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1. Introduction

Advances in high-throughput data acquisition technologies, e.g. microarray and
next-generation sequencing, have resulted in the production of a myriad amount of molecular
profiling data. Consequently, there has been an increasing interest in the development of
computational methods to uncover gene association patterns underlying such data, e.g. gene
clustering (Medvedovic & Sivaganesan, 2002; Medvedovic et al., 2004), inference of gene
association networks (Altay and Emmert-Streib, 2010; Butte & Kohane, 2000; Zhu et al., 2005),
sample classification (Yeung & Bumgarner, 2005) and detection of differentially expressed
genes (Sartor et al., 2006). However, outcome of any bioinformatics analysis is directly
influenced by the quality of molecular profiling data, which are often contaminated with
excessive noise. Replication is a frequently used strategy to account for the noise introduced
at various stages of a biomedical experiment and to achieve a reliable discovery of the
underlying biomolecular activities.

Particularly, estimation of the correlation structure of a gene set arises naturally in many
pattern analyses of replicated molecular profiling data. In both supervised and unsupervised
learning, performance of various data analysis methods, e.g. linear and quadratic
discriminate analysis (Hastie et al., 2009), correlation-based hierarchial clustering (Eisen et al.,
1998; de Hoon et al., 2004; Yeung et al., 2003) and co-expression networking (Basso et al., 2005;
Boscolo et al., 2008) relies on an accurate estimate of the true correlation structure.

The existing MLE (maximum likelihood estimate) based approaches to the estimation of
correlation structure do not automatically accommodate replicated measurements. Often, an
ad hoc step of data preprocessing by averaging (either weighted, unweighted or something
in between) is used to reduce the multivariate structure of replicated data into bivariate
one (Hughes et al., 2000; Yao et al., 2008; Yeung et al., 2003). Averaging is not completely
satisfactory as it creates a strong bias while reducing the variance among replicates with
diverse magnitudes. Moreover, averaging may lead to a significant amount of information
loss, e.g. it may wipe out important patterns of small magnitudes or cancel out opposite
patterns of similar magnitudes. Thus, it is necessary to design multivariate correlation
estimators by treating each replicate exclusively as a random variable. In general, the
experimental design that specifies replication mechanism of a gene set may be unknown
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42 Advanced Biomedical Engineering

(blind) or known (informed) to data analysts. The suite of multivariate models and algorithms
offer flexible ways to capture the correlation structure of a gene set with diverse replication
mechanisms and allow for further generalizations.

In this chapter, we present bivariate and multivariate approaches to estimate the correlation
structure of a gene set with replicated measurements. We begin with two popular bivariate
correlation estimators, Pearson’s correlation (Eisen et al., 1998; Kung et al., 2005) and
SD-weighted correlation (Hughes et al., 2000; Yeung et al., 2003) followed by a comprehensive
discussion of three generalized multivariate models, blind-case model, informed-case model
and finite mixture model introduced in (Acharya & Zhu, 2009; Zhu et al., 2007; 2010) to
estimate the correlation structure of a gene set with either blind or informed replication
mechanism. We analyze the performance of various correlation estimators using synthetic
and real-world replicated data sets.

2. Replicated molecular profiling data

Molecular profiling data in the present context refers to a numerical matrix of gene abundance
levels, where rows correspond to genes and columns represent experiments (samples).
High-throughput platforms, such as microarrays, enable the scientists to simultaneously
interrogate the expression abundance of tens of thousands of genes in the living cell. A
microarray experiment is typically performed by hybridizing target cRNA samples labeled
with fluorescent dyes on a glass slide spotted with oligonucleotides. After hybridization,
the glass slide is washed and scanned to detect the gene expression levels. Some of the
popular microarray platforms include Affymetrix GeneChip, Agilent Microarray, Illumina
BeadArray and housemade twocolor arrays. Based on the experimental design employed by
a data acquisition platform, the replication mechanism underlying molecular profiling data
can be either blind or informed to data analysts (Figure 1). For example, the measurements
from Affymetrix GeneChip platform (Lokhart et al., 1996) correspond to blind replication
mechanism, where expression levels of a gene are measured by designing a set of 11
perfect match sibling probes against the 3-prime end of mRNA, although a mixture of gene
isoforms can exist. On the other hand, some of the more recent Illumina hybridization-based
BeadArray (Gunderson et al., 2004) and deep sequencing based Genome Analyzer II
(Shendure & Ji, 2008) platforms utilize an informed replication mechanism. Indeed, such
platforms simultaneously profile 6 — 12 samples of whole-genome gene expression in a
chip, where both biological and technical replicates can be used in the experiment. Many
studies also use a more general replication strategy of combining the two mechanisms, e.g.
blind replication mechanism nested within the informed mechanism and vice versa (Kerr &
Churchill, 2001). It is necessary to explicitly consider both blind and informed mechanisms
for a robust pattern analyses of replicated data. For instance, Fig. 1 presents two gene sets
with the same number of replicated measurements, however, their underlying correlation
structures differ by incorporating the prior knowledge of replication mechanism. For a
comprehensive correlation based analysis of replicated molecular profiling data with both
blind and informed replication mechanism, we refer to (Zhu et al., 2010).

3. Bivariate correlation estimators

In this section, we discuss two bivariate correlation estimators, Pearson’s correlation (Eisen
et al., 1998; Kung et al., 2005; Rengarajan et al., 2005) and SD-weighted correlation (Hughes
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Fig. 1. Correlation structures (left) and molecular profiling data (right) corresponding to a
pair of genes, each with 4 replicated measurements. The upper panels represent the
correlation structure and molecular profiling data with blind replication mechanism,
whereas the lower panels correspond to the ones with informed replication mechanism. In
case of informed replication mechanism 2 biological replicate and 2 technical replicates
nested within each biological replicates are used for a gene.
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et al., 2000; van’t Veer et al., 2002; Yeung et al., 2003), frequently used in the analysis of
replicated molecular profiling data. We assume that the abundance levels of two genes X
and Y with m; and m; replicated measurements respectively, are simultaneously measured
over n independent experiments. If x;; and y;; denote the abundance levels of X and Y in the

i'" replicate and jt" sample respectively, we write

1 '
g=—Y x (1)
[ l; ij
and |
¥j = . Y i ()

i=1

for the average measurements in the j sample,

1 n
r==) % (3)
n &
j=1
and
o1&
7= ©)
j=1
for the grand means of the measurements,
2. 1 & o \2 5
sx(j) = 1 Z;(xij — %) (5)
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for the variances in the j** sample,
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- j
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and
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for the SD-weighted average measurements correspondingto Xand Y,j=1,...,n.

3.1 Pearson’s correlation estimator

Pearson’s correlation coefficient is a well-known similarity measure for clustering molecular
profiling data (Eisen et al., 1998). The estimate of correlation between X and Y is defined
in terms of unweighted average of replicated measurements for a gene across different
experiments (Kung et al., 2005; Rengarajan et al., 2005) and is given by

Y (% — %) (7 — )
VI (5 = D25 (7 - )2

cor(X,Y) = )
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In case of a gene set with k genes Xj, ..., X, where m; replicated measurements are available
for X;, the correlation structure is defined by all pairwise correlations cor(X;, X]-), i,j =
1,...,k. Due to its closed-form representation, Pearson’s estimator enjoys computational
simplicity. However, it is exclusively based on estimating bivariate correlation from a data
with multivariate structure. Additionally, the estimator assigns equal weights to all replicates
of a gene without considering the variation in their magnitudes, which is often large for data
generated from high-throughput platforms. To overcome this problem, a number of more
generalized correlation estimators have been proposed by considering weighted average of
replicated measurements in place of simple average.

3.2 SD-weighted correlation estimator

The SD-weighted correlation estimator considers weighted average of replicated
measurements, where weights are determined by standard deviations of the measurements
across different experiments. The SD-weighted correlation between X and Y is defined as
(Hughes et al., 2000; Zhu et al., 2010)

Crr) ()
corw(X,Y) =1 ) (50 . (10)
X; Xw w
\/271 =0 71<y]<]y>)

Advantages of SD-weighted correlation have been demonstrated in terms of increased
accuracy and stability in cluster analysis, compared with Pearson’s estimator (Yeung et al.,
2003). Nevertheless, SD-weighted estimator also does not explicitly accommodate replicated
measurements and requires a preprocessing of data by computing their weighted average. In
averaging, many useful patterns of small magnitude may be wiped out or patterns of opposite
magnitude may be canceled out. Moreover, standard deviation of replicated measurements
may not be a faithful representation of their internal variation, specially when the number
of replicates is small. This problem has been addressed by considering a shrinkage version of
the correlation estimator (Yao et al., 2008), however, none of the aforementioned estimators are

ready to explicitly accommodate replicated data and exploit prior knowledge of experimental
design that explains replication mechanism.

4. Multivariate correlation estimators

In this section, we review three multivariate models, blind-case model (Acharya & Zhu,
2009; Zhu et al., 2007), informed-case model (Zhu et al., 2010) and finite mixture model
(Acharya & Zhu, 2009) for estimating the correlation structure from replicated measurements
corresponding to a gene set with blind or informed replication mechanism. Throughout this
section, we treat each replicated measurement individually as a random variable and assume
that data are independently and identically distributed samples from a multivariate normal
distribution. We discuss the parameter structures for each model and their estimation from
replicated measurements corresponding to a pair of genes X and Y or a gene set with k
genes X, ..., Xy. It is assumed that gene abundance levels are measured over n independent
samples, where 11; replicated measurements of the i’ gene X; are available in each of them,
i=1,..., k. We denote the n multivariate samplesby Z;, j =1,...,n
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4.1 Blind-case model

Blind-case model from (Acharya & Zhu, 2009; Zhu et al., 2007) estimates the correlation
structure of a gene set with replicated measurements by assuming a constrained set of
parameters in the multivariate normal distribution. The model is designated as ‘blind” since it
imposes a fixed number of within-molecular and between-molecular correlation parameters
in the underlying correlation structure. Throughout this section, we follow the notations from
(Acharya & Zhu, 2009). The parameters, mean vector yp and the correlation matrix Xp, for
the blind-case model are defined as

:uJ%eml
up =1, 11)
]/lngmk
where yf’_ is a scalar and ey, = (1,...,1)7 is a vector of size m; x 1, fori = 1,...,k. The

correlation matrix Xp of size Zﬁ-‘zl m; X Zi‘(:l m; has the following structure

1 ...pll...plk---plk_
,011---1 cor Pk - - P1k

Pkl---Pkl---l ---Pkk

LOKk1 - Pk1 - Prk -+ 1]

[y B B

DY ¥4
=1 : | (12)

BT B
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where 25 is a m; x m; submatrix defined in terms of a single parameter p;;. The parameters
pij's correspond to either within-molecular correlation (case i = j) or between-molecular

correlation (case i # j). As a correlation matrix is symmetric, it is assumed that p;; =
pji- For practical purposes, only between-molecular correlations are of interest, whereas
within-molecular correlations indicate data quality. Indeed, higher values of within-molecular
correlations correspond to cleaner data.

To estimate the model parameters, the path of maximum likelihood estimation is followed.
Due to their asymptotic properties, the MLE'’s are frequently used in parameter estimation
problems when the underlying distribution is multivariate normal (Casella & Berger, 1990).
Suppose the 1 observations Z;’s are sampled from multivariate normal distribution N(y, %)

with parameters y and X, where n > Zﬁ-‘zl m;. Then the likelihood function is defined as
1 1 ¢

exp[—> ]; (Zi=w'E Y Z =) (13)

n
L(u,%2) = N(Z:\u,2) =
(}’l ) g ( ]|]/l ) (27_[)%(2le mi)n|2’%n
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The MLE’s are estimated by maximizing L with respect to y and X. In the present context,
if the the abundance level of I gene in its i'" replicate and " sample is denoted by x! ;, the

MLE's of up and Xp are obtained by solving

dc/duf =0, (14)
forl =1,...,kand
dL/dx =0, (15)
where £ = log L. This results in
- 11 & &
iy, = i Y. ) xfj (16)
Ij=1i=1
forl =1,...,k. Thus, the MLE of up is
ﬁg] €my
fip= : (17)
~B
Hic emy
The MLE of X3 is given by
A 1 n ~ ~ T
Xp = Y (Zj—pp)(Zj—fiB)". (18)
j=1

As the parameters p;;’s may not be tractable in practice, they are estimated using
pij = Avg(£0), i,j=1,...k. (19)

Equations 17-19 are used to obtain the correlation structure from blind-case model. When k =
2, blind-case model is defined in terms of two within-molecular and one between molecular
correlation parameters, as presented in (Zhu et al., 2007). Further, if there are no replicates for
X and Y or m; = mp = 1, blind-case model and Pearson’s correlation coefficient (Eq. 9) are
connected as follows (Zhu et al., 2007)

n—1

P12 = cor(X,Y). (20)
Overall, blind-case model presents a simple and parsimonious multivariate approach for
estimating the correlation structure of a gene set with blind replication mechanism. As the
MLE'’s of parameters have closed-form representation, the model is computationally very
efficient, e.g. it is well known that the infinite Bayesian mixture model approach (Medvedovic
& Sivaganesan, 2002; Medvedovic et al.,, 2004) suffers from non-trivial computational
complexity as the number of genes and replicated measurements increases. However,
blind-case model always imposes a fixed number of parameters in the model. This may
correspond to an oversimplified representation of the underlying correlation structure of a
gene set or an overly constrained correlation structure in case of replicated data for which
the underlying experimental design is known. Thus, it is desirable to consider more flexible
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multivariate models by explicitly incorporating prior knowledge of replication mechanisms
in the correlation structure.

4.2 Informed-case model

Informed-case model introduced in (Zhu et al.,, 2010) generalizes blind-case model by
accommodating prior knowledge of replication mechanism. In many cases the number of
biological and technical replicates used in the experimental design are known. Informed-case
model utilizes this information and assigns different parameters for the biological replicates
of a gene. For simplicity, we present the informed-case model for two genes X and Y, where 3
biological replicates and 2 technical replicates nested within each biological replicate are used
for each of them. This representation can be naturally extended to the case of a gene set with
a given number of biological and technical replicates. Throughout this section, we follow the
notations from (Zhu et al., 2010). The two parameters, mean vector y; and correlation matrix
2., for the informed-case model are defined as

T
i = (e 1318 153 13 b 1 15 185 183) (21)

and

G 0 8 02 ol o o 8
P 1 2% 0 3 O3 Pxy Pay Pxy Py Pxy Pay
ox oy 1ot T 08 0y oy Py Py Py Py
oy ox 01 1P P Py Py Py Py Py Py
ox o2 px P 10" Py Py Pay Pry 3y 02
oy 03 o3 PY P 1 PRy PRy PRy Py PRy PR -
11 .11 21 421 31 311 tt 1% 12 lg 1% ’ ()
Pxy Pxy Pxy Pxy Pxy Pxy P Py Py Py Py
11 511 421 521 31 31 it 1 12 12 13 12
Pxy Pry Py Py Pxy Py P 1 02 o) oy oy
1% 1% 2 Zg 3% 3% 21 421 1 tt 23 23
ng ng Px ng pxg pxg Py Py P pg pg
0%y Oxy Oy 0%y O3y Oy Oy 071 P 1 o7 o3
Pxy Pxy Py O3y O3y Py Py oy oy oy 1 o

13 513 23 23 33 33 31 31 .32 .32 it
Pxy Pxy Pxy Pxy Pxy Pxy Py Py Py oy o 1

where py, ply] and sz denote within-molecular and between-molecular correlations between
i and j* biological replicates. As the technical replicates of a biological replicate are often
highly correlated, we use a single parameter p'! to represent their correlation.

Analogous to the case of blind-case model (Eq. 14 and Eq. 15), the MLE’s i and %! are given
by the following sets of equations

]- 1 n Z{:l Iflﬂl
iyt = w Y Y. xie 1< jm <Jm (23)
T k=151 1144
jm ]- & Z{:l 71”2 .
e = —— Y v 1 e < Jmg 4)
Imzi’l k=1 i:Z;:1 1171+1

myp
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Al N | N | A]m A]m A1 A1 A]m A]m T
= (yx,...,yx,...,yx LBy ey Ry 2) (25)
and
£ f )" 26)
Here, Jin,, Jm, denote the number of biological replicates for X and Y, whereas If;1 ﬁ 1<
Jmy < Jmys 1 < jm, < Jm,, represent the number of technical replicates nested within ]t and
]m2 biological replicate respectively, where ZI ! I] = mj and mez I] = my. However, on

averaging the off-diagonal block of %! to estimate a single correlatlon value, as in the case
of blind-case model (Eq. 19), between-molecular correlations from informed-case model and
blind-case model become identical (see (Zhu et al., 2010) for proof). To exploit the informed
replication mechanism and compare model performances, likelihood ratio test based methods
(Anderson, 1958) are used. Indeed, the hypothesis

Hy:Z € N(pu,%g) versus Hy: Z € N(u, %)

is tested by considering (y,%) = (up,Xp) and (4, X) = (1, X;). Matrix Xy is obtained by
setting the off-diagonal entries in X to 0. Likelihood ratio test statistics for blind-case and
informed-case models are calculated using

Y = -2 log(A) (27)

where

A,

Rl T exp(F T (2 - )5 (Z - )
£l 2exp(5 Ty (Z; — p)TEU(Z; - )

Under null hypothesis, the two statistics Y% = —2log A and ¥! = —2log A! corresponding
to blind-case and informed-case model follow an asymptomatic chi-square distribution with
1 and i, Jm, degrees of freedom, respectively. Thus, the model performances can be
evaluated by comparing the P-values (P) from blind-case and informed-case models or
directly comparing the difference ¥/ — ¥® to the chi-square distribution with [y, J;, — 1
degrees of freedom. For a more detailed study on informed-case model, we refer to (Zhu
et al., 2010).

It is clear that informed-case correlation estimator generalizes blind-case model by explicitly
considering prior knowledge of experimental design. When there is only one biological
replicate for each gene in replicated data, the two models become identical. Although
informed-case model is useful, it is not practical to design a correlation structure that
will fit for any replicated molecular profiling data. A key is to adaptively determine the
underlying correlation structure by balancing between a model with a constrained set of
parameters and the one without any constraints. This situation can be translated into the
Expectation-Maximization (EM) framework (Dempster et al., 1977), where we seek for the
missing membership of a multivariate observation in either a component with a constrained
set of parameters or the one with an unconstrained set of parameters. EM algorithm plays a
crucial role in the following generalization of blind-case or informed-case model.

(28)
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4.3 Finite mixture model

In the finite mixture model approach (Fraley & Raftery, 2002; McLachlan & Peer, 2000), density
of an observation is modeled as mixture of a finite number of component densities. Such an
approach can be used to shrink the correlation structure of a gene set between a constrained
correlation structure and an unconstrained one. Advantages of shrinkage approach have
been demonstrated in many related studies (Schéfer & Strimmer, 2005; Zhu & Hero, 2007).
In the following discussion, we consider the two-component mixture model approach from
(Acharya & Zhu, 2009), where the density of each multivariate observation Z; is modeled as a
mixture of two component densities denote by f1(Z;) and f2(Z;). This is expressed as

f(Z;,¥) = m fA(Z)) + m2 f2(Z)), (29)

where 711 and 71p stand for mixture proportions with 711 + 71 = 1 and ¥ denotes the set of all
parameters in the mixture model, j = 1,...,n. The first component in the mixture represents
either blind-case or informed-case estimator, whereas the second component corresponds
to the unconstrained ):le m;-variate multivariate normal distribution. Let 6; = {yu;, %;}
denote the set of parameters for the ith component, i = 1, 2, where ; = {up, g} or
61 = {p1, £;}. Finite mixture model employs EM algorithm (McLachlan & Peer, 2000) to
estimate the posterior probability that the j* observation belongs to the i*" component of
the mixture. Thus, incompleteness in the EM framework is incorporated by considering
the component-indicator vectors z;’s, j = 1,2,...,n, where (z]-)i = zj; = 1if Z; is sampled
from the i component, as unobserved. Complete data is comprised of the observations Zj's

together with the component-indicator vectors z;’s. The E step and M step at the (k + 1)th
iteration are defined as

E-step: Fori =1, 2,
7 fi(z;;60)

Ti(Z]‘;“II(k)> = A 2 (30)
iy fn(Zj:0)
where 7;(Z;; ¥(K)) is the posterior probability that Z; belongs to the it" component.
M-step: Fori =1, 2,
1 & .
nt = ) w(ziyW) (31)
j=1
n k)
k+1 j=1Tij “]
.“iJr =~ Ten () (32)
=15
n (K (k)N (KEDNT
gkl _ =1 T (Zj =1 Z(ZJ wo) (33)
n (k)

=1

where Ti(jk) = T,-(Z]-;‘I’(k)). EM algorithm iterates between the E step and the M step until
convergence. Finally, an observation Z; corresponds to a component model for which it
has higher posterior probability of belonging, j = 1,2,...,n. However, in many cases the
sequence {log L(¥¥)} of log-likelihood values generated in the iterative procedure may not
be bounded or it may be trapped in a local solution (McLachlan & Peer, 2000). Consequently,
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Fig. 2. Comparison of the multivariate blind-case model and bivariate Pearson’s correlation
estimator. In the figure, the x-axis corresponds to data quality and y-axis represents MSE
ratio, which is the ratio MSE from Pearson’s estimator/MSE from blind-case model. Pair of
genes, each with 4 replicated measurements across 20 samples, were considered in the
comparison. The between molecular correlation parameter (rtho) was set at 0.2 (low) and 0.4
(medium), respectively.

the unconstrained EM algorithm presented above may not necessarily converge to the MLE
¥. To reduce various problems associated with the convergence of EM algorithm, remedies
have been proposed by constraining the eigenvalues of the component correlation matrices
(Ingrassia, 2004; Ingrassia & Rocci, 2007). For example, the constrained EM algorithm
presented in (Ingrassia, 2004) considers two strictly positive constants 2 and b such that
a/b > c, where ¢ € (0 1]. In each iteration of the EM algorithm, if the eigenvalues of the
component correlation matrices are smaller than g, they are replaced with a and if they greater
than b, they are replaced with b. Indeed, if the eigenvalues of the component correlation
matrices satisfy a < Aj(Zi) < b fori = 1,2,j = 1,2,..., le m;, then the condition
Amin (2125 1) > ¢ (Hathaway, 1985) is also satisfied, and results in constrained (global)
maximization of the likelihood.

5. Results

5.1 Simulations

In this section, we evaluate the performance of multivariate and bivariate correlation
estimators using synthetic replicated data. In Figure 2, we compare multivariate blind-case
model and bivariate Pearson’s correlation estimator by simulating 1000 synthetic data sets
corresponding to a pair of genes, each with 4 replicated measurements and 20 observations.
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Fig. 3. Comparison of the multivariate blind-case model and informed-case model with
increasing data quality and sample size, as presented in (Zhu et al., 2010). Pair of genes, each
with 3 biological replicates and 2 technical replicates nested within a biological replicate,
were considered in the comparison. The range of between-molecular correlation parameters
was set at M (0.3-0.5). Two upper panels correspond to replicated data with sample size

n = 20 (left) and n = 30 (right), and the lower panels correspond to the ones with n = 40
(left) and n = 50 (right).
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Fig. 4. Comparison of the multivariate blind-case model and informed-case model with
increasing number of technical replicates, as presented in (Zhu et al., 2010). Pair of genes,
each with 3 biological replicates and 20 observations were considered in the comparison. The
range of between-molecular correlation parameters was set at M (0.3-0.5). The left and right
panels correspond to 1 and 2 technical replicates nested within a biological replicate,
respectively.

Along the x-axis, L (low: 0.1 — 0.3), M (medium: 0.3 — 0.5) and H (high: 0.5 — 0.7) represent the
range of within-molecular correlations for each of the two genes. The y-axis corresponds to
MSE (mean squared error) ratio, which is the ratio of MSE from Pearson’s estimator over MSE
from blind-case model. Thus, MSE ratio greater than 1 indicates the superior performance
of blind-case model. We fixed the between molecular correlation parameter at 0.2 (low) and
0.4 (medium), respectively. As shown in Fig. 2, all examined MSE ratios were found greater
than 1. Figure 2 also demonstrates that the performance of blind-case model is a decreasing
function of data quality. This observation makes blind-case model particularly suitable for
analyzing real-world replicated data sets, which are often contaminated with excessive noise.
Figure 3 and Figure 4 represent parts of more detailed studies conducted in (Zhu et al., 2010)
to evaluate the performances of multivariate correlation estimators. For instance, Figure 3
compares the multivariate blind-case model and informed-case model with increasing data
quality and sample size. Synthetic data sets corresponding to a pair of genes, each with
3 biological replicates and 2 technical replicates nested within a biological replicate in 20
experiments were used in the comparison. The model performances were estimated in
terms of — log,(P) values. Higher — log, (P) values indicate better performance by a model.
As demonstrated in Fig. 3, informed-case model significantly outperformed the blind-case
model in estimating pairwise correlation from replicated data with informed replication
mechanisms. It is also observed in Figure 3 that blind-case and informed-case models are
increasing functions of sample size and decreasing functions of data quality. The two models
were also compared in terms of increasing number of technical replicates of a biological
replicate, as demonstrated in Figure 4. We conclude from Figure 4 that blind-case and
informed-case models are decreasing functions of the number of technical replicates nested
with a biological replicate.
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Fig. 5. Comparison of the multivariate blind-case model and two-component finite mixture
model in terms of MSE ratio, as presented in (Acharya & Zhu, 2009). MSE ratio is calculated
as MSE from blind-case model/MSE from mixture model. Gene sets with 2, 3, 4 and 8 genes,
each with 4 replicated measurements across 20 samples were considered in the comparison.

Fig. 5, originally from (Acharya & Zhu, 2009), compares the performance of blind-case model
and two component finite mixture model in estimating the correlation structure of a gene
set. The constrained component in the mixture model corresponds to blind-case correlation
estimator. Fig. 5 plots the model performances in terms of MSE ratio defined as MSE from
blind-case model/MSE from mixture model. The number of genes in a gene set are fixed at
G =2, 3, 4and 8. In Fig. 5, almost all examined MSE ratios greater than 1 indicate an overall
better performance of the mixture model approach compared with blind-case model. Fig. 5
also indicates that the performance of finite mixture model is a decreasing functions of data
quality and number of genes in the input.

5.2 Real-world data analysis

In Figure 6-8, we present real-world studies conducted in (Acharya & Zhu, 2009), where
blind-case model and finite mixture model were used to analyze two publically available
replicated data sets, spike-in data from Affymetrix (http://www.affymetrix.com) and
yeast galactose data (http://expression.washington.edu/publications/kayee)
from (Yeung et al., 2003). Spike-in data comprises of the gene expression levels of 16 genes
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Fig. 6. Comparison of two multivariate models, blind-case model and finite mixture model,
in estimating pairwise correlations among genes in spike-in data, as presented in (Acharya &
Zhu, 2009).

in 20 experiments, where 16 replicated measurements are available for a gene. Correlation
structures estimated using spike-in data were compared with the nominal correlation
structure obtained from a prior known probe-level intensities. On the other hand, yeast
data contains the gene expression levels of 205 genes, each with 4 replicated measurements.
Yeast data was used to assess model performances in hierarchial clustering by utilizing a prior
knowledge of the class labels of 205 genes.

Figure 6 compares the performance of blind-case model and mixture model in estimating
pairwise correlation between genes present in spike-in data. We observed that for almost
82% of the probe pairs, mixture model provided a better approximation to the nominal
pairwise correlation compared with blind-case model. The two models were further
employed to estimate the correlation structure of a gene set. Figure 7 corresponds to the
correlation structure of a collection of 10 randomly selected probe sets from spike-in data.
As demonstrated in Figure 7, an overall better performance of mixture model approach was
given by lower squared error in comparison to blind-case model.

Finally, blind-case model and mixture model were utilized to estimate the correlation
structures from 150 subsets of yeast data, each with 60 randomly selected probe sets. The
estimated correlation structures were used to perform correlation based hierarchial clustering.
Figure 8 compares the clustering performance of blind-case model and mixture model in
terms of Minkowski score. Minkowski score is defined as ||C — T||/||T||, where C and T
are binary matrices constructed from the predicted and true labels of genes, respectively. C;;
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Fig. 7. Comparison of the multivariate blind-case model and finite mixture model in
estimating the correlation structure of a gene set, as presented in (Acharya & Zhu, 2009). The
figure corresponds to a gene set comprising of 10 randomly selected probe sets in spike-in
data. Each index along the x-axis represents a probe set pair and y-axis plots squared error
values in estimating nominal correlations.

=1, if i’ and j** gene belong to the same cluster in the solution and 0 otherwise. Matrix
T is obtained analogously using the true labels. A lower Minkowski score indicates higher
clustering accuracy. In Figure 8, an overall better performance of two-component mixture
model approach was observed in almost 73% cases.

6. Conclusions

Rapid developments in high-throughput data acquisition technologies have generated vast
amounts of molecular profiling data which continue to accumulate in public databases. Since
such data are often contaminated with excessive noise, they are replicated for a reliable
pattern discovery. An accurate estimate of the correlation structure underlying replicated
data can provide deep insights into the complex biomolecular activities. However, traditional
bivariate approaches to correlation estimation do not automatically accommodate replicated
measurements. Typically, an ad hoc step of data preprocessing by averaging (weighted,
unweighted or something in between) is needed. Averaging creates a strong bias while
reducing variance among the replicates with diverse magnitudes. It may also wipe out
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Fig. 8. Performance of the multivariate blind-case model and finite mixture model in
clustering yeast data, as presented in (Acharya & Zhu, 2009). Each index along the x-axis
corresponds to a subset of yeast data comprising of 60 randomly selected probe sets. The
y-axis plots model performances in terms of Minkowski score. An overall better performance
of the mixture model approach is given by lower Minkowski scores in almost 73% cases.

important patterns of small magnitudes or cancel out patterns of similar magnitudes. In
many cases prior knowledge of the underlying replication mechanism might be known.
However, this information can not be exploited by averaging replicated measurements. Thus,
it is necessary to design multivariate approaches by treating each replicate as a variable.
In this chapter, we reviewed two bivariate correlation estimators, Pearson’s correlation and
SD-weighted correlation, and three multivariate models, blind-case model, informed-case
model and finite mixture model to estimate the correlation structure from replicated molecular
profiling data corresponding to a gene set with blind or informed replication mechanism. Each
of the three multivariate models treat a replicated measurement individually as a random
variable by assuming that data as independently and identically distributed samples from a
multivariate normal distribution. Blind-case model utilizes a constrained set of parameters
to define the correlation structure of a gene set with blind replication mechanism, whereas
informed-case model generalizes blind-case model by incorporating prior knowledge of
experimental design. Finite mixture model presents a more general approach of shrinking
between a constrained model, either blind-case model or informed-case model, and the
unconstrained model. The aforementioned multivariate models were used to analyze
synthetic and real-world replicated data sets. In practice, the choice of a multivariate
correlation estimator may depend on various factors, e.g. number of genes, number of
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replicated measurements available for a gene, prior knowledge of experimental design etc.
For instance, blind-case and informed-case models are more stable and computationally more
efficient than iterative EM based finite mixture model approach. However, considering
the real-world scenarios, finite mixture model assumes a more faithful representation of
the underlying correlation structure. Nonetheless, the multivariate models presented here
are sufficiently generalized to incorporate both blind and informed replication mechanisms,
and open new avenues for future supervised and unsupervised bioinformatics researches
that require accurate estimation of correlation, e.g. gene clustering, gene networking and
classification problems.
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