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1. Introduction 

Down syndrome is the most common genetic cause of mental retardation in humans, 

occurring in one out of 700 live births. Epidemiological studies suggest that although 

individuals with Down syndrome have an increased risk of infant cardiovascular 

malformation, muscle hypotonia, lymphatic edema, and leukemia, noteworthy they have a 

considerably reduced incidence of most solid tumor, atherosclerosis, and pathological 

angiogenesis-mediated diabetic retinopathy and kidney dysfunction.  

Such data indicate that one or more of the 231 trisomic genes on chromosome 21 are 

responsible for protecting these individuals against cancer and vascular disease. We and 

others recently have identified the candidate genes are Down syndrome critical region 

(DSCR)-1, and A disintegrin and metalloproteinase with thrombospondin motifs 

(ADAMTS)-1. In primary cultured endothelial cells, vascular endothelial cell growth 

factor (VEGF) resulted in rapid and profound upregulation of both genes, which in turn 

negatively feeds back to attenuate VEGF-mediated signaling and following the 

endothelial cell activation. In genome-wide screening, important regulatory transcription 

factor for many pathological features of Down syndrome, NFAT, bound more than 10,000 

independent regions in VEGF-treated activated endothelial cells. Down syndrome trisomy 

model mice or endothelium-specific modest DSCR-1 increases in mice resulted in 

significant suppression of the vascular density in matrigel-plugs, inflammatory leukocyte 

infiltration, and tumor growth. In contrast, DSCR-1 null mice demonstrated markedly 

decreased vascular integrity and increased susceptibility to tumor metastasis. In a mouse 

model of endotoxemia, DSCR-1 null mice showed greater morbidity and mortality 

compared with wild-type littermate. Conversely, adenovirus-mediated overexpression of 

DSCR-1 resulted in marked attenuation of lipopolysaccharide (LPS) or VEGF-mediated 

inflammation. Collectively, these data provide that Down syndrome overexpressed 

protein; DSCR-1 serves to dampen the host response to infection and the tumor growth. 

The molecular research for Down syndrome with patients or model mice unexpectedly 

provide us a great hint for therapeutic targets in solid tumor and vasculopathic disease 

against all individuals. 
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2. Down Syndrome Critical Region (DSCR)-1 expression in activated 
endothelium 

2.1 Foundation of the DSCR-1 from endothelial cell research 
The endothelium is highly malleable cell layer, constantly responding to changes within the 

extracellular environment and responding in ways that are usually beneficial, but at times 

harmful to the organism. Several mediators, including growth factors (e.g. vascular 

endothelial growth factor, VEGF), inflammatory cytokines (e.g. tumor necrosis factor-, 

TNF-), and thrombosis mediator (e.g. thrombin), activate gene transcription in endothelial 

cells, resulting in changes in hemostatic balance, increased leukocyte adhesion, loss of 

barrier function, increased permeability, migration, proliferation and successive 

angiogenesis (Minami and Aird, 2005). The tight control of these processes is essential for 

homeostasis - endothelial cell activation, if excessive, sustained or spatially and temporally 

misplaced, may result in vasculopathic disease. Indeed, different extra-cellular mediators 

engage the endothelium in ways that differ from one signal to the next. A major important 

point is to survey the temporal and spatial dynamics of endothelial cell activation. Using 

DNA microarrays, I carried out a global survey of mRNA in human umbilical vein 

endothelial cells (HUVEC) treated in the VEGF, thrombin, or TNF-. Clustering analyses of 

the data revealed a far closer relationship between VEGF and thrombin, than between other 

pairings (Fig. 1A). Of the various transcripts that were responsive both to VEGF and 

thrombin, DSCR-1 was the most highly induced at the earliest time point (1 h). Compared 

with VEGF and thrombin, TNF- treatment of HUVEC resulted in far less induction of 

DSCR-1 (3.2-fold at 1 h) (not shown).  The rest of the VEGF-mediated induced gene was 

early growth response (Egr)-3, nerve growth factor inducible (NGFI)-B, cyclooxigenase 

(COX)-2, and ADAMTS-1 (Fig. 1B). 

2.2 Molecular information of the DSCR-1 
The DSCR-1 gene consists of 7 exons, of which exons 1-4 can be alternatively spliced, 

resulting in a number of different mRNA isoforms, each of which exhibit different 

expression patterns. In adult, there are two major isoforms, DSCR-1 long variant (DSCR-1L) 

and DSCR-1 short variant (DSCR-1s), expressed in organs (Fuentes et al., 1997). DSCR-1L, 

encoded by exons 1, 5, 6, and 7, is highly expressed in brain. Exon 1 was originally thought 

to encode a 29 amino acid region, but later studies revealed a start site further upstream, 

resulting in a larger 84 amino acid region (Genesca et al., 2003). In contrast, DSCR-1s is 

encoded by exons 4-7 and is under the control of a different promoter located in intron 3 

(intergenic promoter) (Fig. 1C). Each promoter contains different regulatory transcriptional 

subunits. For example, DSCR-1s is mainly regulated by the calcineurin-NFAT pathway, 

which is highly induced by angiogenic and inflammatory stimuli in endothelial cells 

(Minami et al., 2004; Minami et al., 2006).  

While, the DSCR-1L isoform is under the control of a Notch and Hes-1-dependent pathway 

(Mammucari et al., 2005) or TEF-1 dependent pathway (Liu et al., 2008). DSCR-1s inhibits 

calcineurin phosphatase activity, and the C-terminal 57 residues are sufficient for this 

activity. DSCR-1s strongly inhibits the calcineurin mediated NFAT signaling via two ways; 

its ability to disrupt binding of calcineurin to NFAT, and to disrupt calcineurin enzymatic 

activities (Fig. 1D). 
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Fig. 1. VEGF / thrombin-mediated DSCR-1 induction A, heat map representation of induced 

genes in HUVEC. B, Top 5 genes induced via VEGF, thrombin, or TNF-. C, major two 
variants of DSCR-1. D, structure information of DSCR-1  

2.3 DSCR-1 expression in cultured cells 
VEGF or thrombin induces the DSCR-1s expression in endothelial cells, through the 
coordinate binding of NFATc and GATA to closely positioned NFAT and GATA motifs in 
the intergenic promoter (Minami et al., 2004). VEGF/thrombin induces NFATc nuclear 
localization, and overexpression of the nuclear NFATc1 greatly induces the targeted DSCR-
1s expression (Hesser et al., 2004; Minami et al., 2004; Minami et al., 2006). In addition, 
endothelial cells from the Down syndrome model mice (Ts65Dn) increased DSCR-1 mRNA 
by 1.7-2.0 fold (Baek et al., 2009). NFATc is an important factor for regulating the vertebrate 
development (Graef et al., 2001). In endothelial cells, NFATc1, c2, and c3 are expressed 
(Minami et al., 2009). To survey the NFATc1 binding in genome-widely, we carried out the 
chromatin immunoprecipitation using the antibody against NFATc1 following the 
comprehensive sequencing (ChIP-seq) in endothelial cells. We found totally 10,938 regions 
(P value >20) were identified as NFATc1 enrichment area from the ChIP-seq. DSCR-1 
revealed the profound NFATc1 binding after the VEGF treatment within the proximal 
DSCR-1s promoter (Fig. 2). The area overlapped with positive signals from acetylated 
histone H4 (transcriptional active chromatin) and tri-methylated lysine of histone H3 
(H3K4me3; active promoter marking) (Fig. 2).  
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Fig. 2. Epigenetic information of the DSCR-1 locus Arrow indicates the significant 
enrichment from the ChIP-seq results 

In contrast, erythroid lineage cells isolated from leukemia; K562 indicated the H3K4me3 

positive signals within the proximal DSCR-1L promoter region, but not proximal DSCR-1s 

promoter region (Fig. 2). DSCR-1L reported the proceeding the pathological function in 

neurons (Cook et al., 2005). Moreover, Down syndrome patients have an increased risk of 

leukemia (Lott, 1982). Collectively, DSCR-1s and DSCR-1L obtained separate transcriptional 

machinery. VEGF mediated NFATc activation selectively transactivates the DSCR-1s via the 

profound binding within the promoter. 

2.4 Characterization of the NFAT dependent genes overexpressed in Down syndrome 
Besides DSCR-1, other genes encoded in chromosome 21 also reported as a candidate for 

pathogenesis on the Down syndrome. By using the combination of several NFATc knockout 

mice, dysfunction of NFAT was shown as a key point for the onset of Down syndrome 

(Arron et al., 2006). Around 1.5-fold increasing of both DSCR-1 and DYRK1A caused 

complete NFAT dysfunction. Thus, we test whether many Down syndrome genes obtain the 

NFATc1 binding on the each proximal promoter, by using the whole-genome NFATc1 

ChIP-seq data (Table 1). Interestingly, DYRK1A obtained positive NFATc1 binding. VEGF 

inducible ADAMTS-1 (see Fig. 1B) also showed the NFATc1 positive binding. Ets family, 

Ets2, ERG, and GABP, were highly expressed in endothelial cells, which was shown the 

regulation for the endothelial cell-specific expression or-essential function. All of them have 

a possibility as a NFATc1 direct target downstream gene. 
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 Gene Description NFATc1 
bound 

Bound peak 
area 

 
From Nature (Reynolds et al.2010) 

 ADAMTS1 A disintegrin and metalloproteinase 
with thrombospondin motifs, type 1 

+ 5’UTR 

 ERG v-ets erythroblastosis virus E26 
oncogene homolog 

+ +5367 & 5th 
intron 

 Ets2 v-ets erythroblastosis virus E26 
oncogene homolog 2

+ +55 

 JAM2 junction adhesion molecule 2 -  

 PTTG1IP pituitary tumor-transforming 1 
interacting protein 

+ +883 

 
From Lancet (Roizen and Patterson, 2003) 

Energy and reactive oxygen species metabolism

 BTG3 B-cell translocation gene 3 +, weak 1st intron 

 MRPL39 mitochondrial ribosomal protein L39 +, weak 1st exon 

 ATP5J ATP synthase, H+ transporting, 
subunit F6 

+, weak 1st exon 

 GABPA GA binding protein transcription 
factor, alpha 

+, weak +80 

 BACH1 BTB and CNC homology 1, basic 
leucine zipper transcription factor 1 

+, weak 1st intron 

 SOD1 superoxide dismutase 1 + 5’UTR 

 CRYZL1 crystallin, zeta-like 1 +, weak 1st Exon & 
+520 

 ATP5O ATP synthase, H+ transporting, O 
subunit 

+ 5’UTR 

 MRPS6 mitochondrial ribosomal protein S6 +, weak 5'-UTR 

 DSCR-1 Down syndrome critical region gene 
1 

+ Indicated in 
Fig. 2 

 CBR1 carbonyl reductase 1 +, weak 1st exon 

 CBR3 carbonyl reductase 3 + 1st exon 

 SH3BGR SH3 domain binding glutamic acid-
rich protein 

+ 5’UTR 

 NDUFV3 NADH dehydrogenase flavoprotein 
3, 10kDa 

+ +139 

 SNF1LK salt-inducible kinase 1 -  

 C21orf2 chromosome 21 open reading frame 2 +, weak +140 

Brain development, neuronal loss, and Alzheimer's type neuropathology

 SIM2 single-minded homolog 2 -  

 DYRK1A dual-specificity tyrosine-
phosphorylation regulated kinase 1A 

+ +1680 
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 GART phosphoribosylglycinamide 
formyltransferase

+ +513 & 5'-UTR 

 PCP4 Purkinje cell protein 4 -  

 DSCAM Down syndrome cell adhesion 
molecule 

-  

 GRIK1 glutamate receptor, ionotropic, 
kainate 1 

-  

 APP amyloid beta (A4) precursor protein +, weak 1st intron 

 S100B S100 Ca-binding protein B -  

Folate methyl group metabolism 

 N6AMT1 N-6 adenine-specific DNA 
methyltransferase 1 

+, weak 1st exon 

 CBS cystathionine-beta-synthase -  

 DNMT3L DNA methyltransferase 3-like -  

 SLC19A1 Solute carrier family 19 , member 1 -  

 FTCD formiminotransferase cyclodeaminase -  

 HRMT1L1 
(PRMT2) 

Protein arginine methyltransferase 2 + 5’UTR 

Table 1. Candidate genes for Down syndrome, where NFATc1 occupancy on the promoter. 
‘Weak ‘means P value < 20 

2.5 DSCR-1 expression in organ 
Increased DSCR-1 expression was observed in human fetal Down syndrome kidney versus 
age-matched control kidney (Fig. 3A). To determine whether the DSCR-1s promoter region 
directed inducible expression in vivo, the -1664/+83 DSCR-1s promoter was coupled to the 
lacZ reporter gene and targeted the resulting transgenic cassette (DSCR-1-lacZ) to the Hprt 
locus of mice using homologous recombination. The Hprt-locus in vivo promoter analysis 
system has been previously shown to be beneficial in controlling and avoiding the 
undesirable and undetectable effects of copy number and integration site on promoter 
activity (Cvetkovic et al., 2000; Ryan and Sigmund, 2003). We have used this system 
successfully to show the vascular bed specific expression patterns of endothelial cell specific 
promoters, Flt-1, vWF, ROBO4, and Tie-2 (Minami et al., 2002; Minami et al., 2003; Okada et 
al., 2007). At embryonic day 11, whole-mount lacZ staining revealed widespread expression 
of the transgene in the vasculature. In cryosections, strong staining was observed in the 
dorsal aorta, intersomitic vessels, carotid arteries, caudal veins, the primary head vein 
branch, and the endocardium (Fig. 3B). LacZ colocalized with endothelial PECAM-1 (Fig. 

3B). However, after the embryonic day 14, profound DSCR-1s promoter activation in 
vascular endothelium was markedly downregulated correlated with the decline of 
embryonic VEGF levels after the critical steps for angiogenesis and vascular remodeling. In 
adult mice, DSCR-1s-lacZ activity was detected in only a subset of endothelial cells in the 
brain, heart, lung and kidney. Expression was also observed in occasional neurons, vascular 
smooth muscle cells, cardiomyocytes, and renal epithelial cells. In contrast, DSCR-1s-lacZ 
activity was undetectable in the liver, spleen, thigh skeletal muscle, and thymus. These 
findings suggest that the DSCR-1s promoter, though widely expressed in the endothelium 
of embryonic days 11, is downregulated in the later stages of development and in adults.  

www.intechopen.com



 
Down Syndrome Expressed Protein; DSCR-1 Deters Cancer and Septic Inflammation   

 

127 

Subsequently, to determine whether the DSCR-1s promoter confers response to 
inflammatory or angiogenic stimuli in vivo, DSCR-1-lacZ mice were systemically 
administrated VEGF or LPS. In whole mount preparations, the X-gal reaction product was 
detectable in the brain and heart of untreated mice and was further upregulated by VEGF 
and LPS. In contrast, lacZ staining was not observed in skeletal muscle, liver, and spleen 
vasculature even after the stimulus (data not shown). 
 

 

Fig. 3. DSCR-1 promoter activation in vivo A, highly DSCR-1 expression in kidney from 
Down syndrome individuals. B, left, whole-mount lacZ staining of embryonic day 11 Hprt-
targeted embryos. C.A., carotid artery; D.A., dorsal aorta; I.V., intersomite vessel. Right, 
serial tissue sections from Hprt-targeted embryo. lacZ (up) and PECAM-1 (down) immuno-
stainings were shown. C, real-time PCR quantification of lacZ epression in various organs. 
*P<0.04, **P<0.01 compared mock treatment in each organ. 

Real-time PCR analysis was used to quantify changes in transgene expression. Under basal 
conditions, lacZ mRNA expression was highest in the heart, followed by the brain, lung, and 
kidney (Fig. 3C). Expression in skeletal muscle, the spleen and liver was below the level of 
detection. VEGF and LPS resulted in significant induction of lacZ transcripts in the heart, 
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brain, lung, and kidney, but not in spleen, liver or skeletal muscle (Fig. 3C). LPS-mediated 
induction of the endogenous DSCR-1s gene was similarly restricted to the heart (25.3-fold), 
brain (7.0-fold), lung (10.3-fold), and kidney (9.3-fold) (not shown). Agonist treatment failed 
to alter DSCR-1L transcript levels. Thus, VEGF and LPS promote vascular bed-specific 
expression of both the DSCR-1s promoter and the endogenous DSCR-1s gene. 

2.6 DSCR-1 expression in tumor 
Solid tumors produce a variety of pro-angiogenic molecules and inflammatory cytokines, 
which have important paracrine effects on surrounding endothelial cells. To investigated 
whether the DSCR-1s transgene is activated in tumor blood vessels, B16-F1 melanoma and 
Lewis lung carcinoma (LLC) cells were implanted subcutaneously into the flank of DSCR-
1s-lacZ Hprt mice. When tumors reached ≈2.5 cm3 in volume, the xenografts were harvested, 
sectioned and stained for lacZ. As shown in Fig. 4A, there was widespread reporter gene 
activity within both B16-F1 melanoma and LLC tumor neovessels. In double 
immunofluorescence studies, lacZ co-localized with endothelial PECAM-1 (Fig. 4B). 
Consistent with these findings, endogenous DSCR-1 also co-localized with PECAM-1 in 
tumor vessels of both B16-F1 melanoma and LLC xenografts (not shown).  
 

 

Fig. 4. DSCR-1s promoter activation in tumor vasculature. A, lacZ stainings were performed 
of LLC and B16-F1 melanoma xenografts. B, merged image of immunofluorescence staining 
with antibodies against lacZ, PECAM-1 or DAPI. 

3. Biological function of DSCR-1 

3.1 DSCR-1 inhibits nuclear localization of NFATc 
Adenovirus mediated overexpression of DSCR-1, but not control, inhibited VEGF mediated 
nuclear localization of NFATc1 and NFATc2 (Minami et al., 2004). DYRK1A is another 
potential NFAT regulators, which encodes a nuclear serine/threonine kinase that primes 
substrates for phsphorylation by Glycogen synthase kinase (GSK) 3(Gwack et al., 2006). 
GSK3 phosphorylates NFATc proteins in the nucleus, resulting in their inactivation and 
export (Beals et al., 1997). DYRK1A is expressed at elevated levels in some human Down 
syndrome fetal tissues (Arron et al., 2006). In neuronal cells, DYRK1A inhibits FGF8-
mediated induction of NFAT activity. Moreover, it has been shown that a 1.5-fold increase 
in the dosage of DSCR-1 and DYRK1A, both of which lie within the critical region of human 
chromosome 21, cooperatively destabilized the calcineurin-NFAT regulatory circuit (Fig. 5), 
leading to many of the features of Down syndrome (Arron et al., 2006).  
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Fig. 5. schematic model of NFAT inhibition with DSCR-1 and DYRK1A. 

3.2 DSCR-1s auto-inhibits the VEGF-mediated vascular activation 
VEGF is an endothelial cell specific mitogen, and chemotactic agent, which is involved in 
wound repair, angiogenesis of ischemic tissue, tumor growth, microvascular permeability, 
hemostasis and endothelial cell survival (Isner and Losordo, 1999). DSCR-1 overexpression 
inhibits VEGF-mediated vessel growth, and monocyte cell adhesion (Minami et al., 2006). 
DSCR-1 overexpression did not lead in increased apoptosis (Minami et al., 2009). Taken 
together, these findings suggest that DSCR-1 constitutive expression lead the endothelial 
cells to quiescent status form the VEGF-mediated activated status. 

3.3 DSCR-1s attenuates septic inflammation 
As shown above, DSCR-1s attenuates VEGF-mediated activation of cultured endothelial 
cells. These data led us to hypothesize that VEGF- and LPS-inducible expression of DSCR-1s 
in mice may serve as a negative feedback inhibitor of endothelial activation in vivo. To test 
this hypothesis, I examined the effect of DSCR-1 deficiency or overexpression on 
endotoxemia phenotype. The generation of DSCR-1-/- mice, which carry a targeted deletion 
of both DSCR-1s and DSCR-1L. To overexpress DSCR-1s, I have chosen an adenoviral 
delivery system in which the endothelial-specific Flt-1 promoter is coupled to DSCR-1s 
cassette (Ad-Flt1-DSCR-1s). In vivo delivery of Ad-Flt1-DSCR-1s results in overexpression of 
DSCR-1s in the intact endothelium of mice. Endotoxemia in mice is associated with a 
reduction in heart rate, blood pressure, and body temperature, and an increase in circulating 
interleukin (IL)-6 levels. This effect was accentuated in DSCR-1-/- mice, and attenuated in 
DSCR-1s overexpressing animals. Recently, Yano et.al. reported that endotoxemia in mice is 
associated with increased circulating levels of VEGF (Yano et al., 2006). Further, VEGF plays 
a pathogenic role in sepsis (Yano et al., 2008). Interestingly, resting levels of plasma VEGF 
were 5.0-fold higher in DSCR-1-/- mice compared with wild-type littermates (Fig. 6A), which 
is a parallel correlation with the report that lower VEGF expression in stem cell culture 
derived from amniotic fluid in Down Syndrome (Salvolini et al., 2010). In response to septic 
treatment, DSCR-1-/- mice demonstrated super-induction of circulating VEGF levels (2.2-
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fold higher vs. wild-type mice). Ad-Flt1-DSCR-1s-injected mice had no change in resting 
VEGF levels. However, in response to endotoxemia, DSCR-1s-overexpressing mice 
demonstrated a 61% reduction in circulating VEGF levels compared with septic Ad-Flt1-
control (Fig. 6A).  
To assay for endothelial activation, real-time PCR was performed to measure mRNA 
expression of E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell 
adhesion molecule (VCAM)-1 in tissues from mice 6 h following injection of PBS (control) or 
LPS. Compared with wild-type littermate controls, LPS-treated DSCR-1-/- mice 
demonstrated super-induction of E-selectin in the heart and lung, ICAM-1 in heart, and 
VCAM-1 in lung. In contrast, LPS-mediated induction of cell adhesion molecules was 
attenuated by overexpression of DSCR-1s (data not shown).  
I have recently shown that hyper-activation of the VEGF-calcineurin-NFAT pathway 
triggers apoptosis in DSCR-1-deficient tumor endothelial cells (Minami et al., 2009). Given 
that DSCR-1-/- mice have elevated circulating levels of VEGF level (see Fig. 6A), I 
hypothesized that endotoxemia may result in increased endothelial cell apoptosis in DSCR-
1-/- mice. To test this hypothesis, TUNEL assay was carried out in tissue sections from the 
heart and lung of LPS-treated DSCR-1-null mice and their wild-type littermates. 
Endotoxemic wild-type mice demonstrated a small number of TUNEL-positive endothelial 
cells in the heart, and even fewer in the lung. However, in DSCR-1-/- mice, LPS 
administration resulted in a significant increase in the number of TUNEL-positive cells in 
both organs (Minami et al., 2009).  
Finally in survival studies, LPS-treated DSCR-1-/- mice demonstrated markedly increased 
mortality compared with endotoxemic wild-type littermates (Fig.6B, left). In contrast, Ad-
mediated overexpression of DSCR-1s conferred a survival advantage compared with Ad-
Flt1-control (Fig. 6B, right). Taken together, these findings suggest that inflammatory 
induced DSCR-1s obtains a critical role in the host response. 
 

 

Fig. 6. DSCR-1 modulates inflammatory VEGF expression and sepsis mortality. A, Blood 
was harvested for plasma, and VEGF levels were measured using ELISA. *P<0.001, **P<0.01 
compared with wild type or Ad-Flt1-control (cont), n=10. B, Survival studies in mice 
administrated LPS. Percentages of mice (surviving/total) are indicated. 
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3.4 DSCR-1s attenuates tumor progression 
Having established an inhibitory role for DSCR-1 on inflammation in vivo, I next study the 
functional relevance of angiogenesis, tumor growth, and tumor metastasis in vivo. 
Adenovirus mediated locally DSCR-1 expression in vascular demonstrated significant 
reduction of the blood vessel formation in a matrigel-plug, compared to the Ad-control 
treated-plug vascularity. In a xenograft model with B16 melanoma and Lewis lung 
carcinoma revealed that DSCR-1 overexpression statistically significant (more than 70%) 
reduction of the tumor growth, in the parallel for the reduction of the vessel density from 
DSCR-1 treated tumor. Subsequently, to test whether DSCR-1 stable expression in the 
vascular endothelium inhibit the tumor growth, the transgenic mice was generated 
containing the endothelial cell specific Tie 2 promoter-linked DSCR-1s cDNA constract. Two 
independent transgenic lines indicate the vascular-specific DSCR-1s expression, both of 
which delayed the tumor growth at the early step, up to the tumor mass ≈1,500 cm3. 
Cryosection of the xenografted tumor and immunostained with anti-PECAM1 antibody 
revealed the reduction of the vascular density in vascular specific DSCR-1s transgenic mice 
compared with wild type control mice. Taken together, DSCR-1s expressed in endothelial 
cells in vivo would function as an anti-angiogenic molecule. Stable expression of the DSCR-
1s would lead the endogenous anti-tumor activities. 

3.5 DSCR-1s attenuates tumor metastasis 
During the study for the DSCR-1s promoter activity in vivo, by using the tumor metastasis 

model, we found the DSCR-1s promoter was already active in the lung microvascular 

endothelium, before the tumor metastasis colony had not yet observed. This DSCR-1s-lacZ 

activity in endothelial lining of lung was clearly abolished by systemic treatment with 

cyclosporine A. In addition, we have previously shown that stimuli induced DSCR-1 auto-

inhibited inflammation in HUVEC (Minami et al., 2004; Minami et al., 2006). Thus, I 

hypothesized two things; DSCR-1s promoter would be useful for the marker for the pre-

metastatic condition, and the DSCR-1s stable expression would overcome the tumor 

metastasis. At first, to test the latter thing, mice were injected intravenously with 2x105 B16 

melanoma cells. Three days later, mice were administrated with adenovirus containing Flt-1 

promoter-DSCR-1s, or the control into the lung via the airway with vapor infection. Twenty 

days after the B16-F10 injection, lungs were harvested and photographed. There was no 

difference in body weight between the experimental and control groups (data not shown). 

The Ad-Flt1-Control group exhibited significant endothelial cell surface invaded-melanoma 

metastasis and the lungs showed significant swelling (Fig. 7A). In contrast, the Ad-Flt1-

DSCR-1s group exhibited little B16 melanoma metastasis and showed no significant lung 

swelling. To semi-quantify the metastasis rate, the melanoma-growing area per whole 

surface was calculated. Compared with control, Ad-Flt1-DSCR-1s treatment resulted in 

statistically significant reduction (54%) of the B16 melanoma metastasis (Fig. 7B). In 

addition to DSCR-1s’s ability to inhibit B16 melanoma metastasis to lung, DSCR-1s treated 

lung showed a significant reduction in the expression of the inflammatory adhesion 

molecules, VCAM-1 and E-selectin. It has been reported that endothelial cells expressed 

VCAM-1 and E-selectin positively influence cancer cell adhesion and migration to lung 

(Biancone et al., 1996; Fukuda et al., 2000; Futakuchi et al., 2004). Our performed metastasis 

assays, however, could not distinguish whether reduction in these adhesion molecules 

attenuated tumor metastasis, or reduced tumor cell migration to lung inhibited 
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inflammation and adhesion molecule induction. We have reported DSCR-1s strongly 

attenuates adhesion molecule expression in cultured endothelial cells (Minami et al., 2006). 

Moreover, DSCR-1 stably expressed in cultured endothelial cells significantly blocked B16 

melanoma attachment to the endothelial cell surface (data not shown), suggesting that the 

blunting of adhesion molecule expression by DSCR-1s might be a critical factor in the 

inhibition of tumor metastasis. Collectively, These data suggest that DSCR-1s stable 

expression inhibits the inflammatory coordinated pre-metastatic niche formation, resulting 

the strong interfering of the onset of tumor metastasis to lung. 
 

 

Fig. 7. Endothelial specific DSCR-1s overexpression downregulates the tumor metastasis to 
lung. A, after 20 days for B16-F10 injection administrated either Ad-Flt1-control or Ad-Flt1-
DSCR-1s, lungs were harvested, washed and photographed. B, to quantify the metastasis 
rate, metastasis area from the whole surface lung was calculated by using Image J software. 
Data are expressed as means and standard deviations; n=10. 

3.6 Lacking DSCR-1 results with controversy 
While our findings reported here lend further evidence toward DSCR-1s as a negative 
regulator of NFAT-calcineurin signaling in vivo, the exact function of DSCR-1 is not without 
controversy. It has been reported that in CHO cells cultured in vitro, a portion of the 
phosphorylated form of DSCR-1 associated with the 14-3-3 protein, which competitively 
activated calcineurin activity (Abbasi et al., 2006). However, in a separate report it was 
shown that phosphorylation of DSCR-1 markedly decreased its stability (Genesca et al., 
2003), likely leading to degradation, and thus an increase in calcineurin activity. In 
endothelial cells, we observed that the non-phosphorylated form of DSCR-1, which we 
consider to be the pre-active form, was the dominant form during the early phase response 
to VEGF or thrombin. The phenotype exhibited by the DSCR-1 whole gene knockout mice 
shows exacerbated constitutively active calcineurin-dependent cardiac hypertrophy, 
whereas cardiac hypertrophy in response to pressure overload and chronic adrenergic 
stimulation was blunted in these mice (Vega et al., 2003). In addition, double knockout mice 
of DSCR-1 and modulator of calcineurin interacting protein (MCIP) 2 also resulted in 
calcineurin facilitation, although it is difficult to distinguish the relative contribution 
between DSCR-1 and MCIP2 in these events (Sanna et al., 2006). It light of previous results 
and the results presented here suggesting differing expression patterns and functions of the 
DSCR-1s and 1L isoforms, it is plausible that the phenotype of the DSCR-1 null mice results 
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from the complex deletion of both DSCR-1L and DSCR-1s isoforms. Qin et.al., recently 
reported DSCR-1s inhibited vascular growth and capillary tube formation, consistent with 
our findings, whereas DSCR-1L induced NFATc transcriptional activity and endothelial cell 
growth (Qin et al., 2006). Using siRNA or adenoviral miRNA in endothelial cells or in mice 
in vivo, respectively, I recently showed that the DSCR-1s promoter is specifically activated 
through NFATc1, c2, c3 and GATA-2 (Minami et al., 2009), whereas DSCR-1L, which lacks 
the NFAT consensus region, is regulated by Notch and glucocorticoid signaling 
(Mammucari et al., 2005). The lack of such elements in the DSCR-1L promoter, suggest that 
once DSCR-1L is expressed, the tightly regulated calcineurin-NFATc-DSCR-1s feedback 
loop may be broken, owing to a lack of NFATc regulation of the DSCR-1L promoter. I also 
cannot rule out the possibility that the DSCR-1 exon 1 has an as yet ‘undetermined’ function. 
Interestingly, in an attempt to understand this regulatory system, an attractive 
computationally simulated threshold model was shown by Shin, et. al (Shin et al., 2006), in 
which low-level stimulus causes weak NFAT activation, resulting in only minor DSCR-1s 
upregulation, and at a level not sufficient to block the target calcineurin (under the 
threshold). Continuing stimulus facilitates the dissociation of the calcineurin-DSCR-1 
complex, so that DSCR-1 appears as an activator of calcineurin. 
  

 

Fig. 8. Schmatic model of the balance of the endothelial cell growth 

Interestingly in the endothelial cells, Sandra.et.al., indicated that DSCR-1-/- mice 
demonstrated reduced blood vessel formation in Matrigel, cornel micropocket, and tumor 
xenograft assays (Ryeom et al., 2008). DSCR-1-/- endothelial cells displayed hyper-activation 
of the calcineurin/NFAT pathway and increased sensitivity to VEGF signaling. However, 
rather than inducing cell proliferation, VEGF-mediated activation of calcineurin/NFAT in 
DSCR-1-/- endothelial cells ‘re-routed’ downstream signaling, resulting in increased 
apoptosis, which thus explains the paradoxical reduction in neovascularization. 
Collectively, considered with the data from DSCR-1 stable expression and null mutation, 
calcineurin/NFAT activity and DSCR-1s expression level was tightly regulated, resulting 
the balance would define the endothelial cell growth, viability and tumor angiogenesis (Fig. 
8). Future animal studies of DSCR-1 function should be performed by endothelial cell-
specific knockout mice targeting either DSCR-1s or DSCR-1L separately. 
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4. Conclusion 

DSCR-1 was identified by the study with vascular activation. DSCR-1 was highest induced 
by VEGF treatment in primary cultured endothelial cells. Previously, DSCR-1 was simply 
termed by the localization of the human chromosome 21. However, DSCR-1 indeed highly 
expressed in Down syndrome individuals, and clearly upregulated with NFAT activation in 
cells. Moreover, combined with same 21st chromosome encoded protein; ‘DYRK1A’, DSCR-1 
strongly feedback attenuated the NFAT activation, resulting the pathogenesis of Down 
syndrome. I show here that DSCR-1s is highly expressed during embryonic vascular 
development, and then largely downregulated in adult, yet was highly activated 
predominantly in endothelium in response to the administration of VEGF or LPS. 
Stimulated DSCR-1s worked in the auto-inhibition of endothelial cell activation and 
inflammation. It has still unanswered problems with understanding the phenotypes from 
DSCR-1 lacking condition, and pathogenesis from DSCR-1L overexpression in neuron. 
However, based on this knowledge, I believe that DSCR-1s stable expression or the way of 
DSCR-1s stabilization may lend itself to therapeutic manipulation in vasculopathic disease 
states, including tumor angiogenesis, metastasis, and inflammation. 
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