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1. Introduction 

Metals like zinc, iron and copper are essential micronutrients required for a wide range of 
physiological processes in all plant organs for the activities of various metal-dependent 
enzymes and proteins. However, they can also be toxic at elevated levels. Metals like 
arsenic, mercury, cadmium and lead are nonessential and potentially highly toxic. Once the 
cytosolic metal concentration in plant turns out of control, phytotoxicity of heavy metal 
inhibits transpiration and photosynthesis, disturbs carbohydrate metabolism, and drives the 
secondary stresses like nutrition stress and oxidative stress, which collectively affect the 
plant development and growth (Krämer & Clemens, 2005). 
Plants have developed a complex network of highly effective homeostatic mechanisms that 
serve to control the uptake, accumulation, trafficking, and detoxification of metals. 
Components of this network have been identified continuously, including metal 
transporters in charge of metal uptake and vacuolar transport; chelators involved in metal 
detoxification via buffering the cytosolic metal concentrations; and chaperones helping 
delivery and trafficking of metal ions (Clemens, 2001). 
This chapter summarizes heavy metal stress and detoxification in plant. Special focus is 
given to metallothionein, yet vacuolar metal transporters, phytochelatins as well as certain 
organic acids, amino acids, and chaperones are also addressed with recent advances. 
Besides, heavy metal-induced oxidative stress and tolerance as an example of abiotic stress 
cross-talk will be discussed. 

1.1 The vacuolar compartmentation mediated by transporter families CDF and Nramp  

A balanced cytosolic metal concentration has to be maintained all the time via strict 
compartmentation and chelation. The plant vacuole is a main storage compartment site for 
heavy metals present in excess (Ernst et al., 1992). Nickel-hyperaccumulator plant Alyssum 
serpytllifolium keeps its 72% of the cellular Ni in the vacuole (Brooks et al., 1980). Analysis 
with leaves from barley grown at heavy metal-polluted environment showed that cadmium, 
molybdenum, and zinc are mainly subjected to vacuolar compartmentation (Brune et al., 
1995). Study on Phragmites australis under zinc pollution revealed that most Zn was 
immobilized in the apoplast or sequestered into the vacuolar lumen (Jiang & Wang, 2008).  
The CDF (cation diffusion facilitator) transporters, once named as MTP for metal tolerance 
protein, are involved in mediating the cytoplasmic efflux of transition metal cations such as 
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Zn2+, Cd2+, Co2+, Ni2+ or Mn2+. In S.cerevisiae, two proteins COT1 and ZRC1 confer 
overexpression lines cobalt and zinc/cadmium tolerance respectively (Conklin et al., 1992; 
Kamizono et al., 1989), and both are localized to the vacuolar membrane, indicating a role in 
metal sequestration (Li & Kaplan, 1998). The identification of Arabidopsis ZAT/MTP1, a 
member of CDF family, provides the first information for a possible vacuolar zinc 
transporter in plant. AtMTP1 is localized to vacuolar membranes, and overexpression of the 
complete protein-coding domain of ZAT results in enhanced Zn resistance and strongly 
increased Zn content in the roots under high Zn exposure (Kobae et al., 2004; van der Zaal et 
al., 1999). The ectopic expression of poplar PtdMTP1 in yeast was able to complement the 
hypersensitivity of mutant strains to Zn, and transgenic Arabidopsis exhibited enhanced zinc 
tolerance (Blaudez et al., 2003). The vacuolar membrane-localized TgMTP1 of 
hyperaccumulator Thlaspi goesingense confers tolerance to a broad spectrum of heavy metals 
including Ni, Cd, Zn, and Co, and complements the metal sensitivity of the yeast 
COT1/ZRC1 mutant strains (Persans et al., 2001), and could particularly increase zinc 
tolerance by initiating a systemic Zn deficiency response including up-regulation of Zn 
transporter genes (ZIP3, ZIP4, ZIP5 and ZIP9) (Gustin et al., 2009). The Stylosanthes hamata 
ShMTP8 conferred manganese tolerance when heterologously overexpressed in yeast and 
Arabidopsis. Further analysis demonstrated that ShMTP8 is localized to the tonoplast, and 
the Mn tolerance in yeast was managed by internal sequestration rather than by efflux of 
Mn2+ (Delhaize et al., 2003).  
It’s interesting to note the other side, releasing metal ions from the vacuole into the cytosol if 
required by metabolism. Which transporter takes the challenge? The NRAMPs might be a 
possible candidate. The plant NRAMP (natural resistance associated macrophage protein) 
family transport divalent metal cations into the cytoplasm. Arabidopsis AtNRAMP3 and 
AtNRAMP4 can be induced by iron starvation, complement Fe-uptake yeast mutant, and 
mediate the remobilization of Fe from vacuolar stores, which is crucial for seed germination 
during early Fe deficiency period (Lanquar et al., 2005; Thomine et al., 2000). AtNRAMP3 
protein, localized to the vacuolar membrane, affects metal accumulation and gene 
expression of Fe uptake transporter IRT1 and a root ferric chelate reductase FRO2 by 
mobilizing vacuolar metal pools to the cytosol (Thomine et al., 2003). In the metal 
hyperaccumulator Thlaspi caerulescens, TcNRAMP3 and TcNRAMP4, the closest homologues 
to AtNRAMP3 and AtNRAMP4, have been characterized as highly expressed, vacuolar 
membrane-localized, and transporting Fe, Mn, Cd and Zn with respective preferences 
(Oomen et al., 2009; Wei et al., 2009). 
Progressive reports implicated that Arabidopsis NRAMP proteins have an important role in 
manganese homeostasis and cadmium toxicity. The nramp3nramp4 double mutant displayed 
lower Mn release from mesophyll vacuoles, and it’s suggested that AtNRAMP3 and 
AtNRAMP4 export Mn from vacuoles to maintain mitochondrial MnSOD activity and 
optimal photosynthesis under Mn deficiency (Lanquar et al., 2010). The transgenic plants 
with disruption of AtNRAMP6 exhibits enhanced cadmium tolerance whereas the 
overexpression causes Cd2+ hypersensitivity (Cailliatte et al., 2009). AtNRAMP3 showed the 
similar result (Thomine et al., 2000), implying these two metal transporters might affect 
remobilization and distribution of cadmium within the cell. 

1.2 Chelation of cadmium ions by phytochelatin 

Chelation of metals in the cytosol is a very important mechanism of heavy metal 
detoxification and tolerance (Fig 1). The principal classes of known metal chelators in plant 
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Fig. 1. Vacuolar sequestration of heavy metals in plant cell. Following the uptake through 
transporters such as ZIP (zinc/iron-regulated transporters) family members, heavy metal 
ions like Cd2+ enters the cytosol and it stimulates the glutathione-derived synthesis of 
phytochelatins (PCs) by PC synthases (PCS). PCs bind cytosolic Cd2+ to form the low-
molecular-weight (LMW) complex first, which is transported into the vacuole via a 
tonoplast-localized ATP-binding-cassette (ABC) transporter. In the vacuole, LMW Cd-
complex then accumulate into high-molecular-weight (HMW) complex with more Cd2+, 
which may enter the vacuole via a direct exchange with protons by tonoplast-localized 
cation/proton exchanger (CAX) transporters. Transporters MTPs (metal tolerance protein) 
and NRAMPs (natural resistance associated macrophage protein) residing in the tonoplast 
mediate passage of metal ions for compartmentation or remobilization. Other chelators 
including metallothioneins (MTs), organic acids and amino acids help buffering the 
cytosolic metal concentrations to the safe low metal state.  

are metallothioneins (MTs), phytochelatins (PCs), organic acids and amino acids (Clemens, 
2001). Metallothionein and phytochelatin are proteins or peptides with low molecular 
weight, high cysteine content, and unique metal-binding capacity. In early reports lack of 
detail amino acid sequence data, metal-binding proteins in plants were generally assumed 
to be MTs, which in fact covered at least part of PCs. In an old classification system of three-
class MT proteins, phytochelatins are somewhat confusingly described as enzymatically-
synthesized class III whereas other two are gene-encoded class I and II (Cherian & Chan, 
1993). Later the classification system has been improved and now it’s clear plants express 
both PCs and MTs, which play relatively independent roles in metal detoxification and/or 
metabolism (Cobbett & Goldsbrough, 2002). 
Phytochelatins have been identified in many plants and photosynthetic organisms, ranging 
from algae, gymnosperms to monocots and dicots. Phytochelatins (PCs) are synthesized 
from glutathione (GSH) (in some cases, related compounds) by PC synthases (PCS), and 
play a role in the distribution and accumulation of Cd and some other highly toxic metals 
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like Ag, Hg, As (Cobbett, 2000; Rauser, 1999). Modern techniques including X-ray 
absorption spectroscopy (XAS), high performance liquid chromatography-mass 
spectrometry (HPLC-MS), inductively coupled plasma optical emission spectrometer (ICP-
OES) help to reveal that cadmium ions are generally bound to phytochelatins in plant. The 
percentage of Cd bound to PCs in Indian mustard seedlings increased from 34% after 6 
hours of Cd exposure to 60% after 72 hours (Salt et al., 1997). In a Cd-hyperaccumulator 
desert plant tumbleweed (Salsola kali), cadmium was attached to oxygen and sulfur groups 
in stems and leaves, implying a great possibility of phytochelatins production in the stems, 
which later coordinates the absorbed cadmium for transport and storage in cell structures 
(de la Rosa et al., 2004). The mushroom Boletus edulis presented PC-Cd complex under Cd 
exposure and the more PC complexes were correlated with reduced level of GSH (Collin-
Hansen et al., 2007). In wheat, phytochelatins bound 82% of the Cd in roots, 19% in young 
leaves and 12% in old leaves, suggesting the speciality of PC-based Cd sequesteration varies 
with tissues even in the same plant (Marentes & Rauser, 2007). And it’s demonstrated that 
the chemical structure of thiol and carboxyl groups is essential for the metal-binding ability 
and formation of a Cd-PCs complex (Satofuka et al., 2001). 
There are two types of Cd-PC complexes produced during Cd sequesteration: low-
molecular-weight (LMW) and high-molecular-weight (HMW). The LMW complex serves as 
the transient form for transporting Cd2+ from cytosol to vacuole where more Cd and sulfide 
are incorporated to produce the HMW complex, which turns the main storage form of Cd2+ 

(Rauser, 1995). The first molecular insight into transporting the PC-Cd complex comes from 
the S.pombe hmt1 mutant, which is unable to form the HMW complexes. SpHMT1 is a half 
size ATP-binding cassette (ABC) transporter protein, located in the vacuolar membrane, and 
mediates the ATP-required transport of LMW PC-Cd complexes into vacuolar membrane 
vesicles (Ortiz et al., 1992; Ortiz et al., 1995). An ATP-dependent, similar-to-SpHMT1 
activity has been identified capable of transporting both PCs and PC-Cd complexes in oat 
roots (Salt & Rauser, 1995). Using a cDNA-microarray approach, some ATP-binding cassette 
(ABC) transporters in Arabidopsis genome were found to be differentially regulated under 
cadmium treatments, implying their role in Cd sequestration and redistribution (Bovet et al., 
2005). A subfamily of ABC transporters, MRPs (multidrug resistance-associated protein) 
have been implicated mediating PC-Cd complex transport across the tonoplast in plants 
(Rea, 2007). Expression of Chlamydomonas reinhardtii CrMRP2 not only complements the 
yeast mutant, but also helps accumulating and sequestering more Cd in the stable HMW 
PC-Cd complex (Wang & Wu, 2006). Song et al. report the identification of the long-sought 
and major vacuolar PC transporters recently (Song et al., 2010). Two Arabidopsis ABCC-
type transporters, AtABCC1 and AtABCC2 mediating transport of As(III)-PC though, may 
as well offer us a good perspective of identifying more specific PC vacuolar transporters for 
other heavy metals in addition to Cd-PC complex.  
Besides the phytochelatin-Cd2+ complex transported by ABC transporters, cadmium ions 
can also reach the vacuole via a direct exchange with protons by tonoplast-localized 
cation/proton exchanger (CAX) transporters. In oat roots, the pH-dependent Cd2+ 
accumulation in vesicles was accompanied by efflux of protons, which offers the first clue of 
Cd2+/H+ antiport in plant (Salt & Wagner, 1993). Then several Arabidopsis CAX genes have 
been cloned and characterized. Expression of AtCAX2 in tobacco increased Cd2+ and Mn2+ 
transport in isolated root tonoplast vesicles (Hirschi et al., 2000). The cax4 loss-of-function 
mutant and CAX4 RNAi lines displayed altered root growth in response to Cd2+, Mn2+ and 
auxin treatment (Mei et al., 2009). The transgenic tobacco overexpressing AtCAX4 and 
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AtCAX2 exhibited high Cd2+ transport and certain selectivity in tonoplast vesicles, 
indicating some CAX transporters are more selective for particular divalent cations 
(Korenkov et al., 2007). Comparative analysis of CAX2 transporters between different plant 
species including Arabidopsis, tomato and barley proposed that there are diverse regulatory 
mechanisms with regard to CAX antiporter diverse functions (Edmond et al., 2009).  

1.3 Metallothionein: metal-binding protein and more 

Metallothioneins (MTs) are ubiquitous low-molecular-weight, cysteine-rich proteins that can 
bind metals via mercaptide bonds. Since the first MT was characterized from horse kidneys 
as cadmium-binding proteins in 1957 (Margoshes & Vallee, 1957), plenty of MT genes have 
been identified in a wide variety of organisms including bacteria, fungi, and all eukaryotic 
animal and plant species (Robinson et al., 1993).  
The spatial structures of MTs have been uncovered as a dumbbell-like shape with two 
separate domains, ┙ and ┚, containing in their core clusters built up of several tetrahedral 
Metal-Cys units (Fig 2). The different metal reactivity and metal affinity of two domains 
prompt different functional roles of the two metal clusters, that is, N-terminal ┚ domain is 
involved in the homeostasis of essential metal ions (Kagi & Schaffer, 1988; Willner et al., 
1987), and C-terminal ┙ domain, the tight binding sequestration of excess and/or toxic metal 
ions (Cherian et al., 1994; Wright et al., 1987). As for the spacer region linking the ┙ and ┚ 
domains, it may contribute to stability or subcellular localization of MT proteins (Domenech 
et al., 2005), and is necessary for MT metal detoxification function (Domenech et al., 2007; 
Zhou & Goldsbrough, 1994).  
MT proteins are generally classified into mammalian Class I and plant Class II, and plant 
MTs can be further subdivided into four types based on the number and arrangement of 
cysteine residues and the length of spacer region (Cobbett & Goldsbrough, 2002). These 
four-type plant MTs exhibited certain tissue-preferential expression patterns. Type 1 MTs 
 

 

Fig. 2. The spatial structure of metallothionein. (A) general structure of MTs: a dumbell-like 
shape with two separate globular domains ┙ and ┚; (B) structure of the [Cd4] ┙-domain of 
rat MT-2 showing the example of a tetrahedral Me(II)-Cys units formed by MTs (adapted 
from Blindauer et al., 2001) 
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are expressed much higher in roots than in shoots (Hudspeth et al., 1996), whereas Type 2 
MTs are found mainly in leaves (Hsieh et al., 1995; Zhou & Goldsbrough, 1994). Type 3 MTs 
are expressed abundantly in the ripe fruits (Clendennen & May, 1997; Ledger & Gardner, 
1994; Reid & Ross, 1997), and expression of Type 4 MTs, also known as the Ec type, was only 
found in developing seeds so far (Chyan et al., 2005; Lane et al., 1987).  
A vast number of stimuli have been demonstrated capable of inducing MT genes 
expression in plants, including natural senescence (Bhalerao et al., 2003), hormones like 
ABA (Reynolds & Crawford, 1996), ethylene (Coupe et al., 1995), wounding and virus 
infection (Choi et al., 1996), heat shock (Hsieh et al., 1995), sucrose starvation (Hsieh et al., 
1996), UV-light (Foley & Singh, 1994), cold and salt stress (Reid & Ross, 1997), etc. 
Apparently, different types of MTs respond to different factors, which is especially true 
when treated with heavy metal stress under different concentrations. Copper increased 
AtMT1a expression more than 10-fold in 5-to-8-day Arabidopsis seedlings, while the 
expression of AtMT2a varied insignificantly during the same stage under the same 
treatment (Garcia-Hernandez et al., 1998). 1 mM Cu2+, 100 µM Cd2+ and 1 mM Fe2+ were 
found to be efficient to decrease the bean MT1 expression, when other concentrations had 
no pronounced effect (Foley et al., 1997).  
Ever since the first identification of MTs, its striking metal-binding property has been 
brought into sharp focus, which suggests MTs play the principal role in metal homeostasis 
and detoxification. In animals, MTs are well-known metal-binding proteins protecting 
against cadmium toxicity (Klaassen et al., 1999), while in plant PCs mainly take the charge 
of Cd detoxification (Zenk, 1996). MTs seem to have a broader spectrum of metal affinity 
than PCs, which points to more complicated functions. It’s proposed that MTs participate in 
maintaining the homeostasis of essential copper (Cu) or zinc (Zn) at micronutrient levels, 
and also in the detoxification of non-essential toxic metals such as cadmium (Cd) and 
arsenic (As) (Lee et al., 2004; Merrifield et al., 2004; Roosens et al., 2004).  
Though modulation of metal concentrations has great impact on cellular redox balance (Bell 
& Vallee, 2009), MTs may just scavenge reactive oxygen species (ROS) directly. With a large 
quantity of nucleophilic sulphydryl groups in the structure, MTs provide a fine nucleophilic 
“sink” to trap electrophiles and free radicals, that is, the multiple cysteine residues can react 
with superoxide (�O2–) and hydroxyl radicals (�OH) leading to their degradation (Klaassen 
& Cagen, 1981; Sato & Bremner, 1993). Moreover, MTs can be recycled via thiolate exchange 
with GST (Vasak et al., 1985). Now accumulating evidences support hypothesis that MTs 
function as an antioxidant in plants. In wild watermelon, drought-induced CLMT2 showed 
an extraordinarily high activity for detoxifying hydroxyl radicals in vitro (Akashi et al., 
2004). Three recombinant metallothionein proteins, the rice OsMT2b (Wong et al., 2004), 
cotton GhMT3a (Xue et al., 2009) and rubber tree (Hevea brasiliensis) HbMT2 (Zhu et al., 
2010), possessed hydroxyl radical-scavenging activities, even higher than the positive 
control GSH in the hydroxyl radical inhibition assays.  
Thanks to dynamic instability of metal ions in clusters, MTs can exchange metal ions with 
other metalloproteins universally necessary for a life cycle. There’s zinc transfer between 
metallothionein and zinc transporter ZnT1 (Palmiter, 2004), chelator EDTA (Leszczyszyn 
& Blindauer, 2010), SOD (Koh & Kim, 2001; Suzuki & Kuroda, 1995), and other zinc 
proteins (Jacob et al., 1998). The metal-transfer mechanism should be a cornerstone for 
MTs' dual role abstracting the toxic metals arsenic (Ngu et al., 2010) or cadmium 
(Roesijadi, 2000), as well as donating the essential metals like zinc or copper (Liu et al., 
2000). In this sense, metal-binding protein MTs are involved not merely in the 
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coordination of metal concentraions, but contribute more to diverse physiological 
processes like development or senescence. The wheat type 4 MT Ec gene was specially 
expressed during pollen embryogenesis, and its accumulation correlates well with 
increase of the plant hormone abscisic acid (ABA). It’s suggested that induced by the ABA 
signal, this zinc-containing Ec may regulate certain gene expression via zinc trafficking 
with zinc-dependent DNA/RNA polymerase or zinc-finger proteins (Reynolds & 
Crawford, 1996). MTs have been implicated during senescence in many plants (Bhalerao 
et al., 2003; Breeze et al., 2004; Buchanan-Wollaston & Morris, 2000), and hypotheses for 
MT’s role in senescence primarily reckon on either MTs' chelating and detoxifying 
abilities which alleviate the senescence-induced metal ion disturbance and oxidative 
burst, or the release of necessary metal ions to required places for nutrient recycling.  
The positive correlation between MT expression in diverse organisms and the 
environmental metal concentration suggests that MTs can be effective biomarkers of heavy 
metal pollution. Such monitoring programs have already gained great potential 
comprehensively in aquatic and terraneous invertebrates (Chu et al., 2006; Dallinger et al., 
2004; Navarro et al., 2009). In plants, MTs are favorable candidates for phytoremediation of 
heavy metal contaminants, a low-cost, effective, and sustainable plant-based approach for 
environment governance (Eapen & D'Souza, 2005; Memon & Schroder, 2009). On the other 
side, biofortification of mineral micronutrients in food crops for the benefit of human health, 
is another application and extension for metal research in plants, and MTs could also be 
contributive. The rgMT-overexpressing rice had the cysteine content in seed protein 
increased about seven-fold, which promises further enhancement of iron bioavailability 
(Lucca et al., 2002). Overexpression of OsMT1a in transgenic rice yielded significant increase 
of the zinc content in grain by 40-50% compared to wild type, making first step of possibility 
to fight zinc deficiency with zinc-rich rice (Yang et al., 2009).  

1.4 Organic acids, amino acids and chaperones 

The reactive interactions between metal ions and S, N, and O made organic acids and amino 
acids potential ligands for metal chelation. Citrate has been proposed the major ligand for 
Cd2+ at low Cd concentration within cell (Wagner, 1993), and can form Nickel-citrate 
complex in Ni-hyperaccumulating plant Sebertia acuminata (Sagner et al., 1998). The efflux of 
organic acids including citric acid has been elucidated for aluminium (Al) tolerance 
mechanisms in plant (Delhaize & Ryan, 1995). Malate and oxalate are also implicated in 
metal tolerance, metal transport through xylem sap and vacuolar metal sequestration 
(Rauser, 1999).  
The coordination of nickel with histidine has been confirmed with analyses of Ni-
hyperaccumulating and non-accumulating species. Upon Ni exposure, a large and 
proportional increase of free histidine was detected in xylem sap in Ni-hyperaccumulating 
A. lesbiacum. When supplying histidine to a non-accumulating species A. montanum, 
transgenic plant exhibited great increase of both nickel tolerance and capacity for nickel 
transport to the shoot (Krämer et al., 1996). And such histidine-dependent root-to-shoot 
translocation of Ni was also observed in Brassica juncea (Kerkeb & Kramer, 2003). 
Nicotianamine (NA), synthesized from three molecules of S-adenosyl-L L-methionine by 
nicotianamine synthase (NAS), has been primarily linked with Fe and Cu homeostasis (Hell 
& Stephan, 2003; Herbik et al., 1996; Pich et al., 2001). Through studies on NAS, NA has also 
been implicated in Zn homeostasis and tolerance (Weber et al., 2004). Other amino acid 
chelators including proline, glutathione, polyamines, etc, appear to play roles in metal 
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binding, metal hyperaccumulation, metal stress defence as well as signalling and 
antioxidation (Sharma & Dietz, 2006).  
Copper chaperones are a novel class of proteins involved in intracellular trafficking and 
delivery of copper to copper-containing proteins such as copper-ATPases or copper/zinc 
superoxide dismutase. Arabidopsis AtCCS is necessary for activation of all three types of 
Cu/ZnSOD activity (Chu et al., 2005). AtATX1 interacts in vivo with two Cu-transporting P-
type ATPases HMA5 (Andres-Colas et al., 2006) and RAN1 (Puig et al., 2007) by yeast two-
hybrid. The intracellular metal trafficking pathway model composed of Cu transporter, Cu 
pump and Cu chaperone has been proposed (O'Halloran & Culotta, 2000), and based on 
such cooperative work, chaperones make a great contribution to the metal transport, 
detoxification and remobilization (Himelblau & Amasino, 2000; Robinson & Winge, 2010).  

2. Heavy metal-induced oxidative stress and stress tolerance: Cross-talk  

Seen from a systemic view, different abiotic stresses may bring general effects on plant 
growth and development. For example, drought, salt, and cold stresses can all interrupt the 
cellular water balance leading to osmotic stress, and generate a phytohormone abscisic acid 
(ABA) for osmotic adjustment (Wang et al., 2003). ABA acts as a key endogenous messenger 
in stress response, and hence the ABA sigalling pathway is more or less involved during 
plant cross-adaptive processes (Tuteja, 2007). In addition, all abiotic stresses can accumulate 
excess ROS (reactive oxygen species) at certain stage of stress exposure leading to oxidative 
stress. However, ROS are not only toxic compounds, but sometimes play as important 
regulators for many biological processes in plants such as cell cycle, programmed cell death, 
hormone signaling, biotic and abiotic cell responses (Laloi et al., 2004). As common 
consequences of abiotic stresses, osmotic stress and the ubiquitous oxidative stress have 
been extensively studied and offer more and more evidences for cross-talk at various steps 
or levels in the complicated network of abiotic stress signalling pathways.   
Reactive oxygen species (ROS) such as �O2–, H2O2 and �OH are unavoidable by-products of 
aerobic metabolism, and also commonly generated under various stress conditions. The 
unwelcome result of ROS overproduction is the oxidative stress, which can cause extensive 
cellular damages (Miller et al., 2008). Therefore, a delicate antioxidant system is 
indispensably required to supervise the cytotoxic effects of ROS tightly. The plant 
antioxidant system consists of ROS-scavenging enzymes, such as superoxide dismutase 
(SOD), catalase (CAT), and ascorbate peroxidase (APX), as well as low-molecular-weight 
antioxidants like glutathione, ascorbate, carotenoids, metallothionein, etc (Table 1). Analysis 
with transgenic plants overexpressing these antioxidant genes revealed that maintenance of 
a high antioxidant capacity in cells is linked to increased tolerance against various adverse 
conditions (Guo et al., 2009; Jayaraj & Punja, 2008; Tseng et al., 2007; Wang et al., 2010). 
Heavy metal stresses can shift the cellular balance of free radical homeostasis into terrible 
accumulation of H2O2. For those redox-active transition metals like copper or iron, 
autoxidation in Fenton reaction and Haber–Weiss reaction will convert H2O2 to the highly 
reactive �OH molecule in a metal-catalyzed way. Non-redox-active metals like cadmium or 
mercury can also result in H2O2 accumulation and an oxidative burst via depletion of the 
antioxidant glutathione (GSH) pool and inhibition of antioxidative enzymes, especially 
glutathione reductase (GR) (Mithofer et al., 2004; Schutzendubel & Polle, 2002). To cope with 
heavy metal stress and associated oxidative stress, metallothionein, a well-known metal 
chelator and also antioxidant would possibly be a good way out. 
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Low molecular weight antioxidants 

Compounds Target 

Ascorbate O2 (1△g) , •OH, O2•, HO2• 

┚-Carotene O2 (1△g) , RO2• 

┙-Tocopherol RO2• 

Glutathione Nonspecific 
Urate O2 (1△g) , metal  

Metallothionein •OH, metal  

Flavonoid •OH and HOCl 

Phytochelatin Metal  

Enzyme antioxidants 

Enzyme Reaction catalyzed 

Superoxide dismutase 2O2•
- + 2H+ → H2O2 + O2 

Catalase 2H2O2  → 2H2O + O2 

Glutathione peroxidase H2O2 or ROOH + 2GSH → 2H2O or ROH + GSSG 

Ascorbate peroxidase H2O2 + Ascorbate → H2O + Monodehydroascorbate 

Thioredoxin Prot-S2 + Prot’(SH)2 → Prot(SH)2 + Prot’-S2 

Peroxiredoxin ROOH + R’(SH)2 → ROH + R’S2 + H2O 

Glutathione reductase GSSG + NAD(P)H + H+ → 2GSH + NAD(P)+ 

Table 1. Cellular antioxidants including low molecular weight antioxidants and enzymes of 
the ROS-scavenging system. (Adapted from Pinto et al., 2003) 

 

 

Fig. 3. The proposed model for OsMT1a’s role in stress tolerance and metal detoxification. 

Take OsMT1a for example. Yang et al. reported functional characterization of a rice type 1 
metallothionein, OsMT1a. A model has been proposed to elucidate how OsMT1a plays a 
role in drought tolerance in plant (Yang et al., 2009). On the one hand, OsMT1a can directly 
scavenge ROS via increasing activities of antioxidant enzymes CAT, POD and APX. On the 
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other hand, OsMT1a lies upstream of some zinc finger transcription factors like Ossiz, and 
may tune up downstream defense genes in virtue of these transcription factors through Zn2+ 
trafficking. Additional data reveal that some zinc/cadmium transporter genes including 
forecasted vacuolar-membrane-localized ABC transporters ABC1, MRP4 were up-regulated 
in OsMT1a transgenic plants, which probably accounts for uptake enhancement of Zn, as 
well as detoxification of toxic Cd via compartmentation into vacuole (Yang et al., 
unpublished data). Whether stomatal closure or ABA signalling is involved in OsMT1a-
mediated drought tolerance in rice will be further examined. Altogether, researches on this 
metal-binding protein metallothionein provide a convincing insight into plant cross-talk 
combined with zinc homeostasis, cadmium detoxification, ROS scavenging and stress 
tolerance (Fig 3).  
Despite their toxicity, ROS have been reevaluated in recent years as key signal molecules for 
regulating cell function and development (Rhee, 2006). In plants, the elaborate and efficient 
network of scavenging mechanisms allowed overcoming ROS toxicity and using some of 
these toxic molecules, mainly the hydrogen peroxide (H2O2) produced by cytosolic 
membrane-bound NADPH oxidases, as a signal in a wide range of abiotic stress responses 
(Bailey-Serres & Mittler, 2006; Mittler et al., 2004; Neill et al., 2002). For instance, in response 
to drought stress, ABA-induced H2O2 regulates the stomatal closing of Arabidopsis guard 
cells via activation of calcium-permeable channels in the plasma membrane (Pei et al., 2000), 
and such ABA-induced ROS production may also be involved in the phosphatidylinositol 3-
phosphate (PI3P)-mediated stomatal closure (Park et al., 2003). A vast network of genes 
have been activated by ROS accumulation, many of which are also central regulators of 
stress responses, including zinc finger protein Zat family, heat shock and WRKY 
transcription factors, multiprotein bridging factor 1c, and Rboh genes (Miller et al., 2008). 
It’s implicated that ROS could be an essential intermediate integrating different signals 
during cross-talk between abiotic stress signalling pathways.  

3. Outlook and challenges 

As the global population and food demand keep increasing fast, and yet the environment 
has been endangered worse and worse by water deficit and soil salinization, abiotic stress 
becomes one of the most harmful factors that limit the growth and productivity of crops 
worldwide. Although we keep moving forward with the understanding of heavy metal 
stress and detoxification in plant, there are many components of the complex network yet 
to be identified. Especially much remains unknown about the signalling molecules of the 
metal-induced signal transduction, including sensing of the cellular metal change and 
subsequent transcription regulation of metal-responsive genes (DalCorso et al., 2008). In 
recent years, next-generation sequencing techniques emerge and develop fast, and the 
microarray-based analyses become available and efficient for transcriptome or proteome 
high-throughput screenings, which help to identify regulatory factors for the metal 
homeostasis and still more metal transporters, low-molecular-weight chelators, 
chaperones as well. In addition, some heavy metal responsive transcription factors can 
also be induced by other abiotic stresses such as cold, dehydration, Salicylic Acid (SA) 
and H2O2, suggesting cross-talk exists between heavy metal response and other abiotic 
stress defense signalling (Fusco et al., 2005; Singh et al., 2002; Suzuki et al., 2001; Weber et 
al., 2006). Nevertheless, determining the underlying regulatory and cross-talk 
mechanisms remain a future challenge.  
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Heavy metal hyperaccumulators are unique plants capable of accumulating high amounts 
of various toxic elements (Reeves & Baker, 2000), and the active hyperaccumulation is based 
on mechanisms of internal hypertolerance to cytotoxic metals and a powerful scavenging 
system compatible for efficient uptake of the pollutants (Salt, 2006). Therefore, comparative 
studies on hyperaccumulator and non-hyperaccumulator plants will provide us a good view 
of naturally selected metal hypertolerance and hyperaccumulation. The first core set of 
candidate genes with high expression in hyperaccumulators has been identified and will be 
analyzed at biochemical and genetic level (Krämer et al., 2007). Dissecting these genes opens 
up a wide avenue for understanding the plant metal homeostasis network, and also 
agricultural genetic engineering for crop tolerance and biofortification, as well as 
phytoremediation of environmental metal pollution.  
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