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1. Introduction 

The continuous evolution in the development and use of ceramics in various applications, 
which have hitherto not been considered, have been studied in order to reduce costs and 
increase the mechanical properties, promoting a longer life applications, with quality 
assurance. 
When considering the use of ceramics in structural materials as materials for implants and 

implant components, it can be noted as acceptable to meet the demands from the work of 

mastication, bending fracture strength of about 250MPa and toughness fracture, fracture 

toughness, about 3MPa.m1/2. It is understood that results of these characterizations above 

indicators guarantees of reliability (ANUSAVICE, 2005). 

The polycrystalline tetragonal zirconia is widely used as an agent for other toughened 

ceramics, because this material has a phase transformation induced by stress, a change of 

metastable tetragonal phase to monoclinic phase is accompanied by a volume expansion (3-

6%), as specialized bibliographies. The transformation absorbs part of the energy required 

for crack propagation, with an increase in fracture toughness. 

Bioglasses are bioactive materials, which are based on the following hypothesis: "The 

biocompatibility of an implant material is great if the material provides the formation of 

normal tissue on its surface and, additionally, if it establishes a seamless interface capable of 

withstanding the loads that normally occur at the site of implantation"(KOHN; 

DUCHEYNE; AWERBUCH, 1992). 

The use of Bioglasses as sintering additives was studied by Amaral (AMARAL, 2002) in 

Si3N4 and Huang (HUANG, 2003) in ZrO2. This practice reduced the final sintering 

temperature, without significantly affecting the properties of these materials for dental 

applications. 
In the present work was used as sintering additive, a Bioglass system CaO-P2O5-SiO2-MgO, 
for application as biomaterial. The use of this additive reduced the final sintering 
temperature, reducing the manufacturing cost of the product while maintaining the 
biocompatibility of the product. The bioactive, by having the thermal expansion coefficient 
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close to the materials used in coatings in cosmetic dental implants, improve the adhesion 
between implant components based on ZrO2 and the crown (prosthetic) teeth. It is expected 
that the Bioglass intergranular additive occupies the interstices and gaps of zirconia and 
thereby minimize the internal porosity, increasing the mechanical strength and fracture 
toughness in sintered materials at low temperatures, since the interstices and voids 
represent the possibility of appearance of micro cracks. 
The main objective of this study is to evaluate the microstructural aspects and the physical 
and mechanical properties of Y-TZP ceramics, ZrO2(Y2O3), sintered, and Bioglass system 
3CaO-P2O5-SiO2-MgO as an additive to liquid phase sintering. 

2. Materials 

The materials used in this work were commercially available: 
Tetragonal yttria stabilized Zirconia (ZrO2) ceramic Y-TZP  containing 3mol% Y2O3, with 
particle average size of 0.97 µm;Ca (H2PO4) 2.H2O, high purity (99.99%); CaCO3, high purity 
(99.99%);  SiO2, high purity (99.99%) and MgO, high purity (99.99%). 

3. Experimental procedures 

The necessary procedures of processing steps and characterization of materials used in this 
work are shown in Figure 1. 
 

 

Fig. 1. Flowchart of activities 
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Was evaluated the content of Bioglass on the results of densification, flexural strength and 

fatigue, shrinkage during sintering, and the effects on the microstructural configuration. To 

determine density variations were measured and weighed the compressed green and after 

sintering. 

3.1 Preparation of Bioglass 

It was prepared a composition of Bioglass, based on 52.75wt% CaOP2O5, 30wt%SiO2, 

17.25wt% MgO. This composition was studied by Oliveira (OLIVEIRA et al., 1997) and 

presented biocompatibility with high bioactivity. 

The powders were mixed in a rotary mill for 2 hours using pot stirring rod and 

polypropylene, in the midst of isopropyl alcohol with zirconia balls for sintered necessary 

homogenization. 

Once mixed, the powders were dried in an oven (110ºC) for 24 hours, sieved (sieve 63μm) 

and melted at a temperature of 1550°C, the air in a platinum crucible for 2 hours with a 

heating rate of 10°C/min. The cast (Bioglass) was then rapidly quenched in water at room 

temperature to obtain better fragmentation and amorphization. 

The Bioglass was taken to the oven for drying, and subsequently fragmented with the use of 

an agate mortar, ground and passed through a sieve of 32μm. The powder, after screening, 

was subjected to characterization using the techniques of X-Ray Diffraction, Scanning 

Electron Microscopy (SEM) and Dilatometry. 

3.2 Preparation of mixture of powders 

Compositions were prepared from powder mixtures, adding distinct Bioglass content 

ranging from 3 to 5 and 10wt% by weight in the mixture with ZrO2 (Y2O3). Higher values 

were inviable, since their low mechanical properties due to the small degree of densification, 

as the evaluations carried out previously by Habibe (HABIBE, 2007). 

The raw materials were mixed in attrition mill amid isopropyl alcohol and stirred at 1000 

rpm for 2 hours. For every 100g of powder mixtures during milling were used 180g of 

zirconia balls of sintered with an average diameter of 2mm. The stirring rod and grinding 

chamber, used herein, are made of polypropylene, to prevent contamination of powder 

mixtures for possible chafing with the surfaces in contact. 

After milling, drying was performed for each mixture, using the vacuum absorption of 

excess fluid. The drying process was completed in an oven at a temperature of 100ºC for 24 

hours. The powders were then subjected to screens: 425, 125, 63 and 32μm. Again it was 

used agate mortar for each overflow of sieves. 

3.3 Sample preparation 
3.1.1 Characterization of powders 

(i) Thermal analysis of ZrO2-Bioglass 

The coefficients of thermal expansion and glass transition temperature of the compositions 

were determined by dilatometry using dilatometer - BAHR Thermoanalyse GmbH DIL801L 

2000 Model, furnace 7040 (1600ºC). Samples of 3mm x 3mm, 10mm in length were prepared 

with standard measure based on Al2O3, and heated air, heating rate 25°C/min and cooling 

at 5ºC/min. 
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(ii) Analysis of phases in mixing of powders 

The phases present, both the powders of departure and the powder mixture were identified 

by X-Ray Diffraction, using diffractometer model XRD-6000 Shimadzu, which is a radiation 

‘Cu-Kα’, with scanning between 20º and 80º, applying step angle of 0.05° and 3 seconds to 

scan for point counting. The peaks were identified by comparison with JCPDS standard file 

(JCPDS, 1988). 

(iii) Morphology of powders 

The powders were observed, the morphology of the particles by analysis by scanning 

electron microscopy - SEM, LEO 1450VP microscope using EDS and WDS engaged. In the 

analysis, the powders were coated with thin film of gold and observed using backscattered 

electron beam, allowing verification by the difference in tone, the phases and morphology of 

the particles. Were checked by X-Ray Diffraction, the results of possible chemical or 

crystallographic changes during the stages of milling and compacting the powder mixture. 

The study focuses on the compatibility analysis (green density) and concentration of 

monoclinic phase in the samples to be subjected to sintering. 

3.1.2 Characterization sintered 

Prior to tests of flexion characterizations were performed for density, hardness, fracture 

toughness, microstructure and surface phases. 

(i) Determination of density 

Density of the green bodies was determined by geometric method. The samples were 

measured in caliper with an accuracy of 0.01mm, and subsequently weighed on analytical 

balance (10-5g). To a greater degree of accuracy, there were 15 measurements of each sample 

to obtain an average value reliably. 

(ii) X-ray diffraction 

The phases present in sintered samples were identified by X-Ray Diffraction using radiation 

"Cu-K α", scan from 10º to 80º, the step angle of 0.05° and speed of 3 sec/point count. The 

peaks were identified by comparison with JCPDS file. 

Quantification of volume fraction of monoclinic phase (FM) was calculated from the 

integrated intensities of monoclinic peaks ( 1 11)M e (111)M and also the tetragonal peak 

(101)T.  
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where: ( 1 11)M 2θ=28.0o; (111)M 2θ=31.2o; (101)M 2θ=30.0o to represent the integrated 

intensity of diffracted peaks plans monoclinic ( 1 11)M and (111)M  in the tetragonal (101)T. 
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The calculation of the penetration depth of X-rays on the surface was analyzed based on the 
absorption of these rays by the material. The penetration depth of X-rays was given by 
equation (3) (KLUG, ALEXANDER, 1974): 

 
0
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sen I
h

I

θ
μ ρ
ρ

⎡ ⎤
= − ⎢ ⎥⎛ ⎞ ⎣ ⎦

⎜ ⎟
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with 

 1 2

1 2

w w ...
⎛ ⎞ ⎛ ⎞ ⎛ ⎞μ μ μ

= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ρ ρ ρ⎝ ⎠ ⎝ ⎠ ⎝ ⎠  (4) 

where: 

h = penetration depth [μm]; 

θ = diffraction angle, 

I = intensity of X-ray beam diffracted 

I0 = intensity of X-ray beam focused, 

μ = absorption coefficient; 

w = weight fraction of component or element; 

ρ = density [g/cm3] (Zr = 6.511; O = 1.354; Y = 4.472; ZrO2.3%Y2O3 = 6.051). 
(iii) Microstructural analysis 

We performed observations of the sintered samples by scanning electron microscopy LEO 

1450VP coupled with WDS. To observe the microstructure, the samples were ground and 

polished according to the procedure mentioned below. After mounting the samples in 

bakelite, thinning was performed in automatic grinding with diamond paste of particle size, 

in mesh, from 180 to 600, for the total removal of the inlay material and obtain a flat surface 

for analysis. 

Then the samples were polished with diamond pastes, the sequence of 15, 9, 6, 3 and 1μm. 

To reveal the grain boundaries, surfaces polished attack suffered heat to air at 1,400ºC for 15 

min using a heating rate of 30°C/min to minimize the effects of temperature on grain size. 

The distribution of grain sizes were measured in order to study the influence of Bioglass on 

the content of final grain size of ZrO2 with the purpose of these results are also correlated 

with the results of mechanical properties. The distribution of grain sizes were measured 

using image analyzer microscope, LEICA, aimed at studying the influence of Bioglass on the 

content of final grain size of ZrO2. These results were also correlated with the results of 

mechanical properties. 

4. Mechanical properties 

4.1 Hardness Vickers (HV) 

The methodology used to determine the hardness of the samples followed the ASTM C 

1327-99, which provides the standard test method to obtain the Vickers hardness of 

advanced ceramics. 
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4.2 Fracture toughness (KIC) 

The methodology for determining the values of fracture toughness by Vickers indentation of 
the samples followed the recommendations of ASTM C 1421-99. This is the pattern for 
obtaining the fracture toughness of advanced ceramics at room temperature. 

4.3 Flexural strength - 4 points 

For the analysis of flexural-bodies were used for proof-polished, dimensions (in mm) 45 x 4 
x 3, as previously described. The flexural strength at room temperature, (σf) was evaluated 
by the collapse load of the body of evidence points determined by the method '4 points', 
following the specifications dictated by the standard DIN EN 843-1 (ASTM C 1161-90) with 
download speed of 0.5mm/min and with a spacing of 40mm and 20mm between the rollers 
of support and loading, (I1 and I2, respectively) as shown in Figure 2, using a universal 
machine mechanical testing kN MTS-250.  
 

Fig. 2. Schematic representation of resistance to bending in four points. The polished face is 
turned down (KELLY, 2000). 

The flexural strength of the specimens was calculated using Equation 5. 

 1 2
f A 2

3 (I I )
F

2 b h

−
σ = ×

×
 (5) 

where: 

σf  = resistance to bending (MPa);  
FA = breaking load (N);  
b = measure the width of the samples (mm);  
h = height measurement of samples (mm); 
I1 = wider spacing between the rollers loading (mm);  
I2 = smaller spacing between the rollers loading (mm). 

5. Results and discussion 

The identification and characterization procedures aimed to verify whether the 
characteristics of materials and products are expected in the present work, meet the 
conditions of sufficient quality when applying the final ceramic as dental materials. 

5.1 Characterization of materials 

The main objective focuses on the characterization of raw material, identifying the origin of 
each material used, assessing the crystallographic characteristics and morphological profile 
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of the post in question. This goal aims to confirm whether such characteristics of powders, 
and mixtures of the powders were suitable for the final density of sintered. 

5.1.1 Microstructural characterization 

Powders of Zirconia — ZrO2(Y2O3) — and Bioglass were characterized by SEM and the 

results are shown in Figures 3 and 4. The zirconia powder used in this study was produced 

through a spray-drying, with additions of ligands, which promote the agglomeration of 

spherical shapes, as shown in Figure 3. These ligands are used to facilitate compaction of the 

samples. 

 

Fig. 3. Particle morphology of ZrO2(Y2O3) as received. 

In Figure 4 are performed by SEM micrographs of samples of Bioglass powder, sifted after. 
One observes the presence of acicular particles presenting larger dimensions than the sieve, 
the intrinsic characteristics of glassy materials. 
 

 

Fig. 4. Morphology of the Bioglass after fragmentation and sieving. 

The Bioglasses, after collection, were screened on meshes of up to 32μm in order to 

minimize the effect of their distribution in the zirconia matrix, increasing the compaction of 

the mixtures of powders, where the density on the green of the samples ranged from 48% to 

42% due to the addition of Bioglass matrix ZrO2(Y2O3). Reducing the particle size of Bioglass 

facilitating the spreading of the fluid (liquid phase) during the sintering step. 
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5.1.2 Characterisation of compressed 

The green relative density of the compacts are shown in Figure 5. 
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Fig. 5. Effect of the addition of Bioglass on the green density of compacts. 

Note that there is a slight reduction in relative density due to the addition of Bioglass in its 

composition. This behavior occurs through the morphology of Bioglass, highly irregular 

(Figure 5), compared to the powder of ZrO2(Y3O2), used in these experiments. Be considered 

negligible differences in green density, sintering behavior observed in the samples with 

different amounts of Bioglass. 

Figure 6 shows representative micrographs of samples sintered at each composition studied. 

For comparative analysis of dense material, some samples of ZrO2(Y2O3) were without 

Bioglass sintered at 1500°C/2 hours. 

It is observed the presence of equiaxed grains of ZrO2 in the whole area analyzed. Were 

obtained in all cases, with 3, 5 or 10wt% of Bioglass, microstructures were quite similar. 

There is also the presence of voids between grains resulting from the elimination of residual 

porosity and intergranular phase during thermal attack. 

From the micrographs presented in Figure 6 and Table 4.4 lists the microstructural 

parameters, to verify whether the presence of liquid phase formed from the fusion of glass 

particles interfered with grain growth of ZrO2. 

Analyzing the results of Table 1 can be stated that the content of Bioglass little or almost 

nothing, interferes with the average grain size of ZrO2 and density of grains per unit area, as 

shown in Figure 6. 

These microstructural characteristics are a direct function of initial grain size and sintering 

temperature used. Dense ZrO2 sintered solid phase is usually obtained at temperatures 

around 1500°C. In this temperature range, depending on the sintering time applied, the 

average grain size can vary from 0.5μm to 1μm, whose sizes are the result of higher levels 

with very long sintering, such as 1500°C/8h. 

The use of relatively low sintering temperatures, as from 1200 to 1350ºC, hinders the growth 
of the grains of the matrix, thus increasing the population of grain per unit area. In this 
study, the use of liquid phase has as one of several objectives to facilitate the densification at 
low temperatures, minimizing the grain growth, which could hamper the  
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ZrO2 without the addition of Bioglass, 

sintered at 1500°C  
3t% Bioglass, sintered at 1300°C 

5wt% Bioglass, sintered at 1300°C 

 
10wt% Bioglass, sintered at 1300°C 

Fig. 6. Micrographs of ceramics ZrO2(Y2O3)-Bioglass. 

 

(ZrO2: Bioglass) 
wt% 

Medium Size Grain 

(μm) 

Density of grains 

(No. grains /μm2) 

100:00 (1500ºC) 0.803 ± 0.121 3.405 

97:03 0.325 ± 0.065 9.982 

95:05 0.329 ± 0.076 9.964 

90:10 0.333 ± 0.070 9.939 

Table 1. Parameters microstructure of ZrO2(Y2O3)-Bioglass, sintered at 1300°C. 
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growth and propagation of cracks during the fracture of the material, knowing that the 
cracks propagate in this material so intergranular (following the grain boundaries), and has 
also the beneficial effect of martensitic transformation (tetragonal to monoclinic, as indicated 
by T→M), which occurs when the crack is tetragonal grain, and exerts compressive stress on 
them. 

5.1.3 Dilatometry 

These tests are carried out to verify the effect of the addition of Bioglass in the temperature 

of maximum shrinkage of the sintered body by the derivative of the shrinkage versus time. 

Thus have been able to verify the relationship between the percentage of Bioglass with the 

rates of dimensional variation of the material versus time and temperature. 

The results of dilatometric analysis performed on samples previously consolidated raw 

material monolithic, had coefficients of thermal expansion (α200-1200°C) to 10.6x10-6/ºC 

tetragonal zirconia polycrystal (Y-TZP) and 10.2x10-6/ºC for Bioglass. 

From the results, there is compatibility between the thermal expansion coefficients of the 

two phases (ZrO2-Bioglass) for the formation of the composite ceramic-ceramic primary 

requirement for development of dual-phase ceramic materials (MEYERS, CHAWLA, 1998), 

due to reduction of residual stresses are generated between the phases of the composite and 

rigid after cooling. 

Table 2 presents the results of calculations concerning the average values of the coefficients 

of thermal expansion, carried out for all compositions in this work, based on the weighting 

between the coefficients of thermal expansion and modulus of elasticity of the components 

of mixtures. These values are important in determining the residual stress generated 

between the phases in sintered. 

 

Concentration 
of Bioglass 

(wt%) 

Bioglass ZrO2(Y2O3)1 Composite 

Modulus 
of 

Elasticity 
E (GPa)2 

Thermal 
Expansion 
Coefficient 

α (x 10-6/ºC) 

Modulus 
of 

Elasticity 
E (GPa) 

Thermal 
Expansion 
Coefficient 

α (x 10-6/ºC) 

Thermal 
Expansion 
Coefficient 

α (x 10-6/ºC) 

3 

90 10.2 190 10.6 

10.599 

5 10.594 

10 10.587 

Table 2. General Physical Characteristics of the composites. 

The curves of shrinkage and shrinkage rate as a function of temperature and hold time 
showed the following highlights: 

(i) Part one 

Can be analyzed at temperatures up to 600ºC. The most significant variations in this region 
occur at temperatures around 450°C. At this temperature there is a smooth change of the 
shrinkage, which can be attributed to the volatilization of organic substances present in the 

                                                 
1The results of modulus of elasticity were obtained from the available literature (OLIVEIRA, 1997) 
2Manufacturer's data. 
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compact. These are derived from organic raw material, ZrO2(Y2O3), which has a binder, and 
stearin used in compaction of powders. 

(ii) Part two 

The region represents the effect of temperature on the shrinkage of compacts, observed from 

1,050°C. Observe that there is a characteristic temperature where the rate of shrinkage has a 

maximum. 

Figure 7 shows the temperatures of shrinkage depending on the content of Bioglass. In this 

figure are also presented as the accumulated instantaneous values of shrinkage at these 

temperatures. 

It is observed that the samples are reduced maximum temperature decrease with increasing 

amount of Bioglass added. This behavior implies that a larger amount of glass reduces the 

temperature, the greater formation of liquid phase, which in turn allows a greater shrinkage 

of the compact. Samples without the presence of additives, have different behavior, because 

it is sintered by solid phase, and therefore governed by other mechanisms of sintering. 
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Fig. 7. Effect of the addition of Bioglass in the temperatures of greatest rate of shrinkage. 

It was observed that for samples with 3wt% of Bioglass, at temperatures below 1300°C, was 

not reached maximum retraction of the derivative and thus, levels of incorporation of the 

sintering cycle time initially proposed. 

The temperatures of maximum shrinkage determined for samples with 5 and 10wt% of 

Bioglass are respectively 1267°C and 1253°C. 

(iii) Third party 

In this third area of analysis is taken into account the hold time at 1300°C. From the analysis 
of Figure7, we observed that the samples with higher concentrations of Bioglass, achieved 
larger decreases until the maximum temperature testing (1300 ° C). 
From there, observing Figure 8, note that there is an evolution of the shrinkage in the first 
minutes of landing, in all situations where Bioglass is used as an additive. Comparatively, 
the blocks of ZrO2 sintered without the addition of Bioglass show continued growth as a 
function of hold time, because the weather influences the kinetics of densification of the 
sintered solid phase. 
Observe that the first 20 minutes, in samples with Bioglass, retractions that occur faster 
when compared with the remaining time, always with a tendency to stabilize the rate of 
shrinkage (indicated by the rate of change of the curve). Both the rate of shrinkage and total 
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shrinkage increases with increasing content of Bioglass. This is justified by the greater 
amount of liquid phase which facilitates the diffusion of the solid phase. 
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Fig. 8. Effect of isotherm plateau in shrinkage of the ceramics sintered at 1,300ºC. 

The results seen above can be represented in percentage gains of shrinkage versus time of 
isotherm used. These results are shown in Figures 9 and 10. 
An important detail presented by the geometrical behavior of the curves with respect to 
the correlation between the percentage increase in Bioglass and gain decrease with 
residence time at 1300°C. The three curves show asymptotic behavior, with the rate of 
linear shrinkage with time tends to proportionality with the difference between the 
instantaneous rate and a maximum rate for each composition in Bioglass. Larger amounts 
of Bioglass cause lower coefficients of thermal expansion, in agreement with Table 2. Add 
to it that lower the green density implies an increase of spaces to be filled, so it will have a 
higher rate of shrinkage. 
 

3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Samples in 1300ºC

 10 min

 30 min

 60 min

 90 min

 120 min

R
e
tr

a
ct

io
n

 g
a

in
 (

%
)

Bioglass content (%)

Fig. 9. Gains due to shrinkage of the content of Bioglass, for various treatment times. 

It is evident that the ceramics with 3wt% of Bioglass have improved significantly with the 
use of level of sintering. At first, with 10 minutes of landing, there is a gain of 60%, 
indicating that this time was sufficient to reduce the viscosity of the glass, influencing their 
spread around the ZrO2 grains. Times lead to higher cumulative gains exceeding 85%, as in 
120 minutes. Samples with 5 and 10wt% are less influenced by the time of landing, for 
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sintering at 1300ºC. Still, for the maximum times studied, 120 minutes, occur up to 20% 
gains, for ceramics with 5wt% Bioglass and 10% for ceramics with 10wt% of Bioglass. The 
level of decline observed in the samples will indicate that in all situations where Bioglass 
was used as an additive, and 1300°C, there is full densification of the ceramics studied. In 
the case of the ceramics of ZrO2(Y2O3), without addition of glass-forming liquid phase, the 
phenomenon does not occur. 
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Fig. 10. Gains decrease as a function of residence time, for each composition of Bioglass. 

5.2 Characterization of the sintered samples 

It is intended to report the results of analysis of the crystalline phases present in sintered 
samples, and studies the influence of Bioglass content on densification. With this it will have 
the assurance that the sintering conditions (temperature, time, rate of heating and cooling) 
were adequate for obtaining ceramics with adequate strength for use in dental applications. 
The research initiated by Habibe (HABIBE, 2007) showed that the addition of Bioglass in 
higher sintered ZrO2(Y2O3) to provide undesirable martensitic transformation (T→M), 
which promote a volumetric expansion of the ceramic matrix generating increasing porosity.  
One concern has been established to optimize the densification, taking into account the 
interrelationship between low sintering temperature, sintering time and microstructural 
features. 

5.2.1 Crystallographic characterization 

In order to demonstrate the efficiency of the technique of X-Ray Diffraction in the 
characterization and measurement of the percentage of monoclinic and tetragonal phases of 
ZrO2(Y2O3) was proposed in this study, the use of determining the depth of penetration of 
radiation, based on parameters crystallographic theory. 
Using the parameters presented the results obtained when applying these equations (3 and 

4), was approximately 7.3μm. Grain sizes are below 0.5μm, so there is a layer thick enough 
to be detected by diffraction, thus allowing the identification of transformation of 
monoclinic phase in sub-surface levels with considerable degree of accuracy. 
In pre-existing glasses of similar chemical composition to this study, obtained under the 
same conditions of melting and cooling, gave values of Vickers hardness near 6.2GPa, when 

www.intechopen.com



Advances in Ceramics – 
Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment 

 

464 

subjected to thermal treatment time exceeding 30 minutes. The values of fracture toughness 
and resistance to bending found were 0.93MPa.m1/2 and 54MPa, respectively, for materials 
with rapid cooling (diamonds), and the values of 1.4MPa.m1/2 and 115MPa, respectively, for 
materials with slow cooling (vitro-ceramic) (OLIVEIRA, 1997). 
The percentage of transformed monoclinic phase after sintering, carried out according to 
Equations 1 and 2 are presented in Table 3 and illustrated in Figure 11. 
 

Bioglass wt% Monoclinic % 

0 5.69 + 0.02 

3 6.71 + 0.06 

5 8.75 + 0.03 

10 14.37 + 0.05 

Table 3. Percentage of monoclinic phase in the sintered samples. 

This behavior may be related to the gradient of contraction between the two phases 
(zirconia and Bioglass) after sintering, during cooling, since there is a difference between the 
thermal expansion coefficients between these materials (10.6x10-6/°C for zirconia and the 
Bioglass 10.2x10-6/°C). This difference promotes the generation of stress fields around the 
grains of ZrO2(Y2O3), which may exceed the maximum compressive stress needed to 
transform the tetragonal-monoclinic. Thus, the grains of ZrO2(Y2O3) tetragonal become 
monoclinic, with volume expansion of about 3 to 6% by volume (STEVENS, 1986), resulting 
in an overall structure microcracking, resulting in a reduction in density on the sample. In 
Figure 4.24 are the results related to this characterization. 
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Fig. 11. Monoclinic phase concentration depending on the content of Bioglass in blocks 
sintered at 1300ºC. 
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5.2.2 Relative density 

As previously noted, there is elevation of monoclinic fraction considering increasing the 
amount of additive. Associated with this transformation occurred during cooling, which is 
due to thermal residual stress motivated by the difference in thermal expansion coefficient 
between the phases, may be the reason for the reduction of relative density versus the 
contents of Bioglass as shown in Figure 12. 
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Fig. 12. Relative density as a function of the content of Bioglass, sintered blocks to 1,300°C. 

The analysis of X-ray diffraction patterns indicated the presence of considerable fraction of 
the tetragonal phase and residual fraction of monoclinic phase. Intergranular crystalline 
phases were not detected in any of sintered body, indicating that the intergranular phase of 
Bioglass originally made can be fully amorphous or so, the fractions present in the sintered 
samples are not detected in the diffractometer. This can be considered in the light of that, in 
previous work (OLIVEIRA et al., 1997). 
Bioglass cold considering controlled rates similar to those used in this study (10°C/min) 
showed the crystalline phases whitlockite and enstatite, and this last was not observed in 
this work. The possible crystallization of the Bioglass used in this work, and therefore the 
glass ceramics, may have contributed to the improvement of mechanical properties, with the 
increase in resistance (60 to 120MPa) and fracture toughness (1 to 1.5MPa.m1/2) in the glassy 
phase (OLIVEIRA et al., 1997). 
It is noteworthy that the material exhibits a tendency to decrease the densification with 
increasing amounts of Bioglass from 3wt%, and these results imply a direct function of 
increasing content of monoclinic phase transformed. Furthermore, the low density results 
on the composition submitted for “100-00”, suitable only for comparison purposes, since this 
is accomplished by sintering the solid phase, since there have Bioglass in its composition, 
which could trigger mechanisms unique liquid phase sintering. 
The results indicated that the dilatometry samples monolithic ZrO2(Y2O3) did not densify 
under these conditions because temperature and isothermal sintering times studied did not 
allow the efficient operation of the mechanisms for densification of the material. Moreover, 
samples with Bioglass showed maximum shrinkage temperature of about 1253, 1267 and 
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1328°C, for contents of Bioglass 10, 5 and 3wt% respectively. In all cases where it is applied 
Bioglass need for isothermal sintering at 1300ºC for full densification is achieved. However, 
higher levels of Bioglass (ZrO2(Y2O3) containing 10wt% Bioglass) did not allow full 
densification, because during cooling, as proposed by previous study Habibe (HABIBE, 
2007), there is generation of stress fields between the matrix and grain boundaries which 
promotes the phase transformation (T→M) that generates volume expansion and increased 
presence of pores and microcracks.  

5.2.3 Critical failure size vs. surface roughness 

The flexural strength, σf, the ceramic is directly proportional to the fracture toughness, KIC, 
as predicted by linear elastic fracture mechanics (KIM et al., 2000): 

 ICK

c
σ =

π
 (6) 

The parameter "c" can be considered alternatively as the size of failure to initiate the 

fracture. Thus, the size of failure for start of fracture in samples of 3, 5 or 10wt% of Bioglass 

and sintered at 1300°C/2h, are valued between 80μm and 230μm. 

The maximum surface roughness, assessed during the preparation of specimens for bending 

tests/fatigue, was less than 0.30μm. Whereas the roughness implies that a 'valley' is half of a 

crack, it is concluded that the roughness used did not affect the test results. 

5.3 Mechanical properties 
5.3.1 Vickers hardness and fracture toughness 

Table 4 and Figure 13 present the results of Vickers hardness and fracture toughness, KIC, 

the samples sintered at different temperatures and fractional percentages of Bioglass. 

 

0 2 4 6 8 10
0

300

600

900

1200

H
a

rd
n

e
ss

 (
H

V
)

Bioglass content (wt%)

Fig. 13. Hardness of sintered samples as a function of sintering temperature and amount of 

Bioglass. 
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Fig. 14. Fracture toughness of sintered samples as a function of sintering temperature and 
amount of Bioglass. 

The samples sintered at 1300ºC, containing 3wt% of Bioglass showed higher hardness and 
toughness, respectively, 1170HV and 6.3MPa.m1/2. These results are related to indicators of 
relative density and low amount of martensitic transformation, shown in Figures 14 and 15. 
It is important to note that these samples show the best properties, possibly due to the high 
relative density, coming from the better spreading of the liquid formed during sintering and 
its penetration around the ZrO2 particles. These phenomenons facilitates the elimination of 
pores and reduce accumulation of glass triple joints, minimizing the generation of stress 
fields during cooling and therefore points in favor of crack propagation. 

5.3.2 Flexural strength 

Samples of ZrO2(Y2O3), with addition of Bioglass, sintered at 1300ºC and without addition of 
Bioglass (sintered at 1500ºC) were tested for 4 point bending. The results are presented in 
Table 4 in Figure15. 
 

Bioglass 
(wt %) 

Vickers 
Hardness 

(HV) 

KIC 

(MPa.m1/2) 

Flexural 
Strength 

(MPa) 

0 (1500ºC) 875 ± 95 4.1 ± 0.5 127.44 ± 57.15 

3 1,167 ± 80 6.3 ± 0.2 453.28 ± 74.64 

5 1,134 ± 76 6.1 ± 0.4 363.31 ±54.88 

10 926 ± 38 5.0 ± 0.5 303.00 ± 77.40 

Table 4. Vickers hardness, fracture toughness and Flexural strength of samples sintered. 
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Fig. 15. Flexural strength of samples sintered at 1300ºC, depending on the amount of 
Bioglass added to ZrO2 matrix. 

It is observed that the variations in the composition in the flexural strength is shown similar 

to those observed in the behavior of relative density (Figure 12), hardness (Figure 13) and 

fracture toughness (Figure 14), ie, an elevation in the range from zero to 3wt% Bioglass and 

reduction in the range of 3 to 5wt% Bioglass. Such behavior suggests that the 3wt% level 

gives better distribution in the zirconia matrix, leading to the conclusion that the higher values 

are dispersed causing islands to concentrate on Bioglass, causing some weakening and partial 

degradation of those characteristics. Such behavior is indicative of the concentration 3wt% 

Bioglass in ZrO2(Y2O3) would be the best choice among the four discussed compositions. This 

without taking into account other factors that could influence the choice. 

5.3.3 Residual stresses 

The calculation of the average thermal residual stress generated during cooling of the 

sintered samples was based on the consideration that there is homogeneous distribution of 

second phase in ceramic matrix ZrO2, and is directly related to the difference in thermal 

expansion coefficients between the phases in the ZrO2 matrix and intergranular glassy 

phase, composed of Bioglass (TAYA et al., 1990; SHI et al., 1998). 

Was not taken into account the hypothesis of partial crystallization of the glass or the 

temperature range where there is softening of the glass present. This average residual 

thermal stress in the two phases can be calculated as a function of the percentage of 

intergranular phase (or second) that integrates the system, according to Equations 7 and 8, 

proposed by Shi (SHI et al., 2000).  

 ( )b b bE Tσ α α= − Δ  (7) 
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 ( )m m mE Tσ α α= − Δ  (8) 

Where σb and σm are the contours and residual stresses in the matrix, respectively. Em and 
Eb indicate the modulus of elasticity of matrix and grain boundaries (intergranular phase), 

respectively, and α, αm and αb indicate the average thermal expansion coefficients, the 
matrix (index m) and the intergranular phase (index b), respectively. The average coefficient 
of thermal expansion of each composition varies, and is given by Equation 9: 

 b b b m m m

b b m m

C E C E

C E C E

α αα +
=

+
 (9) 

Where 〈α〉 is the coefficient of thermal expansion of the composition; αb, Cb, Eb are, 

respectively, coefficient of thermal expansion, Young's modulus and fraction of Bioglass 

(grain boundary), αm, Cm, Em are respectively, the coefficient of thermal expansion, the 

fraction and the modulus of elasticity of ZrO2 matrix. 

By calculating the average coefficient of thermal expansion and residual stresses, it is found 

that when αm> αb or σb<0, the grain boundary is the transition between compression 

(intragranular) and tensile (matrix). 

The residual stress in a multiphase composite is developed due to the discrepancy between 

the modulus of elasticity and Thermal Expansion Coefficient (TEC) between the constituent 

phases. Due to the lower TEC of Bioglass, αb, compared to the array of ZrO2, αm, tensile 

residual stresses are developed in ZrO2 matrix during cooling from the sintering 

temperature. (BASU, VLEUGELS, 2001).  

The residual stress in zirconia matrix was calculated according to the model proposed by 

Taya (TAYA et al., 1990) and confirmed by Shi (SHI et al., 2000). In the calculations we used 

the modulus of elasticity (E) from 90GPa to 190GPa for the Bioglass and ZrO2. The 

calculation results of compressive residual stress at grain boundaries and tensile stress in the 

grains of ZrO2 matrix are shown in Figure 16, and provide a barrier to crack propagation, 

toughened materials. 
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Fig. 16. Thermal residual stress due to the content of Bioglass (intergranular phase) 
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The toughening of ceramics developed in this work may be related to several phenomena, 

such as tetragonal-monoclinic transformation, crack deflection, stress-induced martensitic 

transformation thermal residual porosity of the sintered samples, or other possible causes 

unrelated. It may be noted that increasing the intergranular phase (Bioglass) leads to 

increased % of monoclinic phase and increased porosity associated with this phenomenon.  

However, increasing the amount of Bioglass leads to a greater accumulation of 

concentrations of glass in triple junctions, with consequent formation of stress concentration, 

which permits growth and propagation of cracks. The thermal residual stresses in ZrO2 

matrix show a smaller and smaller effect as a function of the addition of Bioglass 

composition. However, there is a reduction in the contribution of residual stress on phase 

transformation (T→M), which can improve the toughness of ceramics. 

Moreover, the presence of low amounts of Bioglass, facilitates the diffusional processes, 

reduce the possibility of transformation (T→M) to occur during cooling and increase the 

thermal residual stress between the phases, favoring the phase transformation during the 

emergence and growth of a crack, toughened material. 

Previous studies have shown that propagation of intergranular cracks of the type prevalent 

in ZrO2 based ceramic sintered by liquid phase (SHI et al., 1998, SUN et al., 2003, HUANG et 

al., 2003, SHI et al., 2000) due to the presence of glassy phase. The amount of intergranular 

phase in which the fracture toughness (KIC), the maximum can be achieved, Cb,m, when αb 

<σm, is as follows: 

  ,

3

m b
b m

b
m b

m

C
E

E

α α

α α

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 (10) 

Where αb Eb are the Thermal Expansion Coefficient (TEC) and Modulus of Elasticity of 

Bioglass, respectively, and αm, and Em are, respectively, the Thermal Expansion Coefficient 

and Modulus of Elasticity of ZrO2 matrix. 

The calculated results show that a great theoretical value is achieved with 2.84wt% of 

Bioglass. This result is consistent with the composition of ZrO2-Bioglass composite 

composed of 97wt% ZrO2 and 3wt% Bioglass, which presents the best mechanical properties 

among the samples sintered at 1300°C/2h. Moreover, the results are consistent with 

previous work (SHI et al., 2000), which shows that only a small amount of intergranular 

glassy phase, an increase of fracture toughness can be obtained. 

6. Conclusions 

After the experiments, and based on these results, we can conclude that: 
1. Samples of 3wt% Bioglass composition showed better densification compared to those 

of composition 0, 5 and 10wt% due to better spreading of the liquid phase between 
grains of ZrO2(Y2O3). These results are related to high density and low percentage of 
monoclinic ZrO2 phase, present in the sintered samples. 

2. The addition of higher concentrations of additives in an increase in 'islands' of Bioglass, 
the junctions between the grains of the matrix of ZrO2(Y2O3) causing residual stress 
fields, which led to greater amounts of martensitic transformations, after sintering, 
increasing the weakening of the material. 
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3. The results of mechanical characterization promote the use of Bioglass as sintering 
additive, instead of ZrO2(Y2O3) pure. Using the techniques of X-Ray Diffraction, high 
resolution, together with testing the hardness, fracture toughness, flexural strength at 4 
points confirmed this statement. 

4. The ceramic compositions suggested for studies, combined with the processing 
conditions (parameters of milling, pressing and sintering) were effective in obtaining 
the ceramic bodies of high relative density and with relatively fine grain. Regardless of 
the content of Bioglass added to zirconia, the average grain size of zirconia was in the 

order 0.30 to 0.35 μm. 
5. The additions of 3 and 5% of Bioglass produced an increase in hardness in relation to 

zirconia with 3wt%Y2O3, and also in relation to the addition of 10wt% of Bioglass, with 
values of 1240 and 1210HV for 3Y-TZP composites-Bioglass (97-3) and 3Y-TZP-Bioglass 
(95-5), respectively. These results are due to higher densification of samples submitted 
for 3wt% of Bioglass. 
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