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1. Introduction   

Cancer has become the leading cause of death worldwide in the year 2010, according to a 
new edition of the World Cancer Report from the International Agency for Research on 
Cancer (World Health Organization, 2010).  Despite the advance in the development of 
novel chemotherapeutic drugs, the dismal prognosis facing most cancer patients may result 
from the ability of cancer to withstand drug treatment, recur and metastasize after initial 
therapies.  There is accumulating evidence in support of a central role for cancer stem cells 
(CSCs) in the initiation, propagation and recurrence of human cancers.  Therefore, targeting 
CSCs has become an attractive research topic for the improvement of treatment outcome 
and prolongation of patient survival.  However, CSCs are endowed with the ability to 
survive against chemo- and radiation therapy.  A better understanding of the mechanisms 
underlying CSC resistance is badly needed.  This chapter provides a review about evidence 
supporting a fundamental role for CSCs in cancer progression, and summarizes potential 
mechanisms of CSC resistance to treatment, with emphasis on the involvement of multidrug 
resistance transporters and their regulation in CSCs.   

2. The Cancer Stem Cell (CSC) hypothesis 

For many years, tumors have been described as the proliferation of cell clones in which 
multiple genetic alterations had occurred over time (Nowell, 1976).  This “clonal evolution” 
model is a non-hierarchical model that proposes all cells within a tumor would have an 
equal chance of acquiring genetic mutations necessary for driving the tumor growth.  
Subsequently, under selective pressures, the more aggressive cells would drive the tumor 
progression and lead to therapy resistance.  Distinct from this notion, an emerging “cancer 
stem cell model” is a hierarchical model, which proposes that only a subset of cells called 
“cancer stem cells” (CSCs) or “tumor-initiating cells” can initiate and propagate a tumor.  
The CSCs can self-renew, propagate the tumor, and differentiate into the diverse types of 
cells that are found in the original tumor, thereby mimicking stem cells.   
The emergence of the CSC model can be dated back to the mid-19th century when a German 
pathologist Rudolf Virchow proposed that cancers arise from the activation of dormant, 
embryonic-like cells present in mature tissue (Virchow, 1855). His speculation was based on 
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the histological similarities between the developing fetus and certain types of cancer such as 
teratocarcinomas.  Later, the term “cancer stem cells” was probably first coined by 
Hamburger and Salmon who postulated that a subpopulation of cells in a tumor capable of 
growing in soft agar are the cell renewal source of a neoplasm and also serve as the seeds of 
metastatic spread of cancer (Hamburger & Salmon, 1977).  More recently, the first conclusive 
evidence for CSCs was reported in 1994 when John Dick and colleagues isolated the 
cancerous stem cells from acute myelogenous leukemia and documented their self-renewing 
capacity (Lapidot et al., 1994).   
Since then, the CSC hypothesis has shifted the paradigm in our understanding of cancer 
tumorigenesis and has important implications in cancer chemotherapy.  With respect to 
tumor development and progression, it could explain the well-known heterogeneous nature 
of cells in a tumor (Park et al., 1971).  While CSCs represent the only cells with self-renewal 
capability driving the tumor growth, the remaining actively proliferating cells making up 
the bulk of the tumor could still differentiate and are therefore destined to die.  Therefore, 
the goal of cancer chemotherapy should be to target these CSCs for complete eradication of 
the tumor. 
It should be noted that the CSC hypothesis indeed does not specify the origin of the cancer 
initiating cells.  They could originate from a stem, progenitor or differentiated cell.  
Therefore, the term “tumor-initiating cell” is often used instead of cancer stem cells to avoid 
the confusion.  The prevailing thought is that CSCs are derived through an activation 
process involving one of three possible pathways (Figure 1): (1) from normal stem cells 
losing growth regulation; (2) from progenitor (Jamieson et al., 2004; Krivtsov et al., 2006) or 
differentiated cells acquiring the self-renewal capacity; or (3) by the fusion of normal stem 
cells with cancer cells (Pawelek & Chakraborty, 2008; Dittmar et al., 2009).  

2.1 Detection and identification of CSCs 

The general consensus nowadays is that CSCs can only be ultimately defined 
experimentally by their ability to recapitulate the generation of a continuously growing 
tumor (Clarke et al., 2006).  However, due to technical difficulty of tumor repopulation in 
vivo, three other popular molecular or phenotypic characteristics of CSCs are being 
exploited for their identification and prospective isolation from tumor specimens and cancer 
cell lines.  These include (1) the “side population (SP)” phenotype manifested by the 
exclusion of Hoechst 33342 dye in flow cytometric assays; (2) cell surface markers; and (3) 
anchorage-independent sphere formation ability.  The putative CSC population thus 
identified will usually be further validated by their ability to initiate a tumor and 
subsequently recapitulate the heterogeneity of the primary tumor. 

2.1.1 The “side population (SP)” phenotype 

CSCs and the normal stem cells alike express high levels of the ATP-binding cassette (ABC) 
transporters, which help protect them from cytotoxic insult throughout their long lifespan.    
By using the energy of ATP hydrolysis, ABC transporters actively efflux drugs out of the 
cells, thereby protecting them from toxic xenobiotics (Gottesman et al., 2002).  Importantly, 
this drug-efflux capability conferred by ABC transporters (including ABCG2 and P-
gp/MDR1) has been used as a marker in the isolation and analysis of haematopoietic stem 
cells (HSCs).  Goodell and colleagues were the first to report that when mouse bone 
marrow-derived cells are incubated with the dye Hoechst 33342 and then analyzed by dual-
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wavelength flow cytometry, a small population of cells does not accumulate an appreciable 
amount of the fluorescent dye and is thus identified as a Hoechst-dim side population (SP) 
(Goodell et al., 1997).  Remarkably, the side population is highly enriched in HSCs (Goodell 
et al., 1996).  When isolated from mice and transplanted into irradiated mice, small numbers 
of these SP cells can reconstitute the bone marrow, demonstrating that these cells are 
pluripotent.  Later, it was demonstrated that the transporter Abcg2, but not P-gp/Mdr1, was 
responsible for the SP in mouse bone marrow (Zhou et al., 2001).  Human ABCG2 was 
subsequently also found to be responsible for the SP phenotype in human bone marrow 
(Scharenberg et al., 2002).  
 

 

Fig. 1. Origin of CSCs (tumor-initiating cells).  A CSC may arise from one of the following 
molecular pathways: (i) a stem cell undergoing a mutation; (iia & iib) a 
progenitor/differentiated cell undergoing several mutations, thus allowing them to acquire 
the self-renewal ability; (iii) fusion of a cancer cell with a normal stem cell, thereby 
equipping the former with self-renewal capability (not shown in the figure).  Like normal 
stem cells, CSCs are capable of long-term self-renewal and dividing asymmetrically to 
recapitulate the generation of a continuously growing tumor (pluripotency).  In all 
scenarios, the resulting CSC has lost normal growth regulation and progress into 
malignancy. 

Since its initial application in bone marrow HSCs, the side population technique based on 
Hoechst 33342 efflux has been adapted to identify putative stem cells and progenitors in many 
normal tissues (Zhou et al., 2001; Asakura & Rudnucki, 2002; Leckner et al., 2002; Alvi et al., 
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2003; Summer et al., 2003; Budak et al., 2005; Du et al., 2005, Hussain, et al., 2005).  SP cells have 
also been found in a number of established cancer cell lines as well as tumor samples and have 
been shown to have stem cell-like properties, overexpress ABCG2, and possess inherent drug-
resistance (Kondo et al., 2004; Hirschmann-Jax et al., 2004; Haraguchi et al., 2005; Seigel et al., 
2005, Chiba et al., 2006).  Figure 2 shows the existence of such a SP in a ABCG2-overexpressing 
mitoxantrone-selected resistant pancreatic cell line.  The nearly complete elimination of all SP 
cells after treatment with the specific ABCG2 inhibitor, fumitremorgin C (FTC), suggests that 
ABCG2 is a major molecular determinant for the SP phenotype.    
 

 

Fig. 2. Identification and isolation of SP cells for the study of putative CSCs. FACS analysis 
was performed for a mitoxantrone-selected drug-resistant and ABCG2-overexpressing 
pancreatic cancer cell line after incubation with Hoechst 33342 dye for 1 h.  The gated R4 
region represents a Hoechst staining-resistant cell population (i.e. SP cells); their abundance 
are indicated by the number in the figure.   

Despite the initial excitment about using SP to identify CSCs, the ABCG2-highly expressing 
SP and ABCG2-negative non-SP tumor cells have been reported to be similarly tumorigenic 
(Patrawala et al., 2005).  It is believed that the SP fraction obtained is not a pure stem-cell 
population, which is greatly affected by the isolation method (Montanaro et al., 2004).  There 
were also report demonstrating that SP cells do not identify stem cell (Triel et al., 2004).  
Moreover, ABCG2, the molecular determinant for Hoechst exclusion, is not an absolute 
requirement for stem cells.  Abcg2-deficient mice are viable and demonstrate no defect in 
steady state hematopoiesis, though the bone marrow of Abcg2-deficient mice does lack a SP 
(Zhou et al., 2002).  Nevertheless, since CSCs lack distinct molecular markers, Hoechst 
33342-dependent cell sorting remains the most widely employed technique for the 
identification and purification of putative CSCs.        
It is also noteworthy that expression of drug transporters (especially MDR1/Pgp) can be 
part of the differentiated phenotype of cells in normal tissue (Triel et al., 2004).  
Histopathological and molecular biological studies have reported increased expression of 
ABCB1 in more differentiated tumors (Mizoguchi et al., 1990; Nishiyama et al., 1993; Bates et 
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al., 1989; Mickley et al., 1989).  We have also reported the cell type-specific upregulation of 
ABCG2 by romidepsin, a differentiating agent and anticancer drug, in cancer cell lines (To et 
al, 2008, 2011).  Furthermore, P-gp and/or ABCG2 are usually overexpressed with the onset 
of multidrug resistance in cancer cell populations.  In these situations, the SP phenotype will 
not definitively identify CSCs, but because the overexpression of these transporters allows 
the cells to effectively exclude the Hoechst dye.   

2.1.2 CSC-specific cell surface markers 

Another common way to identify putative CSCs from patient-derived tissues or cancer cell 
lines is by labeling the isolated cells with antibodies against various cell surface markers 
already known in normal stem cells.  Cells bearing these cell-surface markers can be isolated 
by fluorescence activated cell sorting (FACS) (Woodward et al., 2005) or magnetic bead 
columns (Dou et al., 2007).  These enriched cell populations are then tested for their ability 
to initiate tumorigenesis in immune deficient mice.   
Several cell surface markers have been used to detect CSCs (Table 1).  Among them, the cell 
surface protein CD133 (Prominin 1, a transmembrane glycoprotein) is probably the most 
extensively used marker, which was also known to define stem and progenitor cells in 
varuous tissues (Shmelkov et al., 2005).  A cautionary technical note is worth mentioning.  
CD133 expression is in fact found to be indifferent to the differentiation status of most cells.  
On the other hand, its posttranslational glycoslyated form was found to be downregulated 
upon cell differentiation (Florek et al., 2005).  Therefore, upon dedifferentation of the 
committed cells to generate CSCs as observed in oncogenesis (Figure 1), the glycosylation of 
CD133 (AC133, the glycosylated epitope of CD133) is expected to increase and therefore serve 
as a marker for the tumorigenic potential of putative CSCs.  In other words, antibody against 
AC133, but not CD133, should be used for the prospective identification of putative CSCs.  It is 
also noteworthy that, since tumor initiating CSCs are heterogeneous, a specific marker or set of 
markers has not been found to unequivocally identify CSCs in solid tumors (Welte et al., 2010).  
CSCs identified from solid tumors may also express other organ-specific markers.   
 

Tumor type 
Putative CSC cell surface 

markers 
Reference 

Breast CD44+ CD24-/low 
Al-Hajj et al. (2003); Wang et al. 

(2010) 
Colon CD133+ Fang et al. (2010) 
Colon CD44+ EpCamhigh CD166+ Kanwar et al. (2010) 
CNS CD133+ Pallini et al. (2011) 

HNSCC CD44+ ALDH+ Chen et al. (2010) 
Liver CD13+ Haraquchi et al. (2010) 

Melanoma CD20+ Schmidt et al. (2011) 
Multiple 
myeloma 

CD138- Singh et al. (2004) 

NSCLC CD133+ Salnikov et al. (2010) 
Pancreas CD44+ CD24+ ESA+ Hong et al. (2009) 

Prostate CD44+ α2β1+ CD133+ Collins et al. (2005) 

(HNSCC = head and neck squamous cell carcinoma; NSCLC = non small cell lung cancer) 
Table 1. Commonly employed CSC cell surface markers in various tissues  
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2.1.3 Anchorage-independent sphere formation assay  

Putative CSCs have also been identified based on their ability to form colonies in vitro.  
Typically, putative CSCs fractions are seeded onto culture dishes coated with serum-free 
media containing epidermal growth factor and basic fibroblast growth factor.  The growth 
of spherical colonies after a few weeks is considered indicative of self-renewal ability, and 
would be consistent with a CSC phenotype.  Sphere-forming ability as a measure of stem 
cells was first developed for central nervous system (CNS) cells, where it has been shown 
that a subset of cells isolated from human fetal brain, and subsequently from human CNS 
tumors, can form spheres when cultured under the appropriate conditions (Tamaki et al., 
2002).  These spheres can self renew in vitro, and differentiate into all of the neuronal 
lineages, both in vitro and in vivo.  More importantly, it was subsequently demonstrated for 
brain tumors that the neurosphere-forming cells could be prospectively isolated from fresh 
tissue using the cell surface marker CD133.  These CD133+ cells did indeed initiate brain 
tumors in vivo, without any in vitro manipulation, indicating that they do in fact represent 
CSCs (Singh et al., 2003).  

2.2 CSCs in hematopoietic malignancies  

The hematopoietic system is the best characterized somatic tissue with respect to stem cell 
biology. Many of the physical, biologic, and developmental features of normal 
hematopoietic stem cells have been defined and useful methods for studying stem cells have 
been established.  It is therefore not surprising that CSCs were first identified in human 
acute myelogenous leukemia (AML), an aggressive malignancy of immature hematopoietic 
cells in the bone marrow.  The leukemia-initiating activity of primary human AML cells in 
immunodeficient mice was first demonstrated by John Dick & colleagues, where they found 
that the “leukemic stem cells (LSCs)” were exclusively found in the CD34+CD38- 
subpopulation (Bonnet & Dick, 1997).  As normal hematopoietic stem cells (HSC) share the 
CD34+CD38- immunophenotype, it was proposed that AML stem cells arise from HSC.    

2.3 CSCs in solid tumors and cancer cell lines 

CSCs have been more difficult to identify in non-haematopoietic cancers because fewer 
well-developed phenotypic markers and definitive assay systems are available.  Al-Hajj et 
al. were the first to identify and prospectively isolate a minority subpopulation of cells 
from a human solid breast cancer cell line, based on the expression of surface markers and 
their potential to form tumor after injection into the mammary fat pad of NOD/SCID 
mice (Al-Hajj et al., 2003).  Cells with the phenotype of epithelial-specific antigen (ESA)+ 
Lineage marker (Lin)-CD24-/lowCD44+ were found to generate tumor that were 
histologically similar to those of primary breast tumors in mice when as few as 100 cells 
were transplanted.  Similar findings were also published for human brain tumors (GBMs 
and medulloblastomas) (Singh et al., 2003; Hemmati et al., 2003).  These CSCs can 
differentiate into cells that have characteristics of both neurons and glial cels, self-renew 
in vitro at higher levels than normal neuronal stem cells, and grow and differentiate in 
neonatal rat brains.  Interestingly, the putative CSCs isolated from these brain tumors 
overexpressing CD133 were found to regenerate identical brain tumors in NOD/SCID 
mice.  Furthermore, these tumors could also be serially transplanted (Singh et al., 2004).  It 
is likely that, as suitable markers and assay systems become available, more solid tumor 
CSCs will be described.   
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2.4 Signaling pathways supporting the self-renewal of CSCs 

There are several signaling pathways including Notch (McGovern et al., 2009), Wnt/β-
catenin (Reya & Clevers, 2005), Hedgehog (Medina et al., 2009), and PI3K/Akt (Hu et al., 
2005), which have known roles in maintenance and/or control of normal and cancer stem 
cell compartments, as well as being implicated in cancer.  Since they are playing an 
important functional role in CSC self-renewal and survival, they also represent attractive 
novel therapeutic targets for complete eradication of tumor.  A short list of candidate 
chemotherapeutic drugs designed to target these signaling pathways, currently under 
preclinical development or in clinical trials, is compiled in Table 2 and Table 3, respectively.  
Selected signaling cascades are also discussed in more detail as follows.   
 
 
 

Target Novel agent/combination 
CSCs from specific 
tumor type tested 

Reference 

Bcl-2 TRAIL + ABT-737 (Abbott) Brain 
Tagscherer et 

al., 2008 
CD44 CD44 antibodies AML Jin et al., 2006 

Death receptors TRAIL + chemotherapy AML progenitors 
Plasilova et 

al., 2002 
Fatty acid 

synthase (F A 
S) 

Resveratrol Breast 
Pandey et al., 

2010 

Hedgehog Cyclopamine Medulloblastoma 
Berman et al., 

2002 

IL-4 
IL-4 blocking antibodies + 

chemotherapy 
Colon 

Francipane et 
al., 2008 

Notch γ-secretase inhibitor (GSI-18) Medulloblastoma Fan et al., 2006 

PI3K/Akt A-443654 (Abbott) Brain 
Gallia et al., 

2009 

SHH/mTOR 
Cyclopamine + rapamycin + 

chemotherapy 
Pancreas 

Mueller et al., 
2009 

TGF-β TGF-β + imatinib CML 
Naka et al., 

2010 

Wnt/β-
catenin/lef-1 

CGP049090, PKF115-584 
(Novartis) 

CLL 
Gandhirajan et 

al., 2010 

Wnt 
(Canonical) 

ZTM000990, PKF118-310, 
anti-WNT1 & anti-WNT2 

antibodies 
-- 

Barker & 
Clevers, 2006 

XIAP 

Small molecular XIAP 

inhibitors (Pfizer) + γ-
irradiation 

Brain 
Vellanki et al., 

2009 

 

Table 2. Preclinical studies of novel drug candidates targeting various signaling pathways 
associated with CSCs.  
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Target Drug 
Cancer type 

(Phase) 
Sponsor 

Clinical trial 
identifier 

Notch MK0752 Breast (I) Merck NCT00106145 

  Pancreatic (I, II) 
Cancer 

Research, UK 
NCT01098344 

 PF-03084014 Leukemia (I) Pfizer NCT00878189 

 RO4929097 Renal cell (II) 
U Health 
Network, 
Toronto 

NCT01141569 

Sonic 
Hedgehog 

BMS-833923 Basal cell (I) 
Bristol-Myers 

Squibb 
NCT00670189 

 GDC-0449 Solid tumors (I) Genentech NCT00968981 
  Colorectal (II) Genentech NCT00636610 

 LDE225 
Medulloblastoma 

(I) 
Novartis NCT00880308 

 PF-04449913 Hematologic (I) Pfizer NCT00953758 

Wnt Resveratrol Colon (I, II) 
U California, 

Irvine 
NCT00256334 

Table 3. Clinical trials on new drugs specifically targeting CSC signaling pathways.  

2.4.1 Notch 

The Notch/γ-secretase/Jagged signaling pathway is involved in cellular response to 
intrinsic or extrinsic developmental cues to execute specific developmental programs 
(Artavanis-Tsakonas et al., 1999).  It is an important regulator of differentiation and helps 
control cell fate.  It is also involved in vasculogenesis and angiogenesis.  Extensive crosstalk 
has been shown to exist between Notch and other developmental signaling pathways 
(Hedgehog and Wnt, see below).  Notch signaling is activated by ligand binding.  The Notch 
ligands (Jagged 1 & 2, and Delta 1-3) induce the release of the Notch intracellular (Notch-IC) 

domain via enzymatic cleavage by α- and γ-secretases.  The released Notch-IC will then 
translocate to the nucleus where it turns on the transcription of Notch responsive genes 
(Artavanis-Tsakonas et al., 1999; Lehar et al., 2005).  Notch signaling pathways are activated 
in both breast CSCs (Phillips et al., 2006) and in endothelial cells (Scharpfenecker et al., 2009) 
in response to radiation.  γ-secretase inhibitors have been developed to inhibit Notch 
signaling to block CSC self-renewal and were shown to inhibit the engraftment of 
medulloblastoma in animal model (Fan et al., 2006).      

2.4.2 Wnt/β-catenin 

The Wnt signaling pathway is an ancient system that has been highly conserved during 
evolution.  It has been implicated in a wide range of biological processes from maintaining 
stem cells in their pluripotent state to the induction of specific tissues and organs during 
development.  Canonical Wnt signals are transduced through Frizzled family receptors and 

LRP5/LRP6 coreceptor to the β-catenin signaling cascade (comprehensively reviewed by 

Wend et al., 2010).  This Wnt/β-catenin signaling pathway is important for self-renewal in 
stem cells and has been found to be dysregulated in solid and haematopoietic cancers (Zhao 
et al., 2007; Katoh & Katoh, 2007).  The pathway has also been shown to promote genomic 
instability, thereby enhancing the DNA damage tolerance in CSCs (Eyler & Rich, 2008).  
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Conditional knockout of the key Wnt mediator protein β-catenin in hematopoietic 
progenitor cells have been shown to delay the development of CML in a bone marrow 
transplantation model in mice (Zhao et al., 2007).   

2.4.3 Sonic hedgehog (SHH) 

The SHH pathway is regulated by the binding of Shh (ligand) on the transmembrane receptor 
patched (Ptch).  In the absence of Shh, Ptch inhibits the activity of another transmembrane 
protein, smoothened (Smo), resulting in inactivation of the SHH pathway (Pasca di Magliano 
et al., 2003).  Binding of Shh to Ptch abrogates the inhibitory effect of Ptch.  Smo is derepressed 
and the transcription factor Gli (Gli1-3) is activated.  Gli1 is a potent activator of a number of 

downstream target genes, including HNF-3β, cyclins D1, IGFBP-6, Snail, CXCR4, and Bcl-2, to 
regulate neural development, cell proliferation, oncogenesis, survival, epithelial-mesenchymal 
transition, migration, invasion and metastasis, respectively (Katoh & Katoh, 2007).  As positive 
and negative feedbacks, GLI1 protein respectively activates its own expression and that of 
PTCH1 (Agren et al., 2004).  Therefore, Gli1 is considered a marker of abnormal activation of 
SHH pathway.  While both SHH and Wnt pathways are commonly hyperactivated in tumors 
to sustain tumor growth, crosstalk between the two pathways has been reported (He et al., 
2006), which adds to the complexity of regulation of CSCs.  With the development of specific 
SHH inhibitors such as cyclopamine, the SHH signaling pathway has been proposed to be a 
druggable target in CSCs (Medina et al., 2009).   

2.4.4 PI3K/PTEN/Akt 

The PI3K/PTEN/Akt pathway is one of the most extensively studied signal transduction 

axes that control cell growth, survival, and proliferation (Sarker et al., 2009).  The loss of 

PTEN and the consequent enhancement of Akt pathway activity has been found to 

constitute the major molecular events accompanying the increased stem cell character and 

chemoresistance of gliomas (Hu et al., 2005).  Activate Akt pathway is also associated with 

the occurrence of a population of radiation resistant cancer stem-like cells in 

medulloblastomas, where Akt inhibition appears to sensitize the cells for radiation-induced 

apoptosis (Hambardzumyan et al., 2008).  

With a better appreciation of the CSC-specific signaling pathways, it becomes logical in an 

attempt to eradicate the tumor by combining these CSC-targeted therapies with standard 

chemotherapies.  Since the aforementioned pathways also govern normal stem cell 

development and maintenance, it will be critical to establish a dose and schedule where the 

tumor is suppressed or eliminated without undue toxicity of normal stem cells.  Recent data 

on mouse leukemia models suggest that the PTEN-dependence of CSCs may be exploited 

for their specific targeting, while sparing the normal haematopoietic stem cells (Yilmaz et 

al., 2006).  Rapamycin was found to selectively kill the leukemia initiating cells in mice 

harboring a conditional deletion of PTEN, illustrating that novel therapies may be devised 

specifically for CSCs. 

3. Multidrug resistance and cancer stem cells   

3.1 Working models of cancer drug resistance  

Clinical drug resistance to anticancer therapy is well-known to be multifactorial, involving 
alteration in drug targets, inactivation of drug, decreased drug uptake, increased drug 
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efflux, and dysregulation of apoptosis pathways (Gottesman, 2002).  Usually, cancers that 
recur after an initial response to chemotherapeutic drugs become resistant to multiple 
drugs, giving rise to the phenomenon of multidrug resistance (MDR).  The traditional belief 
is that a few cells in the tumor have acquired genetic alteration(s) to confer drug resistance 
(i.e. “clonal evoluation” model, Figure 3A).  These resistant clones have a selective 
advantage that enables them to outgrow the rest of the tumor following chemotherapy.   
  
 

 
 
A. Conventional model of cancer drug resistance: A few resistant clones (MDR cells) have 

acquired drug resistance through genetic alterations.  Following chemotherapy, these 
drug resistant clones survive and give rise to a tumor made up of their progeny cells.  

B. CSC model of cancer drug resistance: The original tumor contains a small population of 
CSCs and their more differentiated progeny.  Following chemotherapy, only the CSCs 
survive by their innate protective mechanisms.  Thereafter, they can repopulate the 
tumor by asymmetrical cell division (i.e. giving rise to another CSC and a differentiated 
progeny originated from the CSC). 

C. “Acquired resistance” CSC model of cancer drug resistance: The original tumor 
contains a small population of CSCs and their more differentiated progeny.  Following 
chemotherapy, while only the CSCs survive, some of them acquire mutations that 
confer a high level of drug resistance.   

 

Fig. 3. Models of cancer drug resistance 
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With better appreciation of the role of CSCs in cancer biology, MDR is generally considered 
to be ultimately caused by CSCs.  As discussed above, CSCs share many properties of the 
normal stem cells, which help protect them from cytotoxic insult throughout their long 
lifespan.  These properties include quiescence, resistance to xenobiotics through the 
expression of several ATP-binding cassette (ABC) transporters, active DNA repair capacity, 
and resistance to apoptosis, which collectively make CSCs naturally resistant to 
chemotherapy.  Therefore, after exposure to conventional chemotherapeutic drugs, CSCs 
survive and are able to repopulate the tumor both with another CSC and with differentiated 
cells originated from the CSCs (Figure 3B).    
This working model where the intrinsic protective mechanisms of CSCs alone provide the 

basis for drug resistance might be considered too simplistic.  A modified “acquired 

resistance” stem-cell model was thus proposed to more closely resemble the real clinical 

situation (Figure 3C).  This can be exemplified in the recent studies of imatinib resistance in 

leukemia patients.  Imatinib, a tyrosine kinase inhibitor, is a promising molecularly targeted 

chemotherapeutic agent.  It has been shown to be both a substrate and inhibitor of ABCG2, 

thus allowing its efflux by a stem cell that express this ABC transporter (Houghton et al., 

2004; Burger et al., 2004).  In-depth mechanistic studies in imatinib-resistant leukemia cells 

revealed several “acquired” mutations in the kinase domain of ABL in patient with CML or 

with AML associated with t(9;22)(q34;q11).  These findings therefore suggest that CSCs 

expressing the drug transporter could facilitate, but not be solely responsible for, the 

acquisition of acquired mechanisms of drug resistance.  As for imatinib, the acquired 

mutation in ABL, the ultimate drug target, could confer higher levels of drug resistance.   

Different tumor types may respond differently to chemotherapy.  Cancers that respond to 
initial chemotherapy may appear to acquire drug resistance during the course of treatment.  
Other cancers may appear to be intrinsically resistant.  In either case, the CSC model of drug 
resistance applies.  It is the quiescent CSCs with the innate drug resistance that survive the 
chemotherapy; and more importantly, they are capable of repopulating the tumor following 
chemotherapy.  On the other hand, acquired drug resistance in more differentiated cancer 
cells, through gene mutation, amplification or rearrangement, may contribute to an 
aggressive phenotype, but it is not the primary reason for cancer recurrence or spread after 
therapy.  Therapeutic strategies that specifically target the CSCs should eradicate tumors 
more effectively than current treatments and reduce the risk of relapse and metastasis. 

3.2 ABC Transporters and normal stem cells/CSCs  

Among the several protective mechanisms for CSCs, the overexpression of the ATP-binding 

cassette (ABC) efflux transporters is probably the most important.  The ABC transporters 

belong to the largest superfamily of transport proteins (Gottesman & Ambudkar, 2001).  A 

total of 49 ABC transporter genes have been identified in the human genome and they were 

grouped into seven subfamilies (designated A to G) according to their structural and 

sequence homologues (Vasiliou et al., 2009).  By using the energy of ATP hydrolysis, these 

transporters actively efflux drugs from cells, serving to protect them from cytotoxic 

substances.  The two ABC transporter-encoding genes that have been studied most 

extensively in stem cells are ABCB1 (MDR1), which encodes P-glycoprotein, and ABCG2.  

Together with ABCC1 (MRP1), they represent the three major multidrug resistance genes 

that have been identified in cancer cells.  Table 4 summarizes the different ABC transporters 

that have been found to contribute to cancer drug resistance.   
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Gene Protein / alias 
Location on 
chromosome 

Chemotherapeutic 
drugs effluxed 

Other important 
substrates 

ABCA2 ABCA2 9q34.3 estramustine - 
ABCA3 ABCA3 16p13.3 daunorubicin surfactant? 

ABCB1 
P-gp/ 
MDR1 

7q21.12 
colchicine, doxorubicin, 
etoposide, vinblastine, 

paclitaxel 

digoxin, 
saquinivir, 
rhodamine 

ABCB4 MDR3 7q21.12 paclitaxel, vinblastine bile salt 
ABCB5 ABC19 7p15.3 doxorubicin - 

ABCB11 BSEP/SPGP 2q21.3 paclitaxel, vinblastine 
bile salt, 

pravastatin 

ABCC1 MRP1 16p13.12 

doxorubicin, 
daunorubicin, 

vincristine, etoposide, 
colchicine, 

camptothecins, 
methotrexate 

rhodamine 

ABCC2 MRP2 10q24.2 
vinblastine, cisplatin, 

doxorubicin, 
methotrexate 

sulfinpyrazone, 
bilirubin 

ABCC3 MRP3 17q21.33 methotrexate, etoposide - 

ABCC4 MRP4 13q32.1 
6-mercaptopurine, 6-

thioguanine, 
methotrexate 

cAMP, cGMP 

ABCC5 MRP5 3q27.1 
6-mercaptopurine, 6-

thioguanine, 
cAMP, cGMP 

 
ABCC6 MRP6 16p13.12 etoposide - 

ABCC10 MRP7 6p21.1 paciltaxel E217βG 
ABCC11 MRP8 16q12.1 5-fluorouracil cAMP, cGMP 

ABCG2 ABCG2/BCRP 4q22 

mitoxantrone, 
topotecan, doxorubicin, 

daunorubicin, 
irinotecan, imatinib, 

methotrexate 

pheophorbide A, 
Hoechst 33342, 

rhodamine 

Table 4. ABC transporters involved in drug resistance    

3.2.1 ABCB1 

ABCB1, also commonly known as P-glycoprotein (P-gp), is the most extensively studied 
multidrug resistance transporter, which was discovered more than 30 years ago (Jiliano & 
Ling, 1976).  It has been found to be expressed in > 50% of all drug-resistant tumors.  
Human ABCB1 is the product of the MDR1 gene and acts as an ATP-dependent pump for a 
multitude of structurally unrelated hydrophobic compounds, including numerous 
anticancer and antimicrobial drugs (Gottesman & Ambudkar, 2001).   
In Hoechst dye exclusion assay using human cancer cell lines, the expression of ABCB1 
(usually together with ABCG2) has been found to be higher in the isolated SP cells.  As 
described above, the SP population has an enhanced capacity for the efflux of Hoechst dye, 

www.intechopen.com



 
Multidrug Resistance Transporters – Roles in maintaining Cancer Stem-Like Cells 

 

731 

presumably due to ABCB1 and/or ABCG2 expression.  Although Zhou et al. reported that 
ABCB1 may not contribute to the SP phenotype because bone marrow cells from Mdr1a/1b-/- 
mice are completely lacking in the SP population (Zhou et al., 2001), ABCB1 is still generally 
considered to be important in protecting CSCs from toxic insult.  Result by Zhou et al. may 
just represent a tumor type-specific observation.  Moreover, SP indeed does not define 
CSCs.  The SP fraction is composed of both stem and non-stem cells, and some stem cells are 
not located in the SP compartment (Zhou et al., 2002). 

3.2.2 ABCG2   

ABCG2 is a more recently discovered ABC transporter responsible for cancer drug 
resistance.  It was discovered almost simultaneously by three research groups, giving it 
three different names (BCRP/ABCP/MXR) in the 1990s (Doyle et al., 1998, Allikmets et al., 
1998; Miyake et al., 1999).  Subsequently, the sequences for these genes turned out to be 
nearly identical, thereafter the gene was assigned an official name ABCG2 by the Human 
Gene Nomenclature Committee, which falls into the “G” subfamily of ABC transporters 
comprising only of half-transporters.  
The list of ABCG2 substrates has been expanding rapidly, which highlights the important 

role of this transporter in drug disposition and treatment outcomes (Polgar et al., 2008).  

Numerous cancer chemotherapeutic drugs have been identified as ABCG2 substrates, such 

as mitoxantrone, flavopiridol, topotecan, and some of the newly developed tyrosine kinase 

inhibitors.  There is considerable overlap in substrate drug specificity of ABCG2 and other 

multidrug resistance transporters, including ABCB1, ABCC1, ABCC2, and some solute 

carrier transporters.  Besides anticancer drugs, several other therapeutic classes have also 

been described as ABCG2 substrates, including antibiotics, antivirals, flavonoids, and 

antihyperlipidemic drugs. 

Numerous studies have indicated that ABCG2 overexpression plays a possible role in cancer 

drug resistance, particularly in leukemia (Ross et al., 2010).  For example, higher expression 

of ABCG2 was found to be associated with AML cases (Ross et al., 2000) or with a poor 

response to remission induction therapy in AML cases (Steinbach et al., 2002).  Of note, 

ABCG2 is often found to be expressed together with P-gp in AML cases, resulting in poor 

prognosis (Galimberti et al., 2004; van den Heuvel-Eibrink et al., 2007).  Interestingly, 

ABCG2 and ABCB1 mRNA level was found to be higher in non-responding AML cases, 

only when the primitive subset of CD34+/CD38- leukaemia stem cells were analyzed (Ho et 

al., 2008).  Although the self renewal capability was not evaluated for the CD34+/CD38- cell 

population in these studies, it appears that they are the tumor-initiating CSCs protected by 

the increased expression of the transporters.  

3.2.3 Physiological role of ABCB1 and ABCG2 in CSCs   

Although high expression of ABCB1 and ABCG2 is generally believed to be a marker for 
normal and/or cancer stem cells, their physiological role in still not clear.  Mice deficient in 
either Abcb1, Abcc1, or Abcg2 are viable, fertile and have normal stem cell compartments 
(Schinkel et al., 1994; Zhou et al., 2002; Jonker al., 2002).  This indicates that none of these 
transporter genes are necessary for stem cell growth or maintenance.  On the other hand, 
these knockout mice are more sensitive to the effects of drugs such as vinblastine, 
ivermectin, topotecan and mitoxantrone, consistent with a role for these ABC transporters in 
protecting cells from toxins.  
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As discussed above, both ABCB1 and ABCG2 have been proposed to be survival factors for 
normal stem cells or CSCs by excluding various xenotoxins out of the cells.  However and 
interestingly, ABCB1/P-gp expression generally tracks with the cell differentiation status, 
where more differentiated tumors tend to have higher expression of the transporter 
(Mizoguchi et al., 1990; Nishiyama et al, 1993).  Moreover, ABCB1/P-gp expression is almost 
universally found to be upregulated, accompanied by increased expression of markers of 
maturation, in cancer cell lines treated with differentiating agents (Bates et al., 1989; Mickley 
et al., 1989).  Given that CSCs need to maintain their pluripotent state for self-renewal and 
repopulating the rest of the tumor, they should be minimally differentiated.  It follows that 
ABCB1/P-gp may not be an important CSC survival factor per se.  In contrast, high level 
functional expression of ABCG2 has been reported in undifferentiated human embryonic 
stem cells (hESCs) (Apati et al., 2008).  The therapeutic implication of these observations is 
that the undifferentiated and ABCG2-overexpressing cancer cells within a tumor may 
represent the most chemoresistant putative CSCs that need to be targeted for complete 
eradication of the tumor.     

3.2.4 Overcoming drug resistance by transporter inhibition   

3.2.4.1 Early generations of transporter inhibitors    

An obvious strategy to restore drug sensitivity in MDR cancer cells caused by ABC drug 
transporters is to block transporter-mediated drug efflux.  Over the past decade, 
tremendous efforts have been made to discover and synthesize such inhibitors/modulators.  
Of note, efforts to combat drug resistance caused by the MDR transporters have focused 
mostly on the use of functional modulators or reversal agents, rather than modulation of the 
transporter gene regulation.  The most well-known inhibitors that have been tested for 
targeting ABCB1/P-gp (verapamil, cyclosporine A, and valspodar (PSC833)) and ABCG2 
(fumitremorgin C (FTC) and Ko143) are also useful research tools for studying modulation 
of these transporters.  A few of these inhibitors, including tariquidar (XR9576) (Kuhnle et al., 
2009), can interact with both ABCB1/P-gp and ABCG2.  They represent promising lead 
compounds for further development because drug-resistant tumors usually have 
overexpression of more than one MDR transporters.  
Numerous clinical trials have been performed to evaluate the combination of P-gp 
modulators with standard chemotherapy regimens in enhancing anticancer efficacy (Sandor 
et al., 1998).  However, they were mostly disappointing and failed to prove the MDR 
reversal hypothesis, partly because of the lack of specific and potent inhibitors against the 
MDR transporters.  On the other hand, unpredictable pharmacokinetic drug interactions, 
simultaneous involvement of several drug transporters in tumor tissues, as well as the 
variability in drug transporter expression levels among individuals, remain obstacles to 
using modulators to restore drug sensitivity in the clinic.   

3.2.4.2 Novel transporter inhibitors may hold promise to target CSCs    

The abrupt termination of a phase III clinical trial of a second generation ABCB1/P-gp 
inhibitor, valspodar (also known as PSC833), due to unexpected toxicity to the patients 
probably have an enormous negative impact in the field.  It was just until recently when the 
discovery of potent and specific inhibition of P-gp and/or ABCG2 by tyrosine kinase 
inhibitors (TKIs) has renewed the research interest in developing drug transporter inhibitors 
for the circumvention of MDR.  TKIs are an important new class of molecularly targeted 
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chemotherapeutic agents that specifically inhibit several oncogenic tyrosine kinases, thereby 
regulating cancer proliferation, invasion, metastasis and angiogenesis.  The first TKI that 
was approved for CML, imatinib, has been shown to reverse MDR by inhibiting ABCB1(P-
gp) (Hegedus et al., 2002) and ABCG2 (Houghton et al., 2004).  A few other TKIs were also 
demonstrated to reverse drug resistance mediated by MDR transporters in various in vitro 
and in vivo models (reviewed in Wang & Fu, 2010).  However, it is still controversial as to 
whether TKIs are substrates or inhibitors of ABCB1 (P-gp) and/or ABCG2, which may 
depend on the concentration used.  Moreover, since these TKIs are acting on oncogenic 
tyrosine kinases, which may have interactions/crosstalk with the other CSC-specific 
signaling pathways described before, the novel TKIs may prove to be good drug candidates 
targeting CSCs.       
Given the central role played by ABCB1 and/or ABCG2 in protecting CSCs, specific 
transporter inhibitors theoretically could be employed as “cancer stem cell sensitizing 
agents” that allow the most crucial and drug resistant cells in a tumor to be destroyed.  
These therapies would be predicted to have toxic effects on the patients’ normal stem cells.  
Since both ABCG2 and ABCB1 are also known to constitute the blood-brain barrier, this 
approach has to be carefully titrated to avoid excessive toxicity.  

4. Regulation of MDR transporters and its relevance to CSCs 

As mentioned above, the MDR transporter ABCG2 may be the bona fide CSC survival 
factor.  Therefore, our discussion in this section will focus on ABCG2.  Recently, an 
increasing number of studies have focused on unravelling the molecular regulation of 
ABCG2 because ABCG2 expression is highly sensitive to various developmental and 
environmental stimuli.   

4.1 Transcriptional regulation of ABCG2 at the promoter level     

Early studies examining the regulation of ABCG2 have focused at the transcriptional level.  
A few functional cis-elements have been identified at the ABCG2 promoter, including 
hypoxia (Krishnamurthy et al., 2004), estrogen (Ee et al., 2004), progesterone (Wang et al., 
2008), and the xenobiotic (aryl hydrocarbon receptor) response elements (Tan et al., 2010; To 
et al., 2011), which tightly control ABCG2 expression and serve as cellular defense 

mechanisms against various stimuli.  A PPAR-γ response element upstream of the ABCG2 
gene has also been shown to facilitate the upregulation of ABCG2 for protecting dendritic 
cells (Szatmari et al., 2006).  Cytokines and growth factors have also been reported to affect 
ABCG2 levels, though the exact mechanism is not clear.  
Other studies on ABCG2 regulation are mostly related to its overexpression in drug-
resistant cancer cell lines.  The overexpression of ABCG2 has been found to correlate with 
increased binding of a set of permissive histone modification marks, RNA polymerase II and 
a chromatin remodelling factor Brg-1, but decreased association of a repressive histone 
mark, HDAC-1 and Sp1 with the proximal ABCG2 promoter (To et al., 2008a).  It has been 
demonstrated that chromatin dynamics and structure contribute significantly to the 
maintenance of pluripotency and regulation of differentiation in embryonic stem cells (Shafa 
et al., 2010).  To this end, prolonged drug selection has been found to enrich the resulting 
subline with CSC characteristics (Calcagno et al., 2010).  Therefore, we speculate that the 
chromatin remodelling observed at the ABCG2 promoter may coincide with the enrichment 
of the pluripotent CSCs in the drug-selected resistant cells (Figure 4).  
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Fig. 4. Chromatin remodelling at the ABCG2 promoter allows overexpression of the 
transporter in drug-selected resistant cells (To et al., 2008a).  

A closer look at the ABCG2 promoter also reveal that there are a few putative binding sites 
for the stem cell transcription factors Oct4 and Nanog (Figure 5), which are known to 
promote self-renewal and pluripotency (Boyer et al., 2005).  To this end, ABCG2 and 
Oct4/POU5F1 were found to be highly coexpressed in the resistant subline selected from 
the parental K562 leukemia cells (Marques et al., 2010).  These observations are therefore 
consistent with the notion that ABCG2 is a survival factor for the pluripotent CSCs.      
 

 

Fig. 5. Putative binding sites for the stem cell transcription factors Oct4 and Nanog at the 
ABCG2 promoter.   

4.2 MicroRNA-mediated regulation of ABCG2     

MicroRNAs (miRNAs) are small noncoding RNAs that repress gene expression in a variety 
of eukaryotic organisms.  They play important roles in several cellular processes, such as 
proliferation, differentiation, apoptosis, and development, by simultaneously controlling the 
expression levels of hundred of genes.  In human cancer, recent studies have shown that 
miRNA expression profiles differ between normal tissues and derived cancers and between 
cancer types (Lu et al., 2005).  MiRNAs can also act as oncogenes or tumor suppressors, 
exerting a key function in tumorigenesis (Esquela-Kerscher et al., 2006; Hammond, 2007).  
Gene regulation by miRNAs is mediated by the formation of imperfect hybrids with the 
3’untranslated region (3’UTR) sequences of the target mRNAs, leading to mRNA 
degradation and/or translational inhibition. 
Evidence pointing to the role of miRNAs in determining drug sensitivity and MDR is 
emerging.  First, miRNA expression is largely dysregulated in drug-resistant cancer cells 
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(Zhu et al., 2008; Pan et al., 2009).  Second, the miRNA expression patterns in the NCI-60 
drug screen cell lines are significantly correlated to the sensitivity patterns of the cancer cells 
for a large set of anticancer agents (Blower et al., 2008).  Third, numerous miRNAs have 
been found to regulate drug resistance genes such as DHFR (Mishra et al., 2007) and BCL2 
(Xia et al., 2008).   
We and others have independently identified three miRNAs (miR-519c, -520h, and -328) 
regulating ABCG2 expression and determining the sensitivity of cancer cells (To et al., 2008b 
& 2009; Liao et al., 2008; Wang et al., 2010; Pan et al., 2009, respectively).  We reported that 
ABCG2 mRNA is more stable in drug-selected and ABCG2-overexpressing resistant cell 
lines than in their parental counterparts (To et al., 2008b & 2009).  This increase in mRNA 
stability was tied to a missing miR-519c binding site (also miR-328) in the truncated 3’UTR 
of ABCG2 mRNA in drug resistant cells (Figure 6).  Intriguingly, the truncation of the 
ABCG2 3’UTR has also been reported in an undifferentiated human embryonic stem (HuES) 
cell line where its high ABCG2 expression was associated with the short 3’UTR variant 
forms (Apati et al., 2008).  In contrast, another differentiated HuES cell line with lower 
ABCG2 levels possesses a longer 3’UTR variant (Apati et al., 2008).  Sandberg et al. also 
found that rapidly proliferating cells express ABCG2 mRNA with shorter 3’UTRs, 
presumably to escape miRNA regulation (Sandberg et al., 2008).  Therefore, in the resistant 
cells, miR-328 and miR-519c (though a proximal miR-519c binding site present also in the 
truncated 3’UTR has been recently discovered (Li et al., 2011)) cannot bind to ABCG2 
mRNA because of the shorter 3’UTR, and thus miRNA-mediated mRNA degradation 
and/or protein translation block are relieved, contributing to ABCG2 overexpression 
(Figure 6).  In a human retinoblastoma cell line model, it has been further demonstrated that 
low expressions of all three miRNAs (miR-328, -519c, & -520h) correlate very well with high 
ABCG2 expression, with concomitant expression of other stem cell markers including 
CD133 and ALDH1A1 (Li et al., 2011).  On the other hand, hsa-miR-520h has been reported 
to promote differentiation of hematopoietic stem cells by inhibiting ABCG2 expression (Liao 
et al., 2008).  These findings collectively support an important role played by miRNAs in 
maintaining high ABCG2 level in CSCs.  It will be interesting to verify if the same 
phenomenon is also observed in patient tumor samples.    
The regulation of the other two major multidrug resistance transporters, P-
glycoprotein/MDR1 and MRP1, by miR-451, -27a and -326, respectively, have also been 
reported (Kovalchuk et al., 2008; Li et al., 2010; Liang et al., 2010).  More importantly, 
modulation of miRNA expression or function can alter sensitivity of cancer cells to 
anticancer drugs (Zhu et al., 2008; Pan et al., 2009; Blower et al., 2008).  This could be 
achieved by inhibiting the function of up-regulated miRNAs or restoring the expression of 
down-regulated miRNAs.  Together, miRNAs may represent important players in intrinsic 
or acquired MDR in cancer cells.  
With the general appreciation of the importance of miRNAs in gene regulation, an emerging 
role of miRNAs in regulating stem cell self-renewal and differentiation has been revealed 
(Kashyap et al., 2009), which are important for proper stem cell function and maintenance.  
Recently, the coordinated regulation of miRNAs and various stem cell transcription factors 
including OCT4, SOX2 and Nanog have emerged as the master regulatory mechanism for 
stem cells pluripotency and differentiation.  Given that ABCG2 could be downstream target 
of these stem cell transcription factors, it remains to be seen if the miRNA/stem cell 
transcription factors network could intercept with the regulation of the MDR transporters in 
contributing to the pluripotent state and chemoresistance of the CSCs.    
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Fig. 6. A proposed model for ABCG2 upregulation in drug-resistant cells by escaping 
miRNA repression (To et al., 2009; Li et al., 2011) 

5. Conclusion  

The CSC model of drug resistance offers an appealing explanation as to why cancers that 
show an apparent complete clinical response to chemotherapy can relapse months or even 
years later.  Numerous novel strategies to circumvent multidrug resistance have been 
designed to target the putative CSCs by exploiting pathways involved in MDR transporters-
mediated drug resistance, or forcing these cells to proliferate and differentiate thus 
converting them into a target of conventional therapies.  Given the complicated 
microRNA/pluripotency transcription factor/MDR transporters/CSCs network described 
above, a better understanding of the various molecular mechanisms regulating pluripotency 
is pivotal to realizing the therapeutic potential of the novel treatment modalities.    
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