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1. Introduction 

Diabetes mellitus has recently manifested a global trend in increased prevalence and is now 
a major public health problem around the world including in developing countries, such as 
China and India. It currently affects approximately 200 million people, and this number is 
likely to increase to 400 million by 2030 (Lock and Tzanakakis, 2007). Approximately 10% of 
these cases will have type 1 diabetes mellitus (T1D), caused by absolute deficiency of 

insulin-producing β cells. Therefore, a cellular therapy is the best prospect for a cure of T1D, 

provided autoimmunity to β cells can be controlled and there is a sufficient supply of 

insulin-secreting β cells for transplantation. However, the poor availability of donor islets 
has severely restricted the broad clinical use of islet transplantation. The lack of sufficient 
donor islets is why much attention has recently been paid to stem cells as a renewable 

source of β cells.  
The term ‘stem cell’ was initially used in embryology in the late 19th century in the context of 
the origin of the blood system and gametes (Ramalho-Santos and Willenbring, 2007). Stem 
cells are undifferentiated cells that are capable of both self-renewal and giving rise to 
specialized functional cells. Depending on the developmental stages of their origin, stem 
cells can be divided into embryonic stem cells (derived from the inner cell mass of pre-
implanted embryos) (Evans and Kaufman, 1981; Martin, 1981); epiblast stem cells (derived 
from post-implanted epiblast-stage embryos) (Brons et al, 2007; Tesar et al, 2007); germline-
derived stem cells (derived from embryonic gonadial ridges or postnatal testes) (Shamblott 
et al, 1998; Kanatsu-Shinohara et al, 2004; Guan et al, 2006); induced pluripotent stem cells 
(from foetal or adult cells) (Takahashi and Yamanaka, 2006; Aoi et al, 2008; Hanna et al, 
2008; Park et al, 2008) or adult stem cells (derived from postnatal tissues). Adult stem cells 
are a rare population in specific tissues but show powerful potential for regeneration. They 
can be further divided based on their tissue origin into a number of categories such as 
haematopoietic stem cells, neuronal stem cells, skin stem cells as well as mesenchymal stem 
cells. Unlike other tissue-specific stem cells, pancreatic stem cells (PSC) were proposed only 
relatively recently (Ramiya et al, 2000). However, despite intense research, the presence and 
origin of PSC are hotly debated. In order to understand the role and potential of PSC, better 
knowledge of pancreas development and function is required. In this review, we will 

particularly discuss several types of β-cell regeneration in physiological and 

pathophysiological conditions, and explore the mechanisms of regeneration of β cells. We 
hope that this will give readers a taste of this controversial but important area of research. 
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2. Pancreas development and physiology 

2.1 Embryology 
The pancreas is an organ derived from endoderm. The endoderm is one of the three 
primitive germ layers formed during the early embryonic stage known as gastrulation. 
Taking the mouse as an example, the pancreas originates from the thickened endodermal 
epithelium along the dorsal and ventral surfaces of the posterior foregut. These thickenings 
can be identified histologically at embryonic day (E) 9.0-9.5 (Pictet et al, 1972). Subsequently, 
these epithelia evaginate into the surrounding mesoderm-derived mesenchymal tissue and 
form dorsal and ventral pancreatic buds. These buds continue to expand, branch and fuse as 
a result of gut rotation that brings the buds together. The fused developing pancreas 
continues to proliferate, differentiate and, ultimately, develop into the mature pancreas. The 
adult pancreas consists of digestive enzyme-secreting exocrine tissue, digestive enzyme-
transporting ductal tissue and hormone-producing tissue located in the islets of Langerhans. 
In humans, the dorsal bud can be detected as early as 26 days postcoitum (dpc, an 
equivalent stage to E9.5 mouse embryos), but insulin-positive cells are not visible until 52 
dpc, approximately 2 weeks later than the equivalent stage seen in mice. The appearance of 
human insulin-positive cells precedes that of glucagon-positive cells at 8-10 weeks of 
development (Piper et al, 2004). All islet cells are detectable at the end of the first trimester 
in humans (Piper et al, 2004), but at later stages in mice (Herrera et al, 1991). These data 
indicate a human-mouse temporal difference in lineage development (Richardson et al, 
1997), and this is supported by differences in gene expression patterns during 
developmental and disease processes in these two species (Fougerousse et al, 2000). More 
reviews of human pancreas development can be found elsewhere (De Krijger et al, 1992; 
Lukinius et al, 1992; Polak et al, 2000). 

2.2 Pancreatic progenitors 

In the thickened DE epithelium along the dorsal and ventral surfaces of the posterior foregut 
at E9.0-9.5, there are a group of cells express a parahox homeobox transcription factor (TF) 
gene termed Pdx1 (pancreas and duodenum TF 1). This is essential for pancreas expansion 

but not for pancreas initiation in early development and β-cell function in adults (Ohneda et 
al, 2000; Gu et al, 2002). The specification and differentiation of the various lineages in the 
pancreas along with transcriptional regulation has been extensively studied and reviewed 
(Wilson et al, 2003; Jensen, 2004; Servitja and Ferrer, 2004; Habener et al, 2005; Murtaugh, 
2007; Best et al, 2008) and is briefly summarised in Figure 1.  
Genetic lineage tracing experiment demonstrated that Pdx1-expressing (Pdx1+) cells are 
multipotent pancreatic progenitors because they give rise to exocrine, endocrine and duct 
tissues in the pancreas (Gu et al, 2002). These cells are located at the tip of the branching 
pancreatic tree marked by Pdx1+Ptf1a+(pancreas transcription factor 1a) 
Cpa1+(carboxypeptidase 1) (Zhou et al, 2007). To provide cues whether these cells are 
proliferative, transcriptome profiling analysis was performed showing that when DE cells 
commit to Pdx1+ pancreatic progenitors there are at least 28 out of 69 (40.6%) cell-cycle and 
cell-proliferation genes up-regulated (Figure 2) (Jiang et al, 2010). 
Surprisingly, direct evidence of proliferation and self-renewal of these Pdx1+Ptf1a+Cpa1+ 
cells has not been produced. However, indirect evidence shows that these Pdx1+ cells may 
take up bromodeoxyuridine (BrdU), a thymidine analogue that may be incorporated into 
DNA during S-phase of the cell cycle, indicative of proliferation (Seymour et al, 2007). 
Unfortunately, due to the lack of a specific marker, this ability of purified Pdx1+ cells has not 
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been examined in vitro either. Development of technologies that allow the demonstration of 
Pdx1+ cells to self-renew in vitro and to specify all pancreatic lineages will be not only 
important for pancreas developmental biology, but also crucial for a future ESC-derived 
cellular therapy for T1D. To serve this purpose, there are two ways to obtain purified Pdx1+ 
cells: from embryos in vivo or from directed ESC culture in vitro. 
 

 

Fig. 1. Lineage development in the pancreas showing role of defined transcription factors. 
Progenitors within a defined domain of foregut endoderm express Tcf2 (T cell factor 2, also 
known as hepatocyte nuclear factor 1b, Hnf1b) and Hnf6 (also known as Onecut 1). Suppression 
of sonic hedgehog (Shh) signalling leads to the development of pancreatic progenitor cells, 
which are marked by expression of a number of transcription factors, especially Pdx1 
(pancreas and duodenum transcription factor 1, also known as Ipf1), pancreas transcription 
factor 1a (Ptf1a), Nkx2.2 (Nk family homeobox factor 2.2), Nkx61 and Hb9 [also known as 
motor neuron and pancreas homeobox 1 (Mnx1)]. The Sry-related HMG box transcription 
factor 9 (Sox9) and suppression of the Notch signalling activates an neurogenin-3 (Ngn3) 
which allows these pancreatic progenitors to commit to precursors of the endocrine islet 
lineages; these endocrine progenitors also express NeuroD (neural differentiation 1), IA1 
(insulinoma associated 1), Isl1 (Islet 1) and Pax6 (paired box factor 6). The endocrine progenitors 
then may differentiate into five types of islet cells [α, β, δ (somatostatin), PP (pancreatic 
polypeptide) and ε (ghrelin)]. For example, a group of MafB- (musculoaponeurotic 
fibrosarcoma oncogene family protein B), Pdx1-, Pax4- and Nkx2.2-expressing cells will give 
rise to mature insulin-secreting β cells, whereas cells that express Brn4 (the brain-specific 
POU-box factor) and Pax6 are destined to become glucagon-secreting α cells.  
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Fig. 2. Dynamic patterns of genes in Pdx1+ cells that regulate cell cycle and cell proliferation. 
Microarray datasets were generated from dissected definitive endodermal (DE) cells and 
purified Pdx1+ pancreas progenitors (Gu et al, 2004), followed by GenMapp analysis. Each 
box identifies a gene. The colour of each box in red or blue represents up- or down-
regulation of the gene compared to its expression in DE. The number on the right-hand side 
is up or down (-) regulation of gene expression in the Log2 scale. [more detail see (Jiang et al, 
2010)]. 

In humans, numerous PDX1+ cells can be easily detected in the pancreas between 8 and 21 
weeks of age (Lyttle et al, 2008; Jeon et al, 2009). The number of PDX1+ cells colocalized with 
insulin or somatostain is progressively increasing during this period of development (Lyttle 
et al, 2008). Unfortunately again, these studies did not provide data to show whether the 
PDX1+ cells are generated by self-renewal themselves or commitment from their 
progenitors. 

2.3 Islet progenitors 

At around E9.5 in mice, a small group of cells in the thickened DE epithelium begin to 
express the basic helix-loop-helix TF neurogenin 3 (Ngn3) (Gradwohl et al, 2000; Gu et al, 
2002; Xu et al, 2008). Accumulating evidence indicates that Ngn3-expressing (Ngn3+) cells in 
the pancreas are islet progenitors that give rise to all islet lineage cells because: (1) in Ngn3 
knockout mice, islet cells do not develop (Gradwohl et al, 2000); (2) gene lineage tracing 
shows that Ngn3+ cells give rise to all pancreatic endocrine cells (Gu et al, 2002); (3) in adult 
pancreas, Ngn3+ cells can be activated by partial duct ligation and (4) after injection into a 
foetal pancreas in vitro, purified Ngn3+ cells differentiate into all islet cell types (Xu et al, 
2008). Whereas mouse Ngn3 mRNA expression peaks around E15.5 (equivalent to weeks 7-8 
in humans), human NGN3 expression was low prior to 9 weeks, but from 9 weeks onward, 
its expression increased sharply and remained high untill 17 weeks (Jeon et al, 2009). 
Although a few studies showed that Ngn3+ cells were proliferative (Jensen et al, 2000; 
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Oliver-Krasinski et al, 2009), the recent genetic clonal analyses of mosaic analysis with 
double marker (MADM) demonstrated that Ngn3+ cells are quiescent and these cells give 
rise to a single islet cell type (Desgraz and Herrera, 2009). Consistent with this, a recent 
seminal study shows that the expression of Ngn3 inhibits proliferation by inducing cyclin-
dependent kinase inhibitor 1a (Cdkn1a) (Miyatsuka et al, 2011). Our recent study demonstrate 
that in addition to induction of Cdkn1a, numerous genes involved in cell-cycle and cell-
proliferation are down-regulated (95/127 or 74.8%) (Figure 3) (Jiang et al, 2010). Even 
though there is no literature reporting whether Ngn3+ cells proliferate in vitro, it is not likely 
that Ngn3+ cells are the so-called PSC. 
 
 

 

Fig. 3. Dynamic patterns of genes in Ngn3+ cells that regulate cell cycle and cell 
proliferation. Microarray datasets were generated from purified Pdx1+ pancreas progenitors 
and Ngn3+ islet progenitors (Gu et al, 2004), followed by GenMapp analysis. Each box 
identifies a gene. The colour of each box in red or blue represents up- or down-regulation of 
the gene compared to Pdx1+ cells. The number on the right-hand side is up or down (-) 
regulation of gene expression in the Log2 scale. [more detail see (Jiang et al, 2010)]. 

2.4 Physiology 

The islets are composed mainly of α, β, δ, ε and PP cells (Figure 1) that secrete glucagon, 
insulin, somatostatin, ghrelin and pancreatic polypeptide respectively (Jorgensen et al, 
2007). These hormones are generally responsible for the regulation of glucose homeostasis. 
For this function, there is a set of fine tuned paracrine interactions among these endocrine 
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cells which is summarized in Figure 4. In adult humans, there are 2,000–3,000 β cells/islet of 
Langerhans, with approximately 1 million islets scattered throughout the pancreas (Stefan et 

al, 1982). The β cells sense the fluctuation of blood glucose levels and secrete insulin in a 
manner dependent on the glucose concentration. Insulin regulates circulating blood glucose 
concentrations through its actions on peripheral tissues, such as to inhibit hepatic glucose 
release and stimulate glucose uptake and storage by skeletal muscle and adipocyte tissue. 
 

 

Fig. 4. Paracrine interactions between islet cells. 

Insulin secreted by β cells acts as a prime hormone of glucose homeostasis and inhibits 

glucagon secretion by α cells. Whereas glucagon activates insulin and somatostatin 

secretion, somatostatin secreted by δ cells and ghrelin by ε cells inhibit insulin secretion. 

3. Regeneration of β cells occurs physiologically and pathophysiologically 

β cells are indeed observed to be regenerated at least during pregnancy, partial 

pancreatectomy and obesity. These observations lead to the birth of the PSC concept 

(Bonner-Weir and Sharma, 2002). The existence of PSC is also inferred from the continued 

function of islets after transplantation (Ryan et al, 2002; Ryan et al, 2005). Since there is no 

convincing evidence of contribution of haematopoietic stem cells to islet cells (Wagers et al, 

2002) nor that β cells are long-lived (Bonner-Weir, 2000), the continued function of 

transplanted islets suggests that PSC reside inside the islets and/or the functional β cells are 

capable of self-renewal. 

3.1 Regeneration of β cells during pregnancy 

To cope with physiological demand, pancreatic β cells do regenerate during pregnancy in 
humans and experimental animals. For example, the uptake of BrdU increases 3-fold at E10 
and 10-fold at E14 in islets of pregnant rats (Parsons et al, 1992), providing indirect evidence 
that proliferation of islet cells contributes significantly to the increase of islet volume 
(Hellman, 1960; Van Assche, 1974). However, there only is a 2-fold increase in islet volume 
and a 3-fold increase in BrdU labelling at E15.5 maternal mouse islets (Karnik et al, 2007). 
This discrepancy may reflect a species difference in regeneration capacity or a difference in 
sensitivity of detection methods. During human pregnancy, both an increase in volume of 
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maternal islets and hyperplasia of ‘β’ cells have also been observed (Van Assche et al, 1978), 
but direct evidence of proliferation in these islets is still lacking. In rodents and humans, the 

proliferation of β cells during pregnancy may be stimulated by prolactin and placental 
lactogens (Nielsen et al, 1999). 

Recently, genetic studies provided molecular insights into how β-cell proliferation occurs 
during pregnancy. The pregnancy hormone prolactin suppresses the transcriptional co-
activator menin, encoded by the gene multiple endocrine neoplasia type 1 (MEN1), resulting in 

β-cell proliferation. This is demonstrated by experiments in which a short infusion of 
prolactin is sufficient to reduce menin expression and stimulate proliferation of mouse islet 
cells (Karnik et al, 2007). In addition, the pregnancy hormones prolactin and placental 
lactogen also induce expression of tryptophan hydroxylase 1 (Tph1), encoding the enzyme 
Tph1 essential for serotonin production, which induces BrdU incorporation into isolated 
islet cells (Kim et al, 2010). However, it is still unknown whether proliferation comes from 

functional β cells and/or from PSC within islets. Future research should be directed to 
recapitulate this effect in vitro with purified subpopulations of islet cells, from which novel 
stimuli and molecular pathways may be identified. Defining these pathways may establish a 
platform on which novel strategies can be developed for a cure of T1D. 

3.2 Regeneration of β cells during obesity 

β cells regenerate in response to pathological processes such as obesity. For example, up 

to 10-fold increase in β-cell mass has been observed in obese rodents, responding to their 
insulin resistance (Butler et al, 2003a). Double staining of pancreas sections from obese 
mice and humans can detect insulin-producing cells that express Ki-67, a marker strictly 
associated with cell proliferation (Butler et al, 2003a; Butler et al, 2003b), indicating that 
regeneration may occur in the islets. Again, the regeneration capacity seems to be 
significantly greater in mice than in humans, although the underlying mechanism is 
unclear yet. Studies of one obese mutant mouse line, termed Ay, showed that reduction of 

menin contributes to adaptive β-cell proliferation (Karnik et al, 2007). Taken together, 

these data suggest that a similar mechanism for β-cell regeneration may operate in 
physiological pregnancy and pathophysiological obesity in mice. It would be very 
interesting to determine whether this mechanism is also at work during human 
pregnancy or obesity. 

3.3 Regeneration of β cells after partial pancreatectomy 

Like many other organs in the body, islets do regenerate in response to injury, in this case, 
pancreatectomy. In rats 4 weeks after 90% pancreatectomy, for example, there is a 
regeneration to 27% and 45% of sham-operated pancreas and islet mass, respectively 
(Bonner-Weir and Sharma, 2002).  However, there are species differences in regeneration 
capacity. Even a 50% pancreatectomy in adult dogs would cause impaired fasting glucose in 
the short term (Matveyenko et al, 2006) and diabetes mellitus in the longer term (Stagner 
and Samols, 1991). Likewise, a 50% pancreatectomy in adult humans also leads to 
subsequent obesity and diabetes mellitus (Robertson et al, 2002). These studies again 
indicate that there is a difference between species in their capacity to mount islet 
regeneration: this is much more powerful in rodents than in larger mammals. Additional 
studies are needed to confirm this capacity difference and understand its underlying 
mechanism. Furthermore, it is less clear to what extent islet regeneration contributes to 
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maintain β-cell mass in adult humans from existing islet cells and how much is from cells of 

any other origins. This knowledge is critical for a viable strategy to promote β-cell 
regeneration both in vivo and in vitro. Additionally, it is unknown whether the PSC also 
contribute to this type of regeneration. In the following sections, we will examine several 

possible mechanisms that may lead to β-cell generation and regeneration. 

4. Evidence that β cells are generated from PSC 

In addition to the observations of long-term survival of transplanted islets mentioned above, 
substantial in vitro evidence has indicated that “pluripotent PSC” may be present in all three 
major pancreas compartments, i.e. the ductal epithelium (Cornelius et al, 1997; Ramiya et al, 
2000; Suzuki et al, 2002), islets, and acinar tissue (Zulewski et al, 2001; Seaberg et al, 2004). 
This evidence comes from studies of both rodent and human pancreas. For example, a 
potential PSC candidate has been purified by flow cytometry in the developing and adult 
mouse pancreas. These cells are identified by expression of the receptor for hepatocyte 
growth factor, c-Met, and absence of blood cell surface markers such as CD45, TER119, c-Kit, 
and Flk-1. These cells can differentiate into multiple pancreatic lineage cells from individual 
cells in vitro and give rise to pancreatic endocrine and acinar cells in vivo following 
transplantation (Suzuki et al, 2004). However, the in vivo localization and the molecular 
characteristics of these c-met expressing cells are largely unknown and clonogenesis at the 
single cell level has not been established. 

4.1 PSC may house in ductal epithelium 

Over the last several years, we investigated the differentiation and proliferation of foetal 
mouse pancreatic cells, believed to be a rich source for potential PSC. We first demonstrated 
in vitro that bone morphogenetic proteins-2, -4, -5 and -6, members of the transforming 

growth factor β superfamily, can promote the proliferation of pancreatic precursors and the 

development of pancreatic cystic epithelial colonies containing β cells (Jiang et al, 2002; Jiang 
and Harrison, 2005a), a process partially recapitulating an in vivo developmental stage. In 
addition, we also found that various isoforms of epidermal growth factors can stimulate 
colony formation (Jiang and Harrison, 2005b). These data indicate that extracellular 
signalling molecules, including various families of growth factors, modulate fate changes of 
pancreas precursor/stem cells. However, currently these colony-forming cells may at most 
be considered precursors because their self-renewal has not been demonstrated in vitro 
(F.X.J. unpublished observations). 
Recently, in vitro and in vivo experiments have indicated that PSC are localized to the ductal 
epithelium. Bonner-Weir and colleagues were the first to report that adult human pancreatic 

ductal epithelial cells can form islet-like clusters and differentiate into insulin-secreting β 
cells (Bonner-Weir et al, 2000). Ramiya and colleagues reported that transplantation of in 
vitro generated islet-like structures from mouse PSC in the ductal epithelium can reverse 
diabetes mellitus (Ramiya et al, 2000). Another set of experiments used cultures of 
“pancreatic ductal cell aggregates” that were left over from pancreas digests after 
purification of human islets for transplantation. From these cultures, fibroblast-like cells 
grew out; these have been termed “pancreatic mesenchymal stem cells (pMSC)”. These cells 
can undergo at least 12 passages and express a range of bone marrow-derived MSC markers 

including CD13, CD29, CD44, CD54, CD105, α6 integrin subunit (also known as CD49f) and 
Thy1 (also known as CD90). These pMSC can give rise to cells of at least two germ layer 
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origins including endoderm-derived cells, but not convincingly pancreatic lineage cells 
(Seeberger et al, 2006). In vivo, the large, small, and centrolobular ducts of the rat pancreas 
contain foci of cells that express the neural stem cell–specific marker, nestin, but do not 
express the ductal marker cytokeratin 19 (CK19) (Zulweski et al. 2001), suggestive of “islet 
progenitor” cells. 
However, all the above studies have used mixed cell populations and have failed to 
demonstrate clonogenesis. Using culture conditions suitable for generating neurospheres ex 
vivo, mouse pancreatic ductal cells gave rise to neurosphere-like structures that can 
subsequently be differentiated into several types of islet cells including β cells (Seaberg et al, 
2004). The molecular phenotype of progenitor cells for these islet cells remains unknown. 
On the other hand, after pancreatic duct ligation, numerous CK19+ ductal cells are 
regenerated and then Ngn3+ cells are observed, transplantation of the latter has further 
resulted in their differentiation into functional β cells (Xu et al, 2008), suggesting that the 
regeneration process may resemble that of embryonic pancreas development.  
These studies did not explore the immediate origin of Ngn3+ cells in adult pancreas and 
whether the cells that give rise to these Ngn3+ cells possess PSC features. Recently, the use 
of the in vivo genetic tracing Cre-loxP system has generated further knowledge in this 
regard. In these experiments, Cre expression was directed by the promoter of carbonic 
anhydrase II, a marker of mature ductal cells, resulting in the excision of the stop cassette 

(Rosa-loxP-stop-loxP-lacZ) in the transgenic Rosa26 (R26R) mice. Therefore β-
galactosidase activity is expressed in the cells that express Cre (ductal cells). At 4 weeks, 
β-galactosidase is detected in many ducts, patched acinar cells and 35-40% of islet cells 
(Bonner-Weir et al, 2008). These data provide direct evidence that adult ductal epithelial 
cells can give rise to islet cells, at least in mice. It is still unknown whether the carbonic 
anhydrase II-expressing cell population is homogenous or heterogenous, and whether this 
is a differentiation process from PSC or a transdifferentiation process from mature ductal 
cells. Anyway, these results should be repeated by independent laboratories and even in 
other experimental animals. 

4.2 PSC may reside in the islets 

Accumulated in vitro evidence suggests that a subpopulation of islet cells has PSC potential. 
A well-planned in vitro study found that a subset of unspecified cells in mouse islets and 
ducts named as pancreas-derived multipotent precursor cells give rise to neurosphere-like 
structures and subsequently could differentiate into islet β-like cells. This was a minor 
property, as most of these cells developed into neural lineage cells (Seaberg et al, 2004). The 
phenotype of these potential PSC cells was not defined. 
In rat and human islets, a distinct population of nestin+ cells that do not express the 
hormones insulin, glucagon, somatostatin or pancreatic polypeptide has been identified. 

When cultured in vitro, these cells proliferate extensively (∼8 months), give rise to cells that 

express liver and exocrine pancreas markers, such as α-fetoprotein and pancreatic amylase, 
and display a ductal/endocrine phenotype with expression of CK19, neural-specific cell 
adhesion molecule, insulin, glucagon, and PDX1. These nestin+ putative progenitor cells may 
therefore participate in the neogenesis of islet endocrine cells (Zulewski et al, 2001), 
mediated at least partially by glucagon-like peptide-1, an incretin hormone derived from 
processing proglucagon (Abraham et al, 2002). However, recent studies in vivo indicate that 
Nestin+ cells are mostly restricted in non-endodermal-derived cells (Lardon et al, 2002; 
Selander and Edlund, 2002). In addition, from donated adult human islets, outgrown 
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fibroblast-like cells do not express hormones, but proliferate readily and give rise in vitro to 
hormone-expressing cell aggregates. However, these aggregates cannot be induced to 
become typical functional islet cells (Gershengorn et al, 2004). Furthermore, a rigorous 
genetic-based lineage tracing in mice under the control of Pdx1 or rat insulin promoter (RIP) 
demonstrated that neither PDX1- nor RIP-expressing cells contribute significantly to these 
fibroblast-like cells in vitro (Chase et al, 2007).  In contrast, human islet RIP-expressing cells 
could be dedifferentiated to fibroblast-like cells in which insulin expression was not 
detectable and proliferate in vitro up to 16 population doublings (Russ et al, 2008). Whether 
this discrepancy is due to species differences remains to be clarified. Because of its critical 
importance, such tracing experiments should be reproduced by independent research 
groups. Further investigations are required to resolve the inconsistent results from the 
current studies. 

4.3 PSC may locate in the exocrine tissue 

In the clinic, a large population of nonendocrine pancreatic acinar cells would be discarded 
after purification of islets from donated pancreas for transplantation. The possibility of 
making use of these cells has attracted significant interest in recent years. After co-
transplantation with foetal pancreatic cells under the kidney capsule of immunodeficient 
mice, these nonendocrine pancreatic epithelial cells have been shown to be capable of 

endocrine differentiation though without evidence of β-cell replication or cell fusion. These 
experiments suggest the existence of PSC or progenitor cells within the acinar compartment 
of the adult human pancreas (Hao et al, 2006). More recently, analysis using the Cre/loxP-
based tracing system demonstrated that amylase/elastase-expressing acinar cells can give 
rise to insulin-positive cells in a suspension culture (Minami et al, 2005). However, because 
clonal assay of these amylase/elastase-expressing cells and their intermediate steps have not 
been investigated, this study may simply reveal that mouse and rat pancreatic acinar cells 
are able to transdifferentiate into surrogate insulin-expressing cells (Baeyens et al, 2005; 
Minami et al, 2008). This possibility was further supported by a recent study which shows 
that mouse acinar cells can be directly re-programmed in vivo to β-like cells with just three 
transcription factor genes, namely, Pdx1, Ngn3 and MafA (Zhou et al, 2008). On the other 
hand, similar lineage tracing experiments in vivo demonstrate that after 70-80% 
pancreatectomy, pre-existing mouse pancreatic acinar cells do not contribute to regeneration 
of islet β cells (Desai et al, 2007). The contradiction of in vitro and in vivo findings requires 
further reconciliation. 

5. Evidence that islet β cells are capable of self-replication 

There are several pieces of strong evidence demonstrating that islet β cells act as 
functional “stem” cells to reproduce themselves. Using RIP-driven reporter genes to 
genetically trace the fate of functional insulin-secreting cells, Dor and colleagues (Dor et 

al, 2004) first revealed that adult mouse pancreatic β cells are duplicated by RIP-
expressing cells within the islets, either physiologically or after partial pancreatectomy. 

This study assumed that all RIP-expressing cells in adult islets are functional β cells and 
did not exclude the presence of PSC. Similarly, by using a transgenic model, in which the 

expression of diphtheria toxin was directed by RIP to β cells, diphtheria expression results 

in apoptosis of 70%-80% of β cells, destruction of islet architecture and, finally, diabetes 

mellitus. Withdrawal of diphtheria expression led to a significant regeneration of β-cell 
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mass and a spontaneous normalization of blood glucose levels and islet architecture. 
Simultaneously, RIP-based lineage tracing analysis indicated that the proliferation of 20-

30% surviving ‘β’ cells played a major role in this regeneration and in recovery of 
euglycemia (Nir et al, 2007). 
Using the more sophisticated MADM system in mice known as RIP-CreER; Rosa26GR/ 

Rosa26RG, each RIP-expressing clone has been demonstrated to consist of 5.1±5.4 or 8.2±6.9 
cells after one or two months of chase (Brennand et al, 2007). These RIP-expressing clones 

have been interpreted as further evidence of regeneration of functional β cells. An additional 

loss-of-function study following knockout of the Hnf4α (hepatocyte nuclear factor 4α) gene 

suggested that the β-cell regeneration may involve the Ras/Erk signalling cascade (Gupta et 
al, 2007) and ultimately be regulated by cycling modulators including cyclin D2 (Georgia 
and Bhushan, 2004). Taken together, further identification and characterization of the so-
called self-replicative or dedifferentiative RIP-expressing cells both in vivo and in vitro will 
be urgently needed because they may hold the key for a regenerative therapy for type 1 
diabetes mellitus. 

Again using thymidine-based lineage tracing, β cells were demonstrated to be produced 

within an islet by rare self-renewing cells with a slow replication-refractory period (Teta et 

al, 2007), although the identity of these unique cells and the length of their replication-

refractory period remain to be determined. The frequency of these self-renewal cells can be 

significantly increased after partial pancreatectomy or during pregnancy. Further studies 

should determine the molecular signature and biological potential of these replicating self-

renewal cells. Because of ethical issues, similar studies cannot be performed in human islet 

tissues, but such investigation should at least be repeated in larger mammals. 

Nevertheless, the β-cell population in the adult islets is in fact functionally heterogeneous 

(Heimberg et al, 1993; Pipeleers et al, 1994; Szabat et al, 2009). By using a dual fluorescence 

reporter mouse line, a few Ngn3+ cells in the developing pancreas have been observed to 

coexpress insulin (Hara et al, 2006). In humans a few NGN3+ cells in the foetal pancreas are 

also observed to coexpress insulin from 10 to 21 weeks of age (Lyttle et al, 2008). Consistent 

with these studies, the insulin gene expression has been detected from Pdx1+ progenitors 

through Ngn3+ cells during development to mature islet cells (Jiang et al, 2010) (Figure 5).  

An early study indicated that the RIP-expressing cells in the developing pancreas gave rise 

to other islet cell types in addition to β cells (Alpert et al, 1988). The CD105+CD37+CD90+ 
mesenchymal stromal cells present in adult human islets have been shown to express a low 
level of insulin mRNA (Davani et al, 2007). After considering all these studies, therefore, 

lineage tracing studies under the control of other mature β-cell specific transcription factor 

gene promoters such as Pdx1 or MafA should be performed. Just like the β-cell line Min6 

cells (Miyazaki et al, 1990), the glucose-responsive β cells in the islets may indeed duplicate 
themselves if the Pdx1- or MafA-expressing cells can be shown to be proliferative similar to 
the RIP-expressing cells. 

6. The identity of PSC is inconclusive 

Whereas investigation of β-cell duplication as a mechanism of islet regeneration has 
attracted great attention in recent years, much progress has been made to identify PSC. 
However, their identity is still not known. This is due, in addition to the knowledge gap 

that the signals required for late stage differentiation of functional β cells are largely 
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unknown, at least partially to lack of the following factors: specific cell surface markers to 
characterize and purify cells that may have PSC potential; a simple, effective and 
reproducible in vitro assay to examine self-renewal and differentiation potential of a 
purified cell population; in vivo functional assays to determine biological function for both 
experimental animals and humans. Finally, well-agreed general criteria for defining a PSC 
are required. 
 
 

 
 

Fig. 5. Insulin genes being continuously up-regulated from pancreas progenitors to mature 
islet cells.  
Microarray datasets were generated from dissected definitive endodermal (DE) cells, 
purified Pdx1+ pancreas progenitors, Ngn3+ islet progenitors and mature islet cells (ISL) 
(Gu et al, 2004). Bioinformatics algorithms for time-series datasets were used to calculate 
expression levels of insulin genes and other genes involved in post-translational 
modifications of insulin during the stages from Pdx1+ through Ngn3+ islet progenitors to 
ISL. [more detail see (Jiang et al, 2010)]. 

7. Future directions for PSC research 

We believe arguably that the successful establishment of in vitro culture and in vivo 
functional assay systems (Daniel et al, 1989; Dexter, 1989) facilitates the investigation of 
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haematopoietic stem cells and subsequently leads to the application in clinics as a stem cell 
therapy. Therefore our future work should reach a consensus that PSC at least satisfy the 
following criteria: (1) clonogenesis should be demonstrated at the level of single cells sorted 
by flow cytometry; (2) sorted single cells should self-renew in vitro; (3) clonogenic cells 
should give rise in vitro to more than one specialized cell lineage and (4) these cells should 
differentiate in vivo into several functional cell types after transplantation. In the future, the 
investigation of PSC should be particularly encouraged based on three considerations. First, 
differentiation of embryonic stem cells into insulin-expressing cells was initially exciting and 

promising, but safety consideration aside, the generation of functional β cells proves 
extremely difficult and progress has been far slower than originally expected. PSC and 
dedifferentiation or transdifferentiation of other cell types in the pancreas may therefore 

provide an alternative renewable source of surrogate β cells. Second, β-cell duplication 
theory was mostly established from rodent models. It cannot completely exclude the 
existence of PSC, and it assumed that all insulin-expressing cells in the adult islets are 

uniformly functional β cells, but in fact these cells are heterogeneous. Last, as there is a 
significant difference in regeneration capacity between rodent and human islets, it may be 
wise not to directly extrapolate regeneration data from rodents to humans. Unlike previous 
studies that were only performed on in vivo or in vitro experiments without targeting 
specific cell types, future PSC work may need to employ integrated approaches, for 
example, applying cell surface markers to target particular cell populations; examining in 
vitro their potential for self-renewal and clonogenesis, using genetic approaches to dissect 
molecular mechanisms of their phenotypic changes in vivo and finally to examine their 
lineage contribution and biological function. Performing such integrated research is likely 
beyond the capacity of most individual laboratories, and therefore requires multi-discipline, 
multi-laboratory and even multi-national collaborations including the participation of the 

pharmaceutical sector to generate a therapeutic grade of surrogate β cells for a replacement 
therapy to diabetes mellitus.   

8. Note to add 

On the eve of submission, an important study from Dr Derek van der Kooy’s laboratory 
sheds a shiny ray of new light on this inconclusive topic. By using state-of-art genetic 
lineage tracing techniques, Smukler and colleagues now provide conclusive evidence that 
the PSC cells (originally called as pancreas-derived multipotent precursor cells) in the adult 
pancreas were derived from the embryonic pancreatic lineage, but not from the neural crest, 
as previously supposed. The PSC cells express insulin, along with an array of markers 
typical of islet progenitors; are distinct from mature functional ells; and give rise to non-beta 
cells in vivo. In addition to mouse PSC cells, human PSC cells have also been identified. 
After transplantation to diabetic mice, both mouse and human PSC cells could ameliorate 
their diabetes mellitus (Smukler et al, 2011).  
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