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1. Introduction  

Deriving from glial, astrocyte, or dendrocyte cells, gliomas are the most frequent tumors of 

central nervous system. Unfortunately, most of gliomas are refractory to standard 

radiotherapy treatments. The median survival for patients bearing grade IV gliomas 

(glioblastomas) does not exceed one year even after both aggressive surgery and 

radiotherapy treatment (Behin et al., 2003). A standard of 60 Gy delivered in 30 fractions 

during six weeks remains the best radiotherapy modality against gliomas (Behin et al., 

2003). This last conclusion raises the possibility that human gliomas might be generally 

more radioresistant than other tumor tissues. However, there is no consensus in literature 

about a specific radioresistance of human gliomas. Besides, the complexity of the molecular 

and cellular features of radiation response and the difficulty to define reliable endpoints to 

account for radiosensitivity whatever the tissue type may have limited the extent of some 

reports. In addition, three specific features of radiobiology of gliomas can be also evoked:  

- cellular in vitro endpoints like clonogenic survival seem to be less appropriate to predict 
gliomas radiocurability than that of other tumour types (Taghian et al., 1992, 1993);  

- animal models extensively used in glioma research may not reflect specificities of 
human gliomas and may bias in anti-glioma strategies (Holland, 2001);  

- DNA repair capacity of gliomas is poorly documented and most of the investigations 
about genes mutations concern actors of proliferation rather than upstream DNA repair 
proteins (Zhu & Parada, 2002).  

In 2004, our group obtained the most protracted survival of rats bearing radioresistant 
rodent gliomas by using synchrotron X-rays combined with intracerebral cisplatin injection. 
Such so-called PAT-plat treatment triggers the photoactivation of platinum atoms and 
produces some additional DNA double-strand breaks (DSBs) at the vicinity of cisplatin-
induced DNA adducts (Biston et al., 2004). The severity of PAT-Plat-induced DSBs was 
shown to be due to the inhibition of the major DSB repair pathway in mammalians, namely 
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the non-homologous end-joining (NHEJ) process (Biston et al., 2004; Corde et al., 2003). 
NHEJ is required for cell viability and its inhibition has been shown to be systematically 
linked to radiosensitivity. This DSB repair pathway is dependent on the ATM kinase activity 
that may be considered as the major DNA-breaking stress signaling pathway in 
mammalians. The inhibition of NHEJ may be rescued by other repair pathways, like the 
RAD51- and/or MRE11-dependent recombination process (Dudas and Chovanec, 2004; 
Joubert et al., 2008). Interestingly, these last two recombination pathways were shown to 
require a functional BRCA1 protein, a tumor suppressor whose mutations are responsible 
for inherited breast cancers (Scully et al., 1997). BRCA1 is a phosphorylation substrate of 
ATM kinase and also required for a normal response to radiation and to alkylating agents. 
Consequently, tumors showing impaired BRCA1 were supposed to be sensitive to the PAT-
Plat effect described above and to a number of chemotherapy drugs like cisplatin 
(Bhattacharyya et al., 2000; Corde et al., 2003). 
In the particular case of preclinical anti-glioma radio-chemotherapy trials, the most 
extensively used modalities are based on syngenic rat models subjected to intracranial 
inoculation of non-imunogenic cell lines. This is notably the case of the C6, 9L, F98 rodent 
glioma cell lines. However, that all these rat glioma models are induced by N-
nitrosmethylurea (NMU) or Ethylnitrosourea (ENU) -mediated mutagenesis ; which may 
condition their response to stress (Table 1). Since the choice of rodent glioma models is 
mainly motivated to date by the existence of previous raw data in the lab, their proliferation 
capacity in culture and/or in animals and their non-immunogenic properties, it may 
introduce some biases in data interpretation. 
 

Cell 
line 

Tumour type Mutagen P53 status p16/CDKn2a/
Ink4 

BRCA1 
localisation 
after X-rays 

Depositor 

C6 Gliosarcoma MNU, 
repetitive 

dose 

Wild type Mutated Cytoplasm (Benda et al., 1968) 

9L Gliosarcoma MNU, 
repetitive 

dose 

Mutated Wild type Nuclear (Benda et al., 1968) 

F98 Anaplastic 
glioma 

ENU, single 
dose 

Mutated Mutated Weak (Wechsler et al., 
1972) 

Table 1. Origin and biological features of the major rodent glioma cell lines 

In 2008, to evaluate the impact of the choice of a rat glioma models in a study dealing with 

radio- or chemotherapy, cell death pathways, cell cycle arrests, DNA repair and stress 

signalling were examined in response to radiation and cisplatin in C6, 9L and F98 models 

(Bencokova et al., 2008). Rodent glioma models showed a large spectrum of cellular 

radiation response. Surprisingly, BRCA1 was found to be functionally impaired in C6 and 

F98 favouring genomic instability, tumour heterogeneity and tolerance of unrepaired DNA 

damage. Furthermore, since BRCA1 acts as a tumor suppressor in a number of 

malignancies, our findings raise also the question of the implication of BRCA1 in brain 

tumors formation (Bencokova et al., 2008). 
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The importance of DSB repair and signaling proteins in the radiation response prompted us 
to investigate the radiobiological features of a number of human brain tumors, notably the 
activity of the NHEJ and the BRCA1-dependent pathways, in order to propose molecular 
assays to predict the response of gliomas to anti-cancer treatments. Some recent conceptual 
and technical advances in the DSB repair field have motivated such approach: 1) the 
importance of the potential interplay existing between the two major DSB repair pathways, 
NHEJ and recombination that may condition the final response to radiation (Joubert et al., 
2008); 2) the existence of a temporal hierarchy between ATM- and BRCA1-dependent 
phosphorylation events occurring after irradiation and conditioning cell cycle arrests and 
cell death pathways (Foray et al., 2003); 3) the fact that immunofluorescence permits to date 
the quantification of the DSB induced by radiation inside each cell nucleus via biomarkers 
that are specific to one particular step of DSB repair and signaling. This is notably the case of 

-H2AX that is the sensor of DSB managed by NHEJ and may serve as a marker of NHEJ 
activity (Joubert et al., 2008; Rothkamm & Lobrich, 2003). In 2011, by having accumulated a 
number of immunofluorescence data in response to 2 Gy X-rays in about 200 human normal 
and tumor cell lines, we propose a molecular model of radiation response in which the 
nucleo-shuttling of active ATM forms stimulates NHEJ and inhibits exacerbated nuclease 
activity of MRE11 responsible for genomic instability. BRCA1 is one of the major ATM 
phosphorylation substrate involved in this model (Granzotto et al., 2011, submitted) (Fig. 1). 

Hence, in this work, we have systematically examined the -H2AX, ATM and BRCA1 
response of 13 human glioma cell lines and 6 normal brain tissues to X-rays. 
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Fig. 1. Model for describing the radiation-induced ATM nucleo-shuttling 

2. Materials and methods 

2.1 Cell lines 
Human glioma cell lines detailed in Table 2 are provided from adult donors and are 
purchased by commercial collections such as ATCC. They were routinely cultured as 
monolayers with Dulbecco’s modified Eagle’s minimum medium (DMEM) (Gibco-
Invitrogen-France, Cergy-Pontoise, France), supplemented with 20% fetal calf serum and 
antibiotics.  
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Cell line 
 

Tumour type Donor age BRCA1 functional 
status 

SW1783 (HTB 13) Glioblastoma astrocytoma 68 nd 

U87MG (HTB 14) Glioblastoma astrocytoma 44 + 

U118MG  (HTB 15) Glioblastoma astrocytoma 50 - 

U138MG (HTB 16) Glioblastoma astrocytoma 47 - 

U373MG (HTB17) Glioblastoma astrocytoma nd +/- 

LN229 Glioblastoma PTEN+/+ 60 +/- 

CCF-STTG1 Astrocytoma 68 - 

MO59J Glioblastoma 33 + 

U251 Glioblastoma PTEN -/- nd nd 

T98G Glioblastoma multiforme 61 - 

GHD Glioblastoma nd nd 

CB193 Glioblastoma nd - 

SF767 Glioblastoma multiforme nd nd 

Table 2. Human glioma cell lines used in this study and their BRCA1 functional status 

Normal human brain cells detailed in Table 3 are provided from fetal brain and purchased 

by Sciencell Research Laboratories (Carlsbad, CA, USA). They were routinely cultured as 

monolayers with medium, serum and growth complement recommended by Science 

Research Laboratories.  

 

Cell line 
 

Cell type and 
brain localization 

Sciencell 
Reference 

HA Astrocytes - cortex #1800 

HAc Astrocytes - cerebellum #1810 

Hsc Schwann cells #1700 

Hah Astrocytes - hippocampal #1830 

HMC Meningeal cells #1400 

Hasp Astrocytes – spinal cord #1820 

Table 3. Human normal cell lines used in this study and their origin 

2.2 Irradiation 
An orthovoltage X-ray clinical irradiator was used to perform all the irradiations. It is 

described elsewhere (Joubert et al., 2005). The dose-rate was approximately 1.234 Gy.min-1. 
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All the experiments were performed on cells at plateau phase of growth to avoid any bias 

due to cell cycle.  

2.3 Immunoblottings 
Preparation of nuclear extracts, immunoblotting were performed using protocols published 
elsewhere (Foray et al., 2003). Anti-pBRCA1ser1423 ( Upstate Biotechnology-Euromedex) and 
anti-BRCA1 antibodies (Santa Cruz, CA, USA) were used at 1:1000 dilution. 

2.4 Immunofluorescence 
Immunofluorescence protocol was described elsewhere (Foray et al., 2003). Cells were fixed 

in paraformaldehyde  and permeabilized for 5 min at 4°C. Anti--H2AXser139 antibody was 
purchased from Upstate Biotechnology-Euromedex, Mundolsheim, France) and used at 
1:800. Anti-pATMser1981 (Abcam, Cambridge, UK), anti-pBRCA1ser1423 (Upstate Biotechnology-
Euromedex) and anti-BRCA1 antibodies (Santa Cruz, Tebu-Bio, Le Perray, France) were 
used at 1:100 dilution. Incubations with anti-mouse TRITC or with anti-rabbit FITC 
secondary antibodies (Sigma-Aldrich) (dilution at 1:100) were performed at 37°C in 2% BSA 
for 20 min. Nuclei were counterstained by 4,6-Diamidino-2-phenylindole (DAPI) (Sigma-
Aldrich) for 10 min. Coverslips were mounted in Vectashield (Abcys, Paris, France) and 
examined with an Olympus fluorescence microscope. Fifty nuclei per condition were 
analyzed. DAPI staining permitted also to indirectly evaluate yield of G1 cells (nuclei with 

homogeneous DAPI staining), S cells (nuclei showing numerous -H2AX foci), G2 cells 
(nuclei with heterogeneous DAPI staining) and metaphase (visible chromosomes) (Joubert 
et al., 2008). It is noteworthy that in our conditions, the ATM and DNA-PK kinases that 
phosphorylate the H2AX histones require some minutes post-irradiation to be fully active. 
Consequently, the earliest time post-irradiation was fixed at 10 min, in agreement with 
previous reports (Joubert et al., 2008).   The quantification of foci was performed by eye-
scoring and verified by semi-automatic scoring CellF software from Soft Imaging System 
GmbH (Münster, Germany) that permits to quantify nuclei and foci size.  

3. Results  

3.1 Glioma cell lines elicit a wide range of radiation-induced DSB repair capacity  
In a previous report, we have shown that the number of unrepaired DSB assessed 24 h after 
2 Gy is quantitatively correlated with intrinsic radiosensitivity reflected by clonogenic cell 
survival at 2 Gy (SF2) (Joubert et al., 2008). As a first step, we focused therefore on the DSB 
repair capacity of the human gliomas by using anti--H2AX immunofluorescence. Glioma 
models described a continuous range of responses between 2 to 58% of unrepaired DSBs, 
corresponding to an SF2 range of 80 to 2%, respectively (Fig. 2). In agreement with previous 
reports, MO59J cells exhibited one of the most severe human DSB repair deficiency 
(Chavaudra et al., 2004; Lees-Miller et al., 1995) (Fig. 2).  
By taking into account survival data available in literature (Joiner et al., 2001), our findings 
were in agreement with a general correlation between SF2 and unrepaired DSBs obtained 
from 20 human tumour cell lines (Chavaudra et al., 2004). Here, the human glioma cell lines 
tested describe therefore a wide range of NHEJ repair capacity and radiosensitivity that 
does not suggest a global tendency to radioresistance for brain tumor cells. Interestingly, the 
average DSB repair rate of human radioresistant skin fibroblasts appears to be 
systematically faster than that of the glioma cell lines tested here.  
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Fig. 2. Number of -H2AX foci assessed 24 h after 2 Gy X-rays in the indicated human 
tumour and normal brain cell lines. Data shown are the mean ± standard error of 3 
independent replicates, at least. Dotted cell lines indicated the average corresponding value 

of -H2AX foci for radioresistant skin fibroblasts published elsewhere (Joubert et al., 2008). 

3.2 Most glioma cell lines elicit impaired radiation-induced ATM kinase activity  
Since phosphorylation of -H2AX requires the ATM kinase activity, cell lines were also 

subjected to immunofluorescence with antibodies against the autophosphorylated forms of 

ATM (pATM) (Bakkenist and Kastan, 2003). Very few pATM foci were observed 

constitutively, suggesting a moderate ATM kinase activity in all the glioma models (data not 

shown). MO59J elicited a marked delay in the radiation-induced ATM activation, likely due 

to its ATM mutations (Tsuchida et al., 2002). Although the other cell lines exhibited a 

various number of pATM foci at 10 min post-irradiation ranging from about 1 to 70 pATM 

foci per cell, the great majority of them show a ATM kinase activity at 10 min post-

irradiation that is abnormally lower than radioresistant skin fibroblasts (Fig. 3). 

3.3 Most glioma cells elicit impaired radiation-induced BRCA1 phosphorylation 
Ionizing radiation cause BRCA1 phosphorylation, visible by a protein migration shift (Scully 

et al., 1997a,b). Among 13 glioma cell lines of the collection, 8 were subjected to anti-BRCA1 

immunoblots. Our results revealed that BRCA1 migrated at the expected size for all the cell 

lines. However, BRCA1 appeared differentially expressed: U138 and U373 elicited the 

weakest spontaneous BRCA1 expression and U87, MO59J and GHD the highest one (Fig. 4). 

Only 3 (MO59J, U87, GHD) among 8 irradiated cell lines showed the typical shift of BRCA1 

phosphorylation, suggesting that the functional BRCA1 status is impaired in the great 

majority of glioma cell lines. U373 and LN229 showed a second band above BRCA1 that 

seemed too high to represent any BRCA1 phosphorylation signal (Fig. 4).  
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Fig. 3. Number of pATM foci assessed 10 min after 2 Gy X-rays in the indicated human 
tumour and normal brain cell lines. Data shown are the mean ± standard error of 3 
independent replicates, at least. Dotted cell lines indicated the average corresponding value 
of pATM foci for radioresistant skin fibroblasts obtained in our lab (Granzotto et al., 
submitted). 
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Fig. 4. Representative example of anti-BRCA1 immunoblots of nuclear extracts from the 
indicated human cells exposed to 15 Gy followed by 4 h for repair. Expression of BRCA1 
was quantified by grey scale analysis in arbitrary units. 

In agreement with anti-BRCA1 immunoblots, only MO59J, U87, GHD elicited radiation-
induced BRCA1 foci. It is however noteworthy that some cell lines exhibit spontaneous 
BRCA1 foci likely due to S-G2/M phase, consistent with the findings that radiation and cell 
cycle triggers the phosphorylation of different BRCA1 serine residues (Bakkenist & Kastan, 
2003; Gatei et al., 2000; Xu et al., 2001) (Fig. 5A). Immunofluorescence with antibodies 
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against the phosphorylated BRCA1 Ser1423 (pBRCA1ser1423) was performed, as well. Again, 
only MO59J, U87, GHD exhibited positive pBRCA1ser1423 signals (Fig. 5B). Altogether, these 
findings suggest that BRCA1 is functionally impaired in the majority (5/8) of human glioma 
models in response to radiation. It must be reminded that functional BRCA1 impairments 
are due either to BRCA1 mutations or to the absence of BRCA1 protein partners, like RAD51 
(Scully et al., 1997a,b). Particularly, all the cell lines exhibited RAD51 foci whether 
spontaneously (in S/G2M) after irradiation (data not shown). Hence, BRCA1 impairments 
were observed in the majority of human glioma models, independently of their RAD51 
activity.  
 

A

B U87 GHD M059J

p-BRCA1ser1423

M059JU87 U118 U138 LN229U373 GHD CCF

Untreated

15 Gy 4 h

BRCA1

 

Fig. 5. A. Anti-BRCA1 immunofluorescence applied to the indicated cell lines after 15 Gy X-
rays followed by 4 h for repair. B. Representative examples of pBRCA1ser1423 signals 
obtained in U87, GHD and M059J cell lines in the same conditions. 

3.4 Normal brain cells elicit a wide range of radiation-induced DSB repair capacity 
Human brain cells showed few residual -H2AX foci after 2 Gy followed by 24 h for repair, 
suggesting a larger radioresistance than the human glioma cell lines tested (Fig.2). However, 
inside the normal brain cells group, there is no significant difference between the brain 

localizations tested (Fig.2). Conversely, the yields of -H2AX foci of human astrocytes are 
systematically higher than radioresistant fibroblasts (p<0.02) (Fig. 2).  

3.5 Normal brain cells elicit impaired radiation-induced ATM kinase activity 
In order to investigate further the radiobiological features of human normal brain cells, we 

assessed the number of pATM foci 10 min post-irradiation. Normal human brain cells 

exhibited significantly less -H2AX foci 10 min post-irradiation than radioresistant 

fibroblasts (p=0.01), suggesting that ATM-dependent DSB recognition is slightly impaired in 

normal brain cells (Fig. 3). The measured ATM kinase activity in normal human brain cells 

lead to a lack of recognition of about 10 to 30 DSB at the dose of 2 Gy, corresponding to 

about 12.5 to 37.5% of radiation-induced DSB, respectively. Again, no significant difference 

was observed between the brain localizations tested.  
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3.6 Normal brain cells elicit impaired radiation-induced BRCA1 phosphorylation  
In our attempts to investigate the functional status of BRCA1 in response to radiation, we 
have systematically observed a very weak BRCA1 and pBRCA1 signals in all the normal 
brain cells, whatever the conditions, suggesting a significant impairment of the functional 
status of this protein (data not shown). It is noteworthy that even in the rare normal brain 
cells observed in S or G2/M phase, the yield of BRCA1 foci was negligible.   

3.7 Intercomparisons between human glioma and normal brain cells 
In order to compare glioma and normal brain cells data, we plotted, for all the cell lines 

tested, the number of -H2AX foci per cell assessed 24 h post-irradiation (that is an indicator 
of radiosensitivity) against the number of pATM foci assessed 10 min post-irradiation (that 
is an indicator of the early ATM kinase activity in response to radiation) (Fig. 6). 
 

 

Fig. 6. Number of residual -H2AX foci per cell as a function of the corresponding number 
of pATM foci per cell for all the human glioma (closed losanges) and normal brain cells 
(open squares) described in this report. All the foci data are shown in Fig. 1 and 2 as 
histogram. Each plot is represented by the mean ± standard error of 3 independent 
replicates, at least. Blue and pink confidence zones correspond to the values from human 
primary fibroblasts belonging to the radiosensitivity group I and II, respectively (see 
Discussion). Green confidence zone corresponds to values from the C6, 9L and F98 rodent 
glioma cells. 
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The fig. 6 clearly shows that the normal brain cells tested here are more DSB repair deficient 
with a lower ATM kinase activity than the most radioresistant skin fibroblasts. Conversely, 
the normal brain cells may belong to a group of cells characterized by a moderate but 
significant radiosensitivity associated with genomic instability. With regard to the glioma 
cells, they covered all the range of DSB repair and ATM kinase activity, likely due to their 

intrinsic instability. Interestingly, the -H2AX and pATM values from the C6, 9L and F98 
rodent glioma cells correspond to a very restricted genetic conditions that are not 
representative of human glioma. 

4. Discussion 

4.1 New advances in DSB repair models 
As evoked in the Introduction chapter, it has been demonstrated that radiation-induced DSB 
can be determined from the number of nuclear foci formed by the phosphorylation of the 
variant histone H2AX and easily quantifiable using immunofluorescence (Rothkamm & 
Lobrich, 2003). Although successfully tested in hyper-radiosensitive cells and presented as 
powerful predictive assay, some preliminary data showed us that γ-H2AX 
immunofluorescence does not necessarily predict the whole range of human 
radiosensitivity. Recently, unlike the majority of studies focusing on mutations of one single 
gene, we have deliberately chosen to extend our investigations to the largest spectrum of 
radiosensitivity possible with human cells, independently of gene mutations. The 
relationship between cellular radiosensitivity and DSB repair data was examined in a 
collection of 40 non-transformed human fibroblasts representing at least 8 different genetic 
syndromes (Joubert et al., 2008). The systematic application of the most extensively used 
molecular assays, namely immunofluorescence, PFGE and plasmid assays allowed us to 
propose a quantitative correlation between molecular and cellular radiosensitivity that is 
relevant for all mammalian cells: survival fraction at 2 Gy (SF2) was found to be inversely 
proportional to the amount of unrepaired DSB, whatever the genes mutations and the 
assays applied. 
Form this correlation, a classification of genetic diseases associated with cellular 
radiosensitivity in 3 groups was also proposed in our recent study (Joubert et al., 2008): 
group I: radioresistance; group II: moderate radiosensitivity and high cancer proneness; 
group III: hyper-radiosensitivity.  Obviously, the definition of these three groups tentatively 
proposed is provisional and is conditioned to the extension of additional cell lines in our 
systematic study of human radiosensitivity. A number of other biomarkers and tissue types 
have to be investigated to better document the molecular and cellular bases of this 
classification:  this is notably the case of ATM, BRCA1, DNA-PK, 53BP1 and NBS1 proteins, 
all involved in the radiation response and of brain, breast, prostate tissues, all involved in 
the most frequent cancers.  
Our results show that human glioma may exhibit a very wide range of radiosensitivity and 
may be characterized by impaired radiation-induced ATM kinase activity and BRCA1 
phosphorylation. Normal brain cells share with gliomas these last two features. Conversely, 
can these results suggest that impaired ATM kinase activity and BRCA1 phosphorylation 
are specific to brain cells, whether normal or not? 

4.2 Role of ATM in the radiation response of the brain  
Ataxia telangiectasia (AT) is caused by homozygous ATM mutations and is a rare autosomal 
dominant syndrome associated with the highest radiosensitivity in humans (McKinnon, 
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1987). AT is a neurodegenerative disease. The prominent neurological sign of AT is an 
inexorable loss of cerebellar function, cerebellar atrophy, especially in vermal regions and 
loss of Purkinje cells (Lavin, 2008; McKinnon, 1987; Taylor et al., 1994). The role of ATM in 
brain cells and the dramatic consequences of its deletion or inhibition is well-documented 
but studies mianly concern rodent models. For example, it has been shown recently that cell 
populations in the Atm-/- central nervous system may be radioresistant (Gosink et al., 
1999). To define specific radiosensitivities of neural populations, Gosink et al. (1999) have 
analyzed Atm-/- astrocytes and showed that Atm-/- astrocytes exhibit premature 
senescence, express constitutively high levels of p21, and have impaired p53 stabilization. 
However, in contrast to radiosensitive Atm-/- fibroblasts and radioresistant Atm-/- 
neurons, radiosensitivity of Atm-/- astrocytes was similar to wild-type astrocytes (Gosink et 
al., 1999). 
By contrast, studies about the role of ATM on normal brain cells are more rare but also 
dominated by rodent models. For example, Soares et al. (1998) have shown that Atm 
expression during mouse development was highest in the embryonic mouse nervous 
system, where it was predominantly associated with regions undergoing mitosis. During 
the period of Purkinje cell neurogenesis, Atm was highly expressed in the area containing 
Purkinje cell precursors. However, in the postnatal cerebellum, Atm expression in Purkinje 
cells was very low, while expression in proliferating granule neurons was high. The only 
region of the adult nervous system that exhibited elevated Atm expression were the 
postmitotic sensory neurons of the dorsal root ganglia (Soares et al., 1998). Their data 
suggest an early developmental requirement for ATM in the cerebellum, and other regions 
of the central nervous system, but a global decrease of ATM expression. 
Here, our data suggest that cytoplasmic ATM kinase activity in human brain cells is 
endogenously lower than in fibroblasts. According to our molecular model described in Fig. 
1, normal brain cells may be a bit more radiosensitive to primary fibroblasts but overall 
more proned to radiation-induced genomic instability. Hence, while human glioma cells 
may exhibit a wide range of X-rays response, the fact that normal brain cells surrounding 
tumors may be radiosensitive should lead to cautiousness about the clinical transfer of anti-
glioma radiotherapies. 

4.3 Response of brain to radiation and gliomagenesis : Importance of BRCA1 
BRCA1 is a phosphorylation substrate of ATM. Hence, if ATM kinase is naturally less active 
in normal brain cells, it is logical to observe impaired BRCA1 phosphorylation in normal 
brain cells. BRCA1 is an interesting protein in carcinogenesis because of its involvement in 
both breast cancers and DNA repair (Foray et al., 1999; Huen et al., 2010). Furthermore, its 
role is very important in chemotherapy since this protein is required for a normal response 
to alkylating agents (Bhattacharyya et al., 2000; Corde et al., 2003). However, up to date, 
nothing has really related BRCA1 to brain tumors. In 2008, our systematic radiobiological 
analysis of pointed out the possibility that BRCA1 may be not functional in rodent glioma 
models whose majority was induced by nitrosourea treatment. Interestingly, a paper 
published in 2003 presented ENU mutagenesis as an interesting tool to produce knockout 
rats, and especially BRCA1 and BRCA2 mutants (Zan et al., 2003). Hence, BRCA1 
impairments in rodent glioma models may not have the same origin than those observed in 
human gliomas. This remark raises therefore the question of the relevance of the use of 
chemo-induced tumours in preclinical trials. This question is inasmuch important as Fig.6 
shows that radiobiological features of rodent glioma models are not representative of those 
of human gliomas. 
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There were considerable advances in the investigations on gliomas-specific molecular 
markers. However, the great majority of them generally focus on actors of proliferation. A 
number of loss of heterozygosity have been reported in gliomas but there is still no 
consensus for any specific molecular signature (Bredel et al., 2005; Zhu & Parada, 2002). 
Very few concerned p53 and BRCA1. Loss of p53 and activation of growth factor receptor 
tyrosine kinase signalling pathway initiates tumour formation whereas disruption of RB 
pathway contributes to the progression of tumour development (Bredel et al., 2005; Zhu & 
Parada, 2002).  However, the great majority of targeted proteins that act in the proliferation 
process, are partners of BRCA1 but are mainly gatekeepers than caretakers like BRCA1. This is 
notably the case of the p16/Cdkn2a/Ink4a whose homozygous deletions have been 
observed in C6 and F98 but not in 9L rodent glioma models (Bencokova et al., 2008). The 
p16/Cdkn2a/Ink4a protein belongs to the BRCA1-dependent cascade of stress-induced 
events, was shown to co-precipitate with BRCA1, and phosphorylate it at serine 1497 in 
response to cell cycle progression and DNA damage (Ruffner et al., 1999). Recently, it 
appears that BRCA1-negative cells show high p16/Cdkn2a/Ink4a cyclin-dependent kinase 
activity and that are 2- to 4-fold more sensitive to CDK inhibitors (Deans et al., 2004). Hence, 
the p16/Cdkn2a/Ink4a deletions found in C6 and F98 but not in 9L, together with our 
findings that BRCA1 is functionally impaired in C6 and F98 but not in 9L, suggest a model 
in which ATM- and p16/Cdkn2a/Ink4a-dependent may interplay with BRCA1. 
To date, two major models of glioblastomas formation are proposed: glioma generation 
would be mediated either by genomic instability and uncontrolled differentiation or by 
rapid transformation of some pre-existing neural stem cells (Zhu & Parada, 2002). BRCA1 
impairments are rather consistent with a glioma generation facilitated by genomic 
instability. Impaired BRCA1 may notably contribute to the lack of control of tyrosine kinase 
pathways that exacerbate cellular proliferation (Foray et al., 2002). Our findings raised the 
question of the implication of this protein in the tumorigenicity of brain tumours as well. 
Such assumption is supported by the fact that BRCA1 tumor suppressor activity is not 
necessarily restricted to inherited breast and/or ovarian cancer (Rosen et al., 2005). Notably, 
adenovirus experiments pointed out the potential role of BRCA1 in lung and colon 
malignancies (Marot et al., 2006). Our data suggest therefore that, in addition to an 
endogenously low ATM kinase activity that would be specific to brain cells and may lead to 
a reduced BRCA1 function, gliomagenesis may be facilitated by mutations in proteins 
partners of a complex including BRCA1.  

5. Conclusions 

Radiobiological investigations on extensively used rodent models have revealed that 
nitrosourea-directed mutagenesis may select particular mutations of BRCA1 genes that can 
be at the origin of the glioma formation. This BRCA1 mutation and impairment has some 
consequences on the radiation response but overall on the chemo-response of rodent glioma. 
Hence, rodent glioma models may not be representative of the human glioma models. Once 
the role of BRCA1 has been pointed out, the observation that radiation-induced 
phosphorylation of BRCA1 is also impaired in the majority of human glioma models 
provides clues that :  
- this tumour suppressor gene may be involved in gliomagenesis  
- upstream partner proteins like ATM may be involved in gliomagenesis, as well 
- downstream partner poteines like p16 or p53 may be indirectly used a glioma markers. 
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In parallel, human normal brain cells appeared impaired in the radiation-induced ATM 
kinase activity, suggesting an endogenous specificity of brain cells by comparison to other 
tissues like skin. Since a lower ATM kinase activity and/or expression logically lead to 
impaired BRCA1 phosphorylation, our data suggest that brain may be more sensitive to 
tumour formation than other tissue for stress requiring the ATM and BRCA1-dependent 
pathways (Fig.7). 
Our results may also provide interesting elements for anti-glioma strategies. Indeed, since 
BRCA1 is required for the response to alkylating agents, radio-chemotherapy with 
platinated agents may be one of the approaches compatible with our findings. Obviously, 
further molecular and cellular investigations with a larger number of cell lines may 
consolidate this working hypothesis. 
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Fig. 7. Schematic recapitulation of our observation. Bold expressions represent the first 
experimental observations. 
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