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1. Introduction 

1.1 Has Churchill been right? 
“Fifty years hence, we shall escape the absurdity of growing a whole chicken in order to eat the breast 
or wing, by growing these parts separately under a suitable medium”  (Churchill 1932) 
In 1932, Sir Winston Churchill predicted that it will be possible in future to grow and 
engineer muscle tissue in vitro. As a confirmation of his prediction, Vandenburgh et al. 
observed contracting muscle tissue engineered in vitro for the first time in 1988 
(Vandenburgh, H.H. et al. 1988). Only one year later – in 1989 – the group showed that 
mechanical stimulation of embrionic myoblasts in vitro facilitates longitudinal growth of 
engineered skeletal muscle tissue (Vandenburgh, H.H. & Karlisch 1989). This rapid 
development raised high expectations for future clinical applications of tissue engineering 
(TE) of skeletal muscle. Indeed, engineered muscle tissue could be used in a wide range of 
clinical situations.  
A frequent clinical application of skeletal muscle tissue is the microsurgical transfer of 
myocutaneous free flaps for the coverage of soft tissue defects. As one major disadvantage, 
the use of free flaps is inevitably linked with a certain morbidity at the donor site including 
the loss of functional muscle tissue. In this situation, engineered muscle tissue could help to 
reduce the donor site morbidity. Above all, the advantage of muscle TE lies in the 
generation of functioning muscle tissue to replace certain muscles after damage or 
denervation (Klumpp et al. 2010). For example, the treatment of facial nerve palsy is 
momentarily limited to the transfer of autologous muscle tissue innervated by another nerve 
(the trigeminus nerve, e.g.) or free transfer of distant muscle tissue (Terzis & Konofaos 2008). 
Though multiple techniques and modifications exist, the results yielded in those clinical 
situations are moderate (Kumar & Hassan 2002, Terzis & Noah 1997). Furthermore, Kim et al 
demonstrated that myoblast transplantation is a promising method for the reconstruction 
after partial glossectomy (Kim, J. et al. 2003). Herein, TE of skeletal muscle for the 
replacement of functional muscle tissue could offer an individual alternative.  
However, a clinical application of skeletal muscle TE has not been realized to date due to 
certain obstacles which will be discussed in the following. Though, in vitro engineered tissue 
of skeletal muscle could already play an important role for the clinical treatment of inborn 
muscle diseases as well as muscle injuries. Once again, Vandenburgh and co-workers 
engineered dystrophic muscle tissue using it as drug screening platform for Duchenne 
muscular dystrophy (DMD) treatment (Vandenburgh, H. et al. 2009). Thus, a wide range of 
possible drugs can be analyzed without using time-consuming and costly in vivo models 
(Vandenburgh, H.). Vandenburgh’s study demonstrates an economic approach for drug 
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screening in general and orphan drugs in particular. Beside the relatively rare 
musculoskeletal disorders, engineered skeletal muscle also enables the analysis of more 
frequent diseases. Kaji et al introduced an in vitro model of electrically stimulated and 
contracting muscle tissue to analyze the insulin- and exercise-dependant glucose uptake 
which plays a role in insulin resistance of type 2 diabetics (Kaji et al.). Thus, skeletal muscle 
TE already plays a role for clinical treatments, though a direct bench-to-bedside approach 
has yet to become reality. 
 

 

Fig. 1. Skeletal muscle precursor cells (myoblasts) in vitro. Immunofluorescent staining for 
desmin (green) an intermediate filament specifically expressed in myogenic differentiation 
prior to the formation of myotubes and fusion into muscle fibers. Nuclei are stained non-
specifically with DAPI (Diamidine-phenylindole-dihydrochloride; blue). Magnification 400x 

2. Finding the matrix for muscle TE 

2.1 Materials 
A variety of materials has been analyzed and reviewed regarding their suitability for 
skeletal muscle TE. On one side, natural materials like collagen I in the first place are 
preferred due to their biocompatibility and their close resemblance to the natural 
extracellular matrix (ECM). On the other side, synthetic materials generally show greater 
stability as well as cost-saving and easy handling.  
Regarding collagen I - the main component of the natural ECM of mature skeletal muscle 
tissue - its advantage lies in high elasticity which is a pre-requisite for muscle contraction. 
Thus, its mechanical properties in vivo meet the demands for new skeletal muscle tissue 
perfectly. Furthermore, bovine as well as avian collagen show very low immunogenicity in 
vitro and can be safely used in vivo (Peng et al. 2010). Therefore, collagen sponges and gels 
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have been studied in vitro (Madaghiele et al. 2008) and in vivo (Kroehne et al. 2008). 
However, the rapid shrinkage of hydrogels in vitro as well as the low stability of collagen I 
are important disadvantages (Beier et al. 2009) and limit its use in long-term experiments. 
Another material frequently used for tissue engineering in vitro and in vivo is fibrin. The 
stability of fibrin gel is dependent on the concentration of fibrinogen and thrombin and can 
be augmented by addition of aprotinin which inhibits fibrinolysis (Meinhart et al. 1999). In 
addition, fibrin is known to accelerate vessel ingrowth into the matrix in vivo due to its 
binding sites for vascular endothelial growth factors (VEGF), fibroblast growth factor (FGF-
2) and the cytokine interleukin-1 (IL-1) (Mosesson 2005). Still, fibrin gels show a definite loss 
of stability after 4 weeks in vivo (Arkudas et al. 2009). As an exception to the relative 
instability of natural polymers, silkworm fibroin, the structure protein of silk, shows an 
astonishing tensile strength of 100 –300 MPa and stability (Zhao et al. 2003). An in vivo 
stability of over 1 year has been reported for 17% fibroin concentration but, the cell-toxic 
HFIP (hexafluoro-iso-propanol) as organic solvent is necessary. Even in all-aqueous 
dissolution of silk fibroin with concentrations of 6 to 10% fibroin, the in vivo stability has 
been found to range between 2 and 6 months (Wang, Y. et al. 2008). Thus, silk fibroin 
provides an adequate stability for tissue engineering in vivo. Additionally, silk is in clinical 
use as suture material for a long time. However, hypersensitivity and adverse reactions 
have been reported and put the biocompatibility of silk into question (Soong & Kenyon 
1984). The chemical and immunogenic properties of silk of Bombyx mori silkworms have 
been studied intensively since and sericin, the glue protein of silk, has been identified 
subsequently as the immunogenic agent (Panilaitis et al. 2003). The use of sericin-depleted 
fibroin scaffolds clearly increased the biocompatibility of silk matrices and Meinel et al could 
show that the biocompatibility of pure fibroin is comparable to collagen I and even superior 
to poly(d,l-lactic-co-glycolic acid) (PLGA) (Meinel et al. 2005). Thus, silk fibroin derived from 
silkworms has been used extensively as sponge-like scaffold for tissue engineering in vitro 
(Mandal & Kundu 2009) and in vivo (MacIntosh et al. 2008, Unger et al.). But as a drawback, 
the high stability and tensile strength of silk fibroin comes along with low elasticity and 
hydrophilicity that lead to poor cell attachment in vitro. In addition, the low elasticity limits 
the use of silk fibroin scaffolds for TE of skeletal muscle.  
Biodegradable synthetic polymers have also been widely used for muscle TE. Their 
advantages lie in easy handling and very good stability in vitro and in vivo. For example 
poly(l-lactic acid) (PLLA) and the more lipophilic co-polymer PLGA have been used in 
different orthopaedic applications due to their non-toxic properties and long-term stability 
in vivo (PLLA: 24 months, PLGA: approx. 6 months) (Gunatillake & Adhikari 2003). 
Though, inflammatory responses (Bostman 1992) and cell toxic effects in vitro (Ignatius & 
Claes 1996) have been reported due to the acidic degradation products of PLLA and PGA. 
One of the most frequently used synthetic polymer in TE research is poly(ε-caprolactone) 
(PCL). This biodegradable synthetic polymer shows a slow degradation rate resulting in a 
long-term stability of approximately 1 year in vivo (Bolgen et al. 2005). Furthermore, PCL is 
highly biocompatible and therefore suitable for in vivo applications (Cao et al. 2009). PCL has 
been used as films (Sarkar et al. 2008) and more frequently as electrospun fibers. However, 
PCL is also highly hydrophobic and therefore shows poor cell attachment in vitro (Zhang, H. 
& Hollister 2009). Hence, the hydrophobicity of PCL has to be attenuated before cell seeding 
through plasma treatment (Martins et al. 2009) or by coating the scaffold or blending with 
other materials like collagen to enhance cell attachment (Schnell et al. 2007, Zhang, Y.Z. et al. 
2005). Among the variety of biodegradable synthetic polymers materials like poly(aniline) 
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(PANi) (Borriello et al.) and oxidized polypyrrole (Gomez & Schmidt 2007) stand out due to 
their electrical conductivity. Though their mechanical properties are similar to PCL 
including poor cell attachment, electrical conductivity is an interesting feature that qualifies 
those materials for muscle TE, especially (Li et al. 2006).  
Taking the properties of the most frequently used biopolymers and synthetic polymers into 
account, the complexity of mature skeletal muscle tissue asks for a combination of different 
complementary materials to engineer a matrix that meets the special demands of skeletal 
muscle TE. Composite scaffolds containing both, synthetic polymers for stability as well as 
biopolymers for enhanced cell attachment and elasticity, are therefore preferred in muscle 
TE research. E.g. PCL has been combined with collagen (Choi et al. 2008), gelatine (Kim, M.S. 
et al.), PLLA (Engelhardt et al.) and other materials. Also the combination of silk fibroin with 
collagen leads to suitable mechanical properties with good cell attachment in vitro (Wang, G. 
et al., Zhou et al.). 

2.2 Matrices 
Comparable to the wide variety of materials, the methods of processing different forms of 
matrices are equally numerous. Thereby, mechanical properties of a certain matrix, 
degradation rates and cell attachment depend on the scaffold’s architecture. Whereas single-
cell-layers can be easily cultured on two-dimensional scaffolds (films, micropatterned 
scaffolds), the architecture of three-dimensional scaffolds is more complex. To ensure cell 
survival and proliferation in vitro, a three-dimensional matrix should enable diffusion of 
oxygen, nutrients and metabolites as well as the migration of cells inside the scaffold. 
Otherwise, cells will only proliferate at the periphery but not in the scaffold’s centre (Ishaug-
Riley et al. 1998). Therefore, the most important features of matrices for three-dimensional 
TE are high porosity (ideally approximately 90% (Freed et al. 1994)), adequate pore-size (Lee 
et al have shown that a range of 50 – 200 µm pore-size are sufficient for smooth muscle cells 
(Lee et al. 2008)) and high interconnectivity of the pores (van Tienen et al. 2002) to enable cell 
migration inside the matrix.  
Concerning the pore size, hydrogels usually show freely diffusion of nutrients and oxygen. 
Cells incorporated in hydrogels can migrate through the scaffold by degrading the gel but at 
the same time the stability of the gel decreases continuously. Furthermore, the architecture 
of hydrogels randomly spread pores (Fig. 2). However, the natural extracellular matrix 
within functional skeletal muscle tissue is highly orientated.  
The parallel alignment of ECM and skeletal muscle tissue is the pre-requisite for effective 
muscle contraction and force-generation along a longitudinal axis. Curtis and Wilkinson 
first described the “cell guidance theory” by demonstrating that microgrooved matrices 
with a parallel micropattern provoke parallel aligned cell growth along the pattern of the 
scaffold (Curtis & Wilkinson 1997). This phenomenon is also present in myoblast culture 
(Choi et al. 2008, Huang et al. 2006, Huber et al. 2007) facilitating the generation of aligned 
myotubes (Gingras et al. 2009). Therefore, several techniques for aligned scaffold 
architecture have been developed including selective laser sintering or three-dimensional 
printing reviewed by Karande et al (Karande et al. 2004). Another method to gain spatially 
orientated pores in sponge-like matrices is unidirectional freeze-drying of materials like 
collagen (Madaghiele et al. 2008) or silk fibroin (Mandal & Kundu 2009, 2009). Hydrogels are 
gradually frozen leading to controlled formation of ice crystals which result in controlled 
porosity after evaporation of the aqueous part of the hydrogel. Additionally, Schoof and co-
workers demonstrated that also the pore-size can be controlled by variation of the freezing-
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temperature (Schoof et al. 2001). Though, there are certain disadvantages linked to the 
freeze-drying method. First of all, secondary surface modifications of the sponges like 
coating procedures to enhance cell attachment are difficult and sparsely controllable. 
Secondly, the alignment of the pores is only spatial whereas the architecture of the matrix 
surrounding the pores usually remains at random.  
 

 

Fig. 2. Scanning Electron Microscopy (SEM) of a fibrin-collagen blend hydrogel. The 
aqueous part of the hydrogel is evaporated after critical point drying and fibrillar structures 
of fibrin and collagen is left behind. The random architecture of the hydrogel is clearly 
visible. 5000x magnification 

On the contrary, electrospinning as an alternative method offers strict alignment of the 
resulting scaffolds (Ayres et al. 2006). The technique of electrospinning results in fibers 
formed by electrical voltage (Boudriot et al. 2006). Though, the process depends on multiple 
parameters, e.g. concentration and viscosity of the spinning solution, the voltage applied 
during the spinning process or flow rate of the spinning solution. The mechanical and 
chemical properties of electrospun matrices can be adjusted to the demands of the respective 
tissue by varying these parameters. Thus, a variety of synthetic and biopolymers can be 
electrospun at the micro- or nanoscale (Sell et al. 2009). Nanofibrous matrices electrospun 
from ECM proteins such as collagen I or hyaluronic acid mimic the natural ECM exactly and 
therefore ensure excellent cell attachment, cell viability and differentiation (Barnes et al. 
2007). As mentioned before, biopolymers often lack the suitable stability for in vivo 
application, whereas the hydrophibicity of synthetic materials prevents rapid cell 
attachment. Again, the special demands of skeletal muscle TE can be met by combination of 
synthetic polymers and biopolymers. Different polymers can therefore be combined 
primarily by spinning polymer-blend solutions, core-shell spinning or co-spinning of 
different polymer solutions. Methods for secondary surface modification are coating 
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(Riboldi et al. 2005) or plasma treatment (Martins et al. 2009) of the matrix after the spinning 
procedure. Blending different polymers, e.g. PCL and collagen (Fig. 3), is a very simple 
method to generate composite matrices that combine the properties of both polymers 
depending on the ratio (Schnell et al. 2007).  
 

 

Fig. 3. Scanning Electron Microscopy (SEM) of electrospun PCL-collagen blend nanofibers. 
A: Randomly spun nanofibers. Magnification 10000x. B: Muscle precursor cells cultured on 
electrospun nanofibers with parallel alignment. The cell growth along the fibers’ direction is 
clearly visible. Magnification 2500x 

The more complex core-shell-spinning technique uses two separate polymers which are 
electrospun co-axially with the second polymer surrounding the first polymer at the core. 
Zhang et al used PCL as core fiber with a shell of collagen. They proved the core-shell-
nanofibers to be superior to collagen-coated PCL fibers regarding cell attachment in vitro 
(Zhang, Y.Z. et al. 2005). Jiang and co-workers have introduced electrospun core-shell fibers 
as drug delivery system (DDS) (Jiang et al. 2005). Thereafter, the emerging field of 
nanofibers and nanoparticles as DDS has found its way into TE research (Sill & von Recum 
2008). Controlled release of different drugs e.g. growth factors (Sahoo et al.) or angiogenic 
factors (Yang et al.) upgrades nanofiber matrices into “smart” matrices (Moroni et al. 2008).  
However, electrospinning of aligned nanofibrous matrices is linked with poor control of the 
pore size as the main disadvantage. The generation of electrospun three-dimensional 
matrices, especially, results in densely packed scaffolds (fig. 3) that hinder cell infiltration 
(Baker & Mauck 2007, Telemeco et al. 2005). Therefore, co-spinning of water-soluble 
sacrificial fibers such as poly-(ethylene-oxide) (PEO) has been shown to overcome this 
problem (Baker et al. 2008). The sacrificial PEO fibers are interspersed inside the three-
dimensional matrix and dissolve easily in water and alcohol during sterilization procedure 
before cell seeding. The resulting interspaces between the residual fibers then enable cells to 
migrate through the matrix (Baker et al. 2008). Though the control of pore size and 
interspaces in orientated nanofiber matrices is still challenging, the electrospinning 
technique holds great potential for TE and regenerative medicine and therefore pretends to 
be the most promising matrix for skeletal muscle TE at the moment. 
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3. Cell source 

3.1 The satellite cell 
Satellite cells form the major source for muscle regeneration in vivo after injury (Snow 1977). 
First described by Mauro in 1961 by electron microscopy, the term “satellite cell” was 
initially used for resident cells beneath the basal lamina of mature skeletal muscle fibers 
(Mauro 1961). Meanwhile, the “genetical footprint” of this cell population is well-known 
and satellite cells are specifically identified by expression of the transcription factor Paired-
box 7 (Pax7) (Seale et al. 2000). Furthermore, satellite cells express MyoD (also known as 
Myf5; Fig. 4), M-cadherin, c-Met, syndecan-3 and 4 (Cornelison et al. 2001) and CD 34 
(Beauchamp et al. 2000). In the past, it has been a point of discussion whether satellite cells 
are stem cells or myogenic progenitor cells (Zammit et al. 2006). Kuang et al proved that a 
small sub-population, i.e. 10% of satellite cells, shows stemness properties and repopulate 
the satellite cell niche in vivo (Kuang et al. 2007). These true stem cells are positive for Pax7 
but negative for MyoD, whereas the majority of satellite cells are also positive for MyoD. 
The myogenic transcription factor MyoD marks the commitment of activated satellite cells 
to the myogenic line (Weintraub et al. 1991).  
 

 

Fig. 4. Muscle precursor cells (MyoD positive cells) in vitro. Left side: Immnofluorescent 
staining for MyoD which is mainly located at the nuclei. Right side: Merge of MyoD staining 
and DAPI-counterstain. Magnification 400x 

This myogenic imprinting renders the satellite cell to be a safe cell source for in vivo as well 

as clinical application without risking dedifferentiation and tumorigenesis. Therefore, 

satellite cells are the preferred cell source for clinically orientated muscle TE research (Otto 

et al. 2009). Kuang and his group have demonstrated that the Pax7+/MyoD+ cell population 

is renewed by the Pax7+/MyoD- cells through asymmetric self-renewal (Kuang et al. 2007). 

MyoD-positive cells in turn regenerate injured muscle tissue by differentiation into new 

muscle fibers. Thus, even large muscle tissue defects can be regenerated by a relatively small 

cell population in vivo (Collins et al. 2005, Le Grand & Rudnicki 2007). Unfortunately, this 

astonishing potential of self-renewal and myogenic differentiation of satellite cells in vivo is 

usually lost when satellite cells are isolated and cultured in vitro (Yaffe 1968). Boonen and 
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his group proposed the loss of the satellite cell niche at the basal lamina in vivo (Boonen & 

Post 2008). This highly specific niche preserves the stem cell status of quiescent satellite cells 

(Blau et al. 2001). Isolated satellite cells increase their expression of MyoD and differentiate 

after loosing contact with the basal lamina and thus loose their proliferative potential. 

Therefore, the generation of suitable numbers of satellite cells for muscle TE by in vitro 

culture and expansion is still challenging. Recently, Gilbert et al have demonstrated that the 

satellite cell function depends on substrate elasticity (Gilbert et al.). The group found the best 

proliferative potential of isolated satellite cells when cultured on PEG hydrogels cross-

linked with laminin with an elasticity of 12 kPa which equals the elasticity of muscle tissue 

in vivo. After implantation of the cultured cells in a muscle injury model in vivo the 

engraftment rate was even comparable to freshly isolated and directly implanted satellite 

cells. Hence, Gilbert and co-workers showed that the satellite cell niche can be mimicked in 

vitro and thus the proliferative potential of cultured satellite cells can be preserved.  

Recently, the existence of yet another cell population in adult skeletal muscle tissue has been 

proved: The telocyte was described by Popescu et al in cardiac muscle tissue first (Popescu & 

Faussone-Pellegrini). The typical shape of telocytes with their prolongations (“telopodes”) 

situated in the vicinity of nerves, vessels and cardiomyocyte progenitors suggests a role in 

intercellular signalling as regulators in myocardial regeneration and as “nursing cells” for 

cardiac progenitors (Gherghiceanu & Popescu). In a recent study, Popescu and his group have 

identified telocytes also in skeletal muscle tissue (Popescu 2011). Beside their typical 

prolongations, telocytes are known to express c-kit and caveolin-1, but are Pax7 negative and 

thus differ from the satellite cell population. Additionally, telocytes secrete VEGF (Suciu et al.). 

3.2 Stem cells 
Stem cells of different origin offer a unique proliferation potential as the main advantage. To 
date, adult stem cells play the most important role in TE research, though other sources exist 
(embryonic or induced pluripotent stem cells (iPSC) e.g.) (Klumpp et al.). Since engineering 
of three-dimensional tissue of skeletal muscle asks for a large quantity of muscle cells, adult 
stem cells are a suitable cell source in TE research and regenerative medicine (Barile et al. 
2009, Mollmann et al. 2009, Roche et al. 2009). Therefore, mesenchymal stromal cells (MSC) 
are a feasible alternative cell source for skeletal muscle TE due to their high proliferation 
rates in vitro and their low imunogenicity in vivo (Chen, L. et al. 2009) that even enables 
allogenic transplantation of MSCs (García-Castro J 2008, Rossignol et al. 2009). MSCs can be 
derived from different tissues, e.g. from bone marrow (BMSC) or adipose tissue derived 
(ADSC) (Deans & Elisseeff 2009). BMSCs are well-known and have been widely used for 
cytotherapy in regenerative medicine (Brazelton et al. 2003). However, in case of skeletal 
muscle TE, ADSCs should be preferred due to higher potential for myogenic differentiation 
as well as higher proliferation rate compared to BMSCs (Kern et al. 2006, Zhu et al. 2008). 
Still, the experiences of in vivo studies revealed a poor incorporation rate of transplanted MSCs 
into myofibers (Gussoni et al. 1997), ranging between 5 and 10% of the transplanted MSCs in 
DMD patients (Brazelton et al. 2003, Gussoni et al. 1997). Low incorporation rates are the main 
obstacle for cytotherapie in clinical settings. Though, Satija and co-workers proposed paracrine 
effects of transplanted MSCs in vivo as an important therapeutic effect (Satija et al. 2009). 
Therefore, transplanted MSCs secrete different cytokines resulting in anti-inflammatory, 
angiogenic and anti-apoptotic effects (Meirelles Lda & Nardi 2009, Sze et al. 2007) and thus 
facilitate local endogenous tissue repair (Nesselmann et al. 2008). Estrada and his group 
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explained the angiogenic effect of MSC through their secretion of Cyr61 (Estrada et al. 2009) a 
key factor for angiogensis and tissue repair in vivo (Mo et al. 2002). Estrada et al demonstrated 
that the sole addition of MSC secretome stimulates angiogenesis in vitro and in vivo.  
Though their poor incorporation into myofibers and – compared to satellite cells - less 
effective myogenic differentiation in vivo, the paracrine effects of MSCs could augment the 
cell viability and myogenic differentiation of co-transplanted satellite cells.  

4. Cell survival in vivo / vascularization 

Whereas the generation of two-dimensional skeletal muscle tissue in vitro has been 
demonstrated by several groups before (Dennis et al. 2001, Strohman et al. 1990), engineering 
three-dimensional muscle tissue exceeding the size of 1 mm in vitro is still a challenge. Since 
common in vitro cultures of muscle precursor cells depend on diffusion solely, the thickness 
of generated tissue is limited to 500 µm to prevent apoptosis of cells in the central region of 
the construct (Kannan et al. 2005). Herein, Freed and co-workers proved the superiority of 
dynamic flow culturing due to enhanced diffusion capacity compared to static culture 
conditions (Freed et al. 1994). Still, the in vitro generation of relevant tissue sizes asks for an 
adequate vascularization. Levenberg and his group proved that vascularization of skeletal 
or cardiac muscle in vitro is possible and enhances the transport of nutrients and 
metabolites (Lesman et al. 2010, Levenberg et al. 2005). In their study they co-cultured 
muscle precursor cells with embryonic fibroblasts and endothelial cells seeded into a 3D 
polymer scaffold. When implanted in vivo, the in vitro generated vessels connected to vessels 
of the host and the tissue showed less apoptosis (Levenberg et al. 2005). However, even this 
approach does not meet the demands of a clinical setting, since the muscle tissue, engineered 
in vitro, requires an axial vascularization to enable the transplantation in vivo including a 
microsurgical anastomosis to the recipient site. In most in vivo experiments, matrices and 
muscle precursor cells are implanted subcutaneously leading to random vessel ingrowth from 
the constructs’ periphery. In contrast to subcutaneous in vivo models, O. O. Erol and M. Spira 
introduced the arterio-venous (AV) loop model of the rat in 1980 (Erol & Sira 1980). For this in 
vivo model an AV-loop is created microsurgically between the saphenous artery and vein (Fig. 
5) which can be implanted into various matrices (Polykandriotis et al. 2008). 
Thus, vascularization in general as well as number and pattern of vessel ingrowth of 
different matrices can be analyzed (Arkudas et al. 2010, Polykandriotis et al. 2009) and the 
vascularized matrix offers a platform for tissue engineering for skeletal (Messina et al. 2005) 
or cardiac (Morritt et al. 2007) muscle in vivo. The feasibility of the AV-loop model in large 
animals (Beier et al. 2009) has been demonstrated recently and poses another step towards a 
more clinical setting (Beier et al. 2010). 
Depending on the matrix architecture, a certain period of time is necessary for 
vascularization of the whole construct. This pre-vascularization time plays an important role 
for survival rates of implanted cells in vivo: Thus, cells implanted after this time period show 
significantly lower apoptosis rates (Arkudas et al. 2007). Vascular growth factors such as 
bFGF and VEGF (Yancopoulos et al. 2000) are frequently used to reduce the pre-
vascularization time in vivo (Arkudas et al. 2007). Therefore, different approaches have been 
tried for controlled drug release of VEGF. Beside the use as soluble factor or immobilized in 
fibrin hydrogels (Arkudas et al. 2007), VEGF can be bound to nanoparticles (des Rieux et al.) 
or nanofibers (Vournakis et al. 2008) as drug delivery systems (DDS) to improve 
angiogenesis in vivo (Zisch et al. 2003). Kim et al have demonstrated the positive therapeutic 
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effect of nanoparticle based VEGF release in ischemic muscle tissue (Kim, J. et al.). Hypoxia-
regulated systems enable an even more selective delivery of VEGF to ischemic sites only, 
e.g. in myocardial repair (Ye et al.). Finally, the VEGF expression of (co-) implanted MSCs 
could also enhance angiogenesis in vivo.  
 

 

Fig. 5. Arterio-venous loop model in the rat as previously published by our group. The AV-
loop (asterisk) is implanted into a Teflon chamber (C) filled with fibrin hydrogel. In this 
setting, the engineered tissue could be transplanted by anastomosing the pedicle (arrow) to 
the recipient site 

Beside angiogenic growth factors, other factors such as insulin-like growth factor-1 (IGF-1) 
have been shown to increase survival rates of implanted cells in vivo (Wang, F. et al. 2009) 
and to improve myocardial regeneration (Davis et al. 2006, Padin-Iruegas et al. 2009). Thus, 
various methods exist to further ameliorate cell survival in vivo but still have to be analyzed 
in detail for their benefit for skeletal muscle TE. 

5. Myogenic differentiation 

5.1 Molecular factors for myogenic differentiation 
Beside the improvement of cell survival rates, the myogenic differentiation of implanted 
muscle precursor cells into functional skeletal muscle tissue in vivo is another point that has 
to be addressed by future research. To date, many different molecular factors have been 
identified which support myogenic differentiation, e.g. akirin-1, muscle specific microRNAs 
and insulin-like growth factor (IGF-1). 
The well-known factor IGF-1 has been demonstrated to increase the proliferation as well as 
myogenic differentiation of myoblasts in vitro by Allen and Boxhorn (Allen & Boxhorn 
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1989). Later on, this effect was affirmed in different in vivo experiments with overexpression 
of IGF-1 leading to muscle hypertrophy (Adams & McCue 1998) and improving muscle 
regeneration after trauma (Menetrey et al. 2000, Sato et al. 2003). Whereas many growth 
factors increase proliferation rates or differentiation of myoblasts only, IGF-1 enhances both, 
proliferation as well as myogenic differentiation of muscle precursor cells (Ten Broek et al.). 
Furthermore, IGF-1 overexpression improves survival rates of implanted cells in vivo (Wang, 
F. et al. 2009). These properties render IGF-1 as one of the most potential growth factors for 
myogenesis and skeletal muscle TE. Beside the mitogenic potential of IFG-1 and its positive 
influence on myogenesis, Haider et al have also shown that IGF-1 can mobilize stem cells 
and increase engraftment of implanted MSCs in vivo (Haider et al. 2008). The group 
explained this effect of IGF-1 through its activation of stromal cell derived factor (SDF)-1α 
and its receptor CXCR4. SDF-1α plays a crucial role in skeletal muscle regeneration and is 
therefore overexpressed after muscle injury as well as in dystrophic muscle to attract muscle 
precursor cells which express CXCR4 (Perez et al. 2009). Therefore, overexpression of SDF-
1α through transfected MSCs (Haider et al. 2008) or via controlled drug release (Grefte et al.) 
improves regeneration of skeletal as well as cardiac muscle in vivo.  
Another factor which influences early myogenic differentiation positively is akirin-1 (also 
known as Mighty) (Salerno et al. 2009). In skeletal muscle tissue, akirin-1 is known to activate 
quiescent satellite cells and thus promote proliferation of muscle precursor cells. Furthermore, 
akirin-1 consecutively induces the expression of IGF-2 and hence also increases myogenic 
differentiation indirectly (Marshall et al. 2008). Therefore, akirin-1 combines the activation of 
quiescent satellite cells with the promyogenic effect of downstream growth factors such as 
IGFs. Though promising for skeletal muscle TE, the mechanism and molecular pathways of 
akirin-1 still have to be analysed in detail in future. In addition, the administration of growth 
factors has to be critically analyzed concerning their risk of tumorigenicity in vivo.  
Recently, a novel class of regulating factors of myogenesis has been analyzed for their 
promyogenic potential: Small non-coding RNAs, called microRNA (miRNA) which consist 
of approximately 20-22 nucleotides (Callis et al. 2008). Herein, certain microRNAs (miR-1, 
miR-133 and miR-206) have been demonstrated as muscle specific. Whereas miR-1 and miR-
133 are also expressed in cardiac muscle, miR-206 is specifically expressed in skeletal muscle 
tissue and up-regulated in patients with muscular dystrophy (Eisenberg et al. 2009). 
Furthermore, the muscle-specific miRNAs differ in their effect on muscle precursor cells. 
MiR-133 increases proliferation of muscle precursor cells but also inhibits myogenic 
differentiation (Chen, J.F. et al. 2006). On the contrary, miR-1 and miR-206 have been shown 
to induce myogenic differentiation (Chen, J.F. et al. 2006, Kim, H.K. et al. 2006). In a recent 
study, Nakasa et al demonstrated that local injection of miR-1, miR-133 and miR-206 
improves muscle regeneration and prevent fibrosis following muscle injury in vivo (Nakasa 
et al.). However, further studies are still necessary to analyze the promyogenic potential of 
muscle-specific microRNAs in vitro and in vivo. 

5.2 Electrical stimulation and neurotization  
Despite great efforts in the past and various molecular factors which regulate and enhance 
myogenesis, engineering of mature skeletal muscle tissue still remains a big challenge. 
Though contracting myotubes – which mark the differentiation and fusion of myoblasts in 
myogenesis - have been generated by various groups, the generation of adult muscle fibers 
depends on neural or electrical stimulation (Wilson & Harris 1993). The influence of 
electrical stimulation on further myogenic differentiation has been analyzed in vitro 
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(Donnelly et al., Stern-Straeter et al. 2005) and in vivo (Fujita et al. 2007). For clinical 
applications, devices for electrical stimulation have to be implantable and suitable for long-
term stimulation (Jarvis & Salmons 2001, Lanmuller et al. 2005). The in vivo experiments of 
Dennis and co-workers using implantable stimulation devices in the rat demonstrated that 
muscle mass as well as the maximum force of a denervated muscle can be maintained by 
electrical stimulation (Dennis et al. 2003). Thus, the physiologic stimulation via motoric 
innervation can be simulated to support further myogenic differentiation. 
Liao et al showed that the combination of electrical stimulation with aligned micropatterned 
matrices even increases the positive effect on myogenic differentiation (Liao et al. 2008). 
Again, electrospun nanofibrous matrices offer the possibility to combine cell guidance 
through aligned matrix architecture with electrical stimulation via conductive nanofibers. 
Ghasemi-Mobarakeh and colleagues used electrospun PANi/PCL/gelatine-blend fibers as 
matrix for neural cell cultivation. Applying electrical stimulation to the matrices, they 
demonstrated enhanced cell proliferation and neurite outgrowth (Ghasemi-Mobarakeh et al. 
2009). The use of PANi/gelatine-blend fibers offers an acceptable cell attachment in vitro 
and can be used for cultivation and electrical stimulation of muscle cells in vitro (Li et al. 
2006). Finally, the influence of electrical stimulation on C2C12 murine myoblasts was 
analyzed by Jun and his group in vitro. In their experiments they found that electrical 
stimulation enhances myogenic differentiation via upregulation of myogenin which 
specifically marks early myogenesis (Jun et al. 2009). 
However, engineering functional skeletal muscle tissue in vivo not only asks for highly 
differentiated and organised muscle fibers but also the formation of neuromuscular 
junctions and neurite ingrowth between the muscle fibers is necessary (Fig. 6).  
 

 

Fig. 6. Immunofluorescent staining of a cross-section of adult skeletal muscle. A: The nuclei 
are stained with DAPI (blue) and mark the outline of the muscle fibers. The acetylcholine 
receptors (specifically stained with α–bungarotoxin; green) are reached by nerve terminals 
(stained for specific neurofilament (NF-100), red) forming the neuromuscular junction (B: 
DAPI-filter excluded). Magnification 400x 

The main component of the neuromuscular junction – the acetylcholine receptor (AChR) – is 
initially expressed in developing myofibers also in absence of neural cells, i.e. independent 
from motoric innervation (Witzemann 2006). The AChR clusters at this stage of myogenesis 
are located at the central regions of myofibers and this phenomenon known as 
“prepatterning”, marks the development of mature myofibers in myogenesis. However, the 
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accumulation of AChR at synaptic sites and further development into functional 
neuromuscular junctions depends on the specific neuronal factor agrin. Thus, the molecular 
signalling between developing myofibers and motor neurons is necessary for the generation 
of functional neuromuscular junctions (Brockhausen et al. 2008). The motoric innervation 
even defines further maturation of the developing muscle tissue into slow- or fast-twitching 
muscle fibers (Nehrer-Tairych et al. 2000). Dhawan et al proved that motoric neurotization of 
implanted muscle precursor cells in vivo leads to the formation of neuromuscular junctions 
(Dhawan et al. 2007). In a comprehensive study, they showed nerve-induced contractions of 
the in vivo engineered skeletal muscle tissue after explantation and analysis in vitro. 
Therefore, a successful approach for skeletal muscle TE in vivo will necessarily include a 
motor nerve for neurotization of implanted muscle precursor cells. But to date, in vivo 
models combining motoric neurotization with a pre-vascularized matrix are still rare. 
Recently, a new AV-loop model in the rat including motoric neurotization has been 
developed by our group (unpublished data). 

6. Conclusions 

As a conclusion, the main challenges in skeletal muscle TE are therefore: (1) engineering a 
suitable matrix for muscle TE including a clinical application, (2) improving further 
myogenic differentiation in vivo and (3) enabling the transplantation of functional skeletal 
muscle tissue to the recipient site including microsurgical anastomosis of an adequate 
vasculature as well as motoric neurotization of the engineered muscle tissue. Despite these 
obstacles, the achievements of the recent years demonstrate an encouraging progress of 
skeletal muscle TE research. Therefore, Churchill’s statement concerning skeletal muscle TE 
in vitro may still come true in the future. 
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