understanding of the physiological consequences of alternative splicing still largely 
relies on genetic approaches. For example, knockout of splicing factors in animals in 
combination of mRNA isoform comparison can facilitate the identification of their in vivo 
targets and biological functions. Study of disease-related splicing factors can in particular 
provide insights into pathogenesis of aberrant splicing. Moreover, knock-in or knockout of 
specific mRNA isoforms can help to unveil their functional consequence(s), which is poorly 
understood, and may even allow delineation of causal effects (Moroy & Heyd, 2007). 
However, progress has been relatively slow owing to limitations of genetic techniques in 
mammalian systems. At present, efficient recombination technologies are being developed 
to facilitate high-throughput gene knockout in embryonic stem cells (Valenzuela, et al., 
2003), which may allow large-scale analysis of biological functions of splicing factors as well 
as mRNA isoforms. Besides more efficient/convenient genetic tools, high-throughput 
whole-transcriptome sequencing and extensive bioinformatics tools have proved their 
advantage. With these techniques, we will begin to establish a more accurate paradigm for 
mRNA splicing regulatory networks with physiological significance. 
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