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1. Introduction 

Brain tumours form a group of neoplasms with distinct histological characteristics and 
different malignancies [Maher 2001]. Various molecular alterations occurring in brain 
tumors may have diagnostic and predictive values as they are connected with histologically 
determined tumour types and malignancy grades [Martinez et al. 2009; Martinez and 
Esteller 2010; Sciume et al. 2010]. Methylation of DNA cytosine residue at the carbon 5 
position (m5C) is a common epigenetic marker in many eukaryotes and is often found in the 
sequence context of CpG. It is assumed that ca 5% of all cytosine residues, i.e. 1% of the 
nucleic bases, in mammalian genomes are methylated. Although DNA methylation has been 
viewed as a stable epigenetic mark, studies in the past decade have revealed that this 
modification is not as static [Wu and Zhang 2010]. In fact, loss of DNA methylation (DNA 
hypomethylation), has been observed in the specific context and can occur through active, 
passive or random modification mechanisms. Although the genome in each cell within the 
body is identical, cell- and tissue-specific profiles of gene transcription, posttranscriptional 
modification, modifications and translation are specifically regulated by epigenetic 
mechanisms that include DNA methylation, histone modification and noncoding RNAs 
[Robertson 2005]. In the central nervous system epigenetic mechanisms serve as main 
regulators of homeostasis and plasticity development, which are sensitive to local and 
global environmental, vascular and systemic factors [Martinez and Esteller 2010]. 
It is generally accepted that cancer initiation and progression are linked to the disruption of 
red-ox balance of the cell [Grek and Tew 2010]. Current evidences support an idea that 
cancer cells are generated by enhanced reactive oxygen species (ROS) generation, their 
accumulation, and down regulation of antioxidant enzymes [Essick and Sam 2010]. The 
oxidative damage to the cell caused by ROS plays a critical role in the etiology and 
progression of different neoplasms in humans [Johnstone and Baylin 2010; Jomova and 
Valko 2011]. 
Oxygen radicals cause damage to DNA and chromosomes, induce epigenetic alterations, 
interact with oncogenes or tumour suppressor genes, and finally change the immunological 
mechanisms [Robertson 2005; Pelizzola and Ecker 2010]. 

www.intechopen.com



 
Brain Tumors - Current and Emerging Therapeutic Strategies 

 

38

5-methylcytosine (m5C), along with other DNA constituents and the cell components, are 
targets for ROS, of which the most reactive species is the hydroxyl radical (�OH). Hydroxyl 
radical causes a wide range of DNA lesions including base modifications, deletions and 
strands breakage. Radical oxidation of m5C leads to its modification including 
demethylation and deamination (Fig. 1). It results in decreasing the global (genomic) m5C 
content in cellular DNA (hypomethylation). Therefore DNA methylation (m5C status) is a 
sensitive marker of the neoplasm formation effected by the oxidative damage reactions and 
very characteristic for cancer cells [Robertson 2005]. 
Measurements of m5C in DNA can be done either by analysing the pattern of methylated 
target sequences along individual DNA molecules or as an average methylation level at a 
single genomic locus across many DNA molecules [Rao and Balachandran 2002]. 
One should remember that 5% of m5C deaminates to thymine under moderately acidic 
conditions and 2-5% is converted to thymine during the standard overnight incubation with 
sodium bisulfite [Wu and Zhang 2010]. 
One can also measure the global DNA methylation changes [Li et al. 2009; Pelizzola and 
Ecker 2010]. To investigate whether hypomethylation has a causal role in tumour formation, 
we have analyzed the level of m5C in DNA of human brain tumour tissues using two-
dimensional thin layer chromatography (TLC) analysis of [32P] postlabelled DNA 
components. We have found a correlation of m5C global content in DNA of tumour tissues 
with their malignancy. We have shown that as m5C amount decreases, the tumour grade of 
malignancy increases. The elaborated method has a practical application potential in the 
clinical diagnostics and also as the DNA quality test. 

2. Materials and methods 

Patients 

Patients with brain tumours have been operated at the Department of Neurosurgery and 
Neurotraumatology of Poznań University of Medical Sciences. Brain tumour samples from 
577 patients were collected between 2007 and 2010 and stored at -80oC. Histopatological 
analysis was done in the Neuropathology Laboratory and tumours classified according to 
the 2007 WHO rules [Louis et al. 2007]. Informed consent for samples and data analysis was 
obtained from each patient. 

Isolation of DNA from brain tumor tissue 

DNA was isolated from tumour tissue according to the method described earlier [Miller et 
al. 1988] or with a commercial kit (A&A Biotechnology, Poland). 

DNA hydrolysis, labeling and analysis 

Dried DNA (1 µg) was digested with 0.02 U of micrococcal nuclease (MN) and 0.001 U 
spleen phosphodiesterase II (SPD) to mononucleotides (Np) in 50 mM succinate buffer pH 6 
containing 10 mM CaCl2 in 3.5 µl total volume for 5 h at 37oC. Mononucleotides (0.17 μg) 
were labelled with 0.1 µCi [γ-32P] ATP (6000 Ci mmol-1, USB) and T4 polynucleotide kinase 
(1.5 U ) in 3 µl of 10 mM bicine-NaOH pH 9.7 buffer containing 10 mM MgCl2, 10 mM 
dithiothreitol and 1 mM spermidine for 30 min at 37oC. 
To remove inorganic phosphate (PPi) 3 µl (10 U ml-1) of apyrase (Sigma) in the same 10 mM 
bicine-NaOH buffer pH 9.7 was added and incubation was continued for 30 min. Finally the 
3’ phosphate was cleaved off with 0.2 µg RNase P1 in 500 mM ammonium acetate buffer pH 
4.5 [Barciszewska 2007]. 
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Separation of [γ-32P]m5C from other nucleotides was performed with thin layer 
chromatography (TLC) on cellulose plates (Merck) using isobutyric acid:NH4OH:H2O 
(66:1:17 vol/vol) in the first dimension and 0.1 M sodium phosphate pH 6.8 – ammonium 
sulfate – n-propanol (100 ml/ 60 g/ 2 ml) in the second dimension. The chromatogram was 
analyzed with Phosphoimager using Image Quant Software. The amount of m5C was 
calculated as of the spot intensities ratio of [m5C/(m5C+C+T)] ×100 and expressed as R 
coefficient. The analysis was repeated 3 times for each probe and results were evaluated. 

3. Results and discussion 

Low level of some reactive oxygen species (ROS) as superoxide, hydroxyl radical or 

hydrogen peroxide can enhance cellular survival and stimulate proliferation. However, 

when that is a concominant with chronic ROS production, redox homeostasis can become 

imbalanced and normal cells may undergo transformation [Rao and Balachandran 2002]. In 

the last years many data have been collected that link cell stress to various diseases 

including cancer, cardiovascular disease, diabetes and neurodegenerative disorders. Current 

evidence support the hypothesis that cancer cells are characterized by enhanced ROS 

generation, increased ROS accumulation and the degradation of antioxidant enzymes. There 

are many explanations how cellular stress induces a disease. It is known that the cell stress 

causes genetic and epigenetic changes and results in an altered cellular “memory” that 

drives diseases pathology [Robertson 2005]. The main risk for cancer is a chronic exposure 

and increasing DNA damage. There is a wealth of data which supports the idea that 

cancerous cells have aberrant patterns of epigenetic modifications. The best studied 

epigenetic modification is DNA methylation, which consists of the methyl group at carbon 5 

of the cytosine. Methylation of cytosine residues in DNA provides a mechanism for a gene 

control expression.  

DNA methylation in promotor region as well as coding sequences inhibits binding of 

regulatory protein and causes gene silencing [Frigola et al. 2005]. It has been estimated that 

up to 5% of cytosines are methylated in normal tissues and that this DNA methylation is 

necessary for controlling gene expression of tissue-specific housekeeping or imprinted genes 

and for maintaining genomic stability through silencing transposable elements of the 

genome. Genomic DNA can undergo changes not only in the sequence level but also by the 

addition or removal of chemical groups. Aberrant DNA methylation, appeared as either 

hyper-, or hypomethylation, is associated with changes in the phenotype of various diseases 

including brain tumours [Frigola et al. 2005]. 

The brain and other points of the nervous system are particularly vulnerable to the free 
radical damage for a number of reasons. The membrane lipids in brain contain high level of 
polyunsaturated fatty acid side chains, which are prone to free radical damage. Brain also 
takes up large quantities of oxygen contributing to the formation of reactive oxygen species. 
At the same time brain contains low level of antioxidant enzymes such as catalase, 
superoxide dismutase and glutathione peroxidase. Presence of iron, copper and manganese 
in the brain contribute significantly to the production of a highly reactive and very short 
living ROS via Fenton reaction [Kehrer 2000; Essick and Sam 2010]. Free radicals, and �OH 
in particular, cause damaging of DNA, proteins and lipids. They include for example 8-
hydroxy-2-deoxyguanosine, 4-hydroxy-2-nonenal and others [Fraga et al. 2002; Tudek et al. 
2010].  
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Gliomas are the most common primary tumours affecting the human central nervous 

system (CNS). They are classified in accordance with their histopatological features and 

clinical presentation. The most abundance gliomas are astrocytomas, oligodendrogliomas 

and oligoastrocytomas [Louis et al. 2007]. Astrocytomas occur with an incidence of 80-85% 

of all gliomas and glioblastoma multiforme (GBM) represent the most frequent malignant 

primary brain tumours. Various genes with frequent tumour related promoter 

hypermethylation have been identified in glioma [Martinez and Esteller 2010]. Gene 

regulation in tumours by promoter methylation has been established [Robertson 2005]. It 

has a prognostic and predictive potential in cancers. Therefore one can expect DNA 

methylation analysis to become an important diagnostic tool for many types of cancer. 

Oxidative stress from aberrant accumulation of ROS over time can damage of proteins, 

lipids and nucleic acids and forms the molecular basis of free-radical background of cancer. 

It is well established that the oxidative stress is linked directly to cancer [Essick and Sam 

2010; Grek and Tew 2010; Johnstone and Baylin 2010]. Although ROS modification to DNA 

has been broadly discussed in the past, its activity towards 5-methylcytosine, a main 

epigenetic marker, causing DNA demethylation has been overlooked for a long time 

[Berdasco and Esteller 2010]. 

Although DNA methylation has been recognized as a stable epigenetic mark, recently many 
data on loss of DNA methylation (DNA demethylation) has been collected. It can be that 
DNA demethylation is an active, enzymatic or chemical process of the methyl group 
removal through breaking a carbon-carbon bond. Genome-wide and gene-specific 
demethylation events are observed [Trewick et al. 2002; Martinez et al. 2009; Martinez and 
Esteller 2010]. The first occurs at specific times during early development, whereas the latter 
occurs in somatic cells responding to specific signals. 
Many enzymes and various mechanisms have been proposed to carry out active DNA 
demethylation [Wu and Zhang 2010]. They include base m5C excision repair, deamination of 
m5C to T, nucleotide excision repair, oxidative demethylation and radical S-
adenosylmethionine-based demethylation [Wu and Zhang 2010; Klug et al. 2010]. 
In addition to that, it is also possible for DNA to be demethylated randomly with very active 

hydroxyl radical [Kehrer 2000]. It is known that DNA molecule is subjected to a broad range 

of free radicals and oxidative injuries in vivo [Ulrey et al. 2005]. The oxidation reaction of 

with -CH3 group of m5C hydroxyl radical causes spontaneous demethylation or 

deamination leading to C or T, respectively (Fig. 1). 

The demethylation of m5C proceeds through 5-hydroxymethylcytosine intermediate [Guo et 
al. 2011]. The mechanism of this reaction is similar to that of radical SAM [Wu and Zhang 
2010]. Imbalance of red-ox state in tumor cells affects the genomic methylation patterns 
what can be used to distinguish cancerous from normal brain cells, and to find correlations 
with their pathological features [Bart et al. 2005]. 
There are evidences which support the existence of DNA demethylation in vertebrate cells, 
although the mechanism of that process is not clear [Wu and Zhang 2010]. 
A low amount of m5C in human DNA and a limited availability of brain tumour tissues, 

prompted us to look for a new and suitable method of m5C determination with diagnostic 

potential. We have applied a nucleic acid postlabelling approach with [γ-32P]-ATP and T4 

polynucleotide kinase (T4 PNK) to analyze DNA components with the thin layer two 

dimensional chromatography (TLC) and particularly for a quantitative assessment of the 

modified nucleotides (Fig. 2). 

www.intechopen.com



Molecular Diagnostics of Brain Tumours 
by Measuring the 5-Methylcytosine Level in Their DNA 

 

41 

 

Fig. 1. Formation of thymine and cytosine in the reaction of m5C in DNA with hydroxyl 
radical. 

 

 

Fig. 2. Flow chart of m5C analysis in DNA hydrolyzed to 3’mononucleotides (Np). They are 

furthermore labelled with [γ-32P] ATP, dephosphorylated of 3’ phosphate and separated 
with TLC in two dimensions (1 and 2). 
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It seems that deamination and demethylation of m5C effected with hydroxyl radical 
oxidation, leads to thymine (T) and cytosine (C) formation, respectively (Fig. 1). These bases 
obtained from m5C are naturally occurring in DNA and therefore we included them in the 
equation: R= [m5C/ (m5C+C+T)] ×100, for m5C assessment. In this way R represents the 
amount of m5C in relation to all pyrimidines (basic bases) present in DNA. We assume R as 
global methylation coefficient. 
Before we began the analysis of m5C in human brain tumours DNA, we have checked the 
effect of tissue samples handling on the assignment of m5C. Tumour tissues were resected 
and handled in three different conditions. For the same tissue sample, one part was freshly 
frozen (FF), immediately put on dry ice, the other was formalin-fixed, paraffin embedded 
(FFPE) and the third one was stored for 3 hrs at room temperature on the bench. For DNA 
isolation, the tissue from FFPE was recovered as described previously [Sanchez-Navarro et 
al. 2010]. DNA isolated from all differently treated tissue samples showed changes in global 
amount of m5C (Fig. 3). 

1 2 3
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Fig. 3. The level of cytosine methylation (m5C) in DNA isolated from resected meningioma 
tissues and stored at -80oC (grey), formaldehyde fixed, paraffin embedded (FFPE) (white) 
and exposed at room temperature for 3 hrs (black). 

It is known that the development of molecular tests for clinical use has been limited by the 
lack of good available clinical samples for validation of candidate biomarkers. FF samples 
are difficult to collect and store for large scale studies, but FFPE samples on the other hand 
are stable at room temperature and easily to store. However the last approach has some 
disadvantages. Recently, it has been shown that RNA isolated from FFPE is a poor material 
for gene expression analysis due to its deep degradation [Farragher et al. 2006; Sanchez-
Navarro et al. 2010].  
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Formalin fixation and paraffin embedding is the most commonly used method worldwide 
for tissue storage. This method preserves the tissue integrity but causes extensive damage to 
nucleic acids within the tissue. There is a huge resource of FFPE tissues specimens held in 
histopathology departments around the world. The samples provide an invaluable resource 
for studying the molecular basis of disease, making it possible to perform large retrospective 
studies correlation molecular features with therapeutic response and clinical out come 
[Farragher et al. 2008]. We have clearly showed that DNA in FFPE samples is degraded  
(Fig. 3) and observed significant demethylation in cellular DNA is due to oxidative damage 
[Tudek et al. 2010]. The highest DNA methylation level we observed for DNA isolated from 
fresh frozen tissues. The majority of studies to date have used high quality RNA from FF 
samples, however those studies have been restricted due to the small number of samples 
[Farragher et al. 2008]. Significantly lower amount of m5C was observed for FFPE tissues 
and severe hypomethylation for DNA from the cells stored at room temperature. One can 
conclude that m5C demethylation is effected by cellular oxidative damage which is reduced 
by deep freezing of a tissue sample immediately after tumor resection. A cellular damage 
occurring during embedding in paraffin, which includes heating up step in liquid paraffin, 
significantly stimulates demethylation has been observed earlier [Barciszewska et al. 2006; 
Blow 2007]. One can conclude that the decrease of DNA m5C is a consequence of severe 
DNA oxidation including m5C with �OH. 
The goal of our studies was to understand the biology of malignant gliomas on the level that 
leads to the development of new diagnostic method. 
We have analyzed the global level m5C in DNA samples from 577 individuals with brain 
tumours aged 11 - 80. Histopatological analysis of brain tumours was done according to 
WHO 2007 rules [Louis at al. 2007]. There were 285 males (49.5%) and 292 (50.5%) females. 
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Fig. 4. Number of patients in the different age groups. Men – black bars, women – white 
bars. 
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The biggest group included patients of 41-70 years old. The highest ratio of patients at the 
time of diagnosis showed a group aged 51-60 years. The median age of patients at the time 
of diagnosis was 53.4±13.2 years (Fig. 4). 
To correlate human brain tumours malignancy established with pathomorphological 
analysis with global DNA methylation, we have analyzed the genomic m5C content in DNA 
from human brain tissues of different gliomas. (Fig. 5, Table 1). 
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0,5
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Fig. 5. 5-methylcytosine contents in DNA from patients with brain tumors. 

Human tumours often display genome-wide DNA hypomethylation, which promotes 
cancer through the effect on chromosomal stability [Gaudet et al. 2003; Eden 2003; Yamada 
et al. 2005; Nishiyama et al. 2005]. 
One can see that m5C content in different human brain tumours varies very much (Fig. 5, 
Table 1). It is known that hydroxylation of m5C promotes active DNA demethylation in the 
adult brain [Guo et al. 2011]. Analysis patients’ groups with high grade glioma shows that 
m5C content (R) decrease as malignancy increases (Fig. 6). The most abundant are gliomas 
astrocytomas, oligodendrogliomas or tumours with morphological features of both 
astrocytes and oligodendrocytas called oligoastrocytomas (Table 1). The histological 
classification is followed by grading (from I to IV) which expresses the tumour malignancy 
with IV being the most malignant. Astrocytic tumours are subsequently graded with I 
(pilocytic astrocytoma), II e.g. diffuse astrocytoma, III (anaplastic astrocytoma) and IV 
(glioblastoma multiforme). Oligodendrogliomas and astrocytomas are graded furthermore 
as with grade II or III (anaplastic). The highest DNA demethylation is observed for 
glioblastoma multiforme (Fig. 6). 
These results are in agreement with previous observations done for a smaller group of 
patients [Zukiel 2004]. Importantly these data are supported by others, showed that primary 
glioblastoma and established glioma cell lines show significant reduction of m5C content 
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compared with normal brain tissue [Cadieux et al. 2006]. Furthermore one can see that 
grade III shows R in the range 1 - 1.2, but for WHO IV R coefficient is below 0.5 (Fig. 6). This 
is the lowest level of DNA methylation observed ever, not only for high grade gliomas. 
Because the correlation of m5C content (R) and WHO grade is linear (Fig. 6), therefore R can 
be used as a probe of tumorgenesis. One can clearly see that the global DNA methylation 
analysis easily differentiate low and high grade tumours as well as metastatic (Fig. 7). 
Different relations occur for meningeomas (Fig. 8, Table 2).  
 

 

Table 1. The list of human brain tumours of neuroepithelial origin (total number 297) 
identified in patients. For each of them malignancy and m5C content [R] were established. 

www.intechopen.com



 
Brain Tumors - Current and Emerging Therapeutic Strategies 

 

46

 

Fig. 6. The mean values (p< 0.0002-0.0003) of global DNA (m5C) methylation expressed as  R 
for different human gliomas with different malignancy grades (I-IV). See Table 1.  

 

 

Fig. 7. The mean values (p<0,0002 – 0.0003) of m5C in DNA for gliomas (A-I – AIV), 
meningeomas (M-I – M-III) and metastasis (L-from lung, M-from melanoma skin cancer).  
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Fig. 8. The mean value of DNA methylation (m5C) for different meningiomas. 1 – 
meningotheliale meningioma I; 2 – angiomatosum meningioma I; 3 – fibrosum  meningioma 
I; 4 – psammomatous meningioma I; 5 – transitional meningioma II; 6 – atypical 
meningioma  II; 7 –anaplastic meningioma  III; 8 – haemangioblastoma I; 9 – haemangioma  
I; 10 – haemangiopericytoma III. 

 

 

Table 2. The list of meningioma and their malignancies identified in patients as well as the 
amount of m5C determined. 
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Fig. 9. R values for DNA isolated from tissues of different diseases. 
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The DNA methylation in meningiomas is on very similar level. The R value is between 0.86 

and 1.59. It means that red-ox processes in these tumour cells are not so intensive. 

If so, one can ask whether genomic methylation level can be a good diagnostic marker for 

the early tumour detection in the clinical practice [Hatada et al. 2006]. We have found that 

the extent of DNA demethylation process is different and specific for various diseases (Fig. 

9). The lowest level of DNA methylation is observed for very aggressive tumours like 

glioblastoma and anaplastic astrocytoma. On the other hand methylation of DNA in 

colorectal cancer or pilocytic astrocytoma is higher. One can also see different m5C content 

in DNA from blood of patients with other diseases. It means that the global methylation 

analysis can be used as diagnostic tool [Widschwendter and Jones 2002; Lavon et al. 2010] 
This method of nucleic acid compounds analysis can be also used as a quality control test of 
DNA. Currently for DNA isolation from different tissues, various isolation kits are used. 
Usually such material is good for cloning and enzymatic analysis However for molecular 
characteristic DNA should be RNA free. A contamination with RNA can be easily 
established with our method. 
Mechanisms of regulation of DNA methylation are an important question, which has 
elicited much attention over the past decade. Recently many ideas have been proposed for 
mechanism of DNA demethylation. In addition to that, we have proposed a genomic one 
effected with hydroxyl radical oxidative damage. It turned out that the global methylation 
level of DNA provides information on grade cancer and progress of a disease. 

4. Acknowledgements 

This work was supported with the research grant from Ministry of Science and 

Informatization (MNII) Nr N N401 066338 (to M.B.) and N N403 219637 (to S.N.) 

5. References 

Barciszewska A-M, Murawa D, Gawronska I, Murawa P, Barciszewska MZ (2007) 

Analysis of 5-methylcytosine  in DNA of breast and colon cancer tissues. IUBMB 

Life 59:1-6 

Barciszewska A-M, Nowak S, Żukiel R i in (2006) Wpływ przechowywania tkanki 

nowotworowej na zawartość 5-metylocytozyny w DNA guzów mózgu. Neuroskop 

8:160-162 (Poland) 

Bart A, van Passel MW, van Amsterdam K, van der Ende A (2005) Direct detection of 

methylation in genomic DNA. Nucleic Acids Res 33:e124 

Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity 

goes awry. Dev Cell 19:698-711 

Blow N (2007) Tissue issues. Nature 448: 959-962 

Cadieux B, Ching TT, VadenBerg SR et al (2006) Genome-wide hypomethylation in human 

glioblastomas associated with specific copy number alteration, 

methylenetetrahydrofolate reductase allele status, and increased proliferation. 

Cancer Res 66:8469-8476 

Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors 

promoted by DNA hypomethylation. Science 300:455 

www.intechopen.com



 
Brain Tumors - Current and Emerging Therapeutic Strategies 

 

50

Essick EE, Sam F (2010) Oxidative stress and autophagy in cardiac disease, neurological 

disorders, aging and cancer. Oxid Med Cell Longev 3:168-177 

Farragher SM, Tanney A, Kennedy RD, Harkin DP (2008) RNA expression analysis from 

formalin fixed paraffin embedded tissues. Histochem Cell Biol 130:435-445 

Fraga MF, Uriol E, Borja Diego L, Berdasco M, Esteller M, Cañal MJ, Rodríguez R (2002) 

High-performance capillary electrophoretic method for the quantification of 5-

methyl 2'-deoxycytidine in genomic DNA: application to plant, animal and human 

cancer tissues. Electrophoresis 23:1677-1681 

Frigola J, Sole X, Paz MF, Moreno V, Esteller M, Capella G, Peinado MA (2005) Differential 

DNA hypermethylation and hypomethylation signatures in colorectal cancer. 

Human Molecular Genetics 14:319-326 

Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, 

Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. 

Science 300:489-492 

Grek CL, Tew KD (2010) Redox metabolism and malignancy. Curr Opin Pharmacol 10:362-

368 

Guo JU, Su Y, Zhong Ch, Guo-li Ming G, Song H (2011) Hydroxylation of 5-

methylcytosine by TET1 promotes active DNA demethylation in the adult 

brain. Cell 145:1-12 

Hatada I, Fukasawa M, Kimura M, Morita S, Yamada K, Yoshikawa T, Yamanaka S, Endo C, 

Sakurada A, Sato M, Kondo T, Horii A, Ushijima T, Sasaki H (2006) Genome-wide 

profiling of promoter methylation in human. Oncogene 25:3059-3064 

Johnstone SE, Baylin SB (2010) Stress and the epigenetic landscape: a link to the 

pathobiology of human diseases? Nat Rev Genet 11:806-812 

Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. 

Toxicology 283:65-87 

Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43-

50 

Klug M, Heinz S, Gebhard C, Schwarzfischer L, Krause SW, Andreesen R, Rehli M (2010) 

Active DNA demethylation in human postmitotic cells correlates with activating 

histone modifications, but not transcription levels. Genome Biol 11:R63 

Lavon I, Refael M, Zelikovitch B, Shalom E, Siegal T (2010) Serum DNA can define tumor-

specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol 

12:173-180  

Li M, Hu S, Shen Z, He X, Tao S, Dong L, Zhu Y (2009) High-performance capillary 

electrophoretic method for the quantification of global DNA methylation: 

Application to methotrexate-resistant cells. Anal Biochem 387:71-75 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, 

Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous 

system. Acta Neuropathol 114:97-109 

Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA 

(2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 

15:1311-1333 

www.intechopen.com



Molecular Diagnostics of Brain Tumours 
by Measuring the 5-Methylcytosine Level in Their DNA 

 

51 

Martinez R, Esteller M (2010) The DNA methylome of glioblastoma multiforme. Neurobiol 

Dis 39:40-46 

Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, 

Schackert G, Esteller M (2009) A microarray-based DNA methylation study of 

glioblastoma multiforme. Epigenetics 4:255-264 

Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA 

from human nucleated cells. Nucleic Acids Res. 16:1215 

Nishiyama R, Qi L, Tsumagari K, Weissbecker K, Dubeau L, Champagne M, Sikka S, Nagai 

H, Ehrlich M (2005) A DNA repeat, NBL2, is hypermethylated in some cancers but 

hypomethylated in others. Cancer Biol Ther 4:440-448 

Pelizzola M, Ecker JR (2010) The DNA methylome. FEBS Lett. 2010 Nov 5. [Epub ahead of 

print 

Rao AV, Balachandran B (2002) Role of oxidative stress and antioxidants in 

neurodegenerative diseases. Nutr Neurosci 5:291-309 

Reale A, Matteis GD, Galleazzi G, Zampieri M, Caiafa P (2005) Modulation of DNMT1 

activity by ADP-ribose polymers. Oncogene 24:13-19 

Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597-610 

Sánchez-Navarro I, Gámez-Pozo A, González-Barón M, Pinto-Marín A, Hardisson D, López 

R, Madero R, Cejas P, Mendiola M, Espinosa E, Vara JA (2010) Comparison of gene 

expression profiling by reverse transcription quantitative PCR between fresh frozen 

and formalin-fixed, paraffin-embedded breast cancer tissues. Biotechniques 48:389-

397 

Sciumè G, Santoni A, Bernardini G (2010) Chemokines and glioma: invasion and more. J 

Neuroimmunol 224:8-12 

Soh Y, Shin MH, Lee JS, Jang JH, Kim OH, Kang H, Surh YJ (2003) Oxidative DNA 

damage and glioma cell death induced by tetrahydropapaveroline. Mutat Res 

544:129-142 

Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B (2002) Oxidative 

demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 

419:174-178 

Tudek B, Winczura A, Janik J, Siomek A, Foksinski M, Oliński R (2010) Involvement of 

oxidatively damaged DNA and repair in cancer development and aging. Am J 

Transl Res 2:254-284 

Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA 

methylation. Hum Mol Genet 14:R139-147 

Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 

21:5462-5482 

Widschwendter M, Jones PA (2002) The potential prognostic, predictive, and therapeutic 

values of DNA methylation in cancer. Clin Cancer Res 8:17-21 

Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol 

Cell Biol 11:607-620 

Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, Jaenisch R (2005) 

Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. 

Proc Natl Acad Sci USA 102:13580-13585 

www.intechopen.com



 
Brain Tumors - Current and Emerging Therapeutic Strategies 

 

52

Zukiel R, Nowak S, Barciszewska A-M, Gawrońska I, Keith G, Barciszewska MZ (2004) A 

simple epigenetic method for the diagnosis and classification of brain tumors. Mol 

Can Res 2:196-202 

www.intechopen.com



Brain Tumors - Current and Emerging Therapeutic Strategies

Edited by Dr. Ana Lucia Abujamra

ISBN 978-953-307-588-4

Hard cover, 422 pages

Publisher InTech

Published online 23, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Brain Tumors: Current and Emerging Therapeutic Strategies focuses on tumor models, the molecular

mechanisms involved in the pathogenesis of this disease, and on the new diagnostic and treatment strategies

utilized to stage and treat this malignancy. A special section on immunotherapy and gene therapy provides the

most up-to-date information on the pre-clinical and clinical advances of this therapeutic venue. Each chapter in

Brain Tumors: Current and Emerging Therapeutic Strategies is authored by international experts with

extensive experience in the areas covered.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Anna-Maria Barciszewska, Stanisław Nowak, Iwona Gawron ́ska and Mirosława Barciszewska (2011).

Molecular Diagnostics of Brain Tumours by Measuring the 5-Methylcytosine Level in Their DNA, Brain Tumors

- Current and Emerging Therapeutic Strategies, Dr. Ana Lucia Abujamra (Ed.), ISBN: 978-953-307-588-4,

InTech, Available from: http://www.intechopen.com/books/brain-tumors-current-and-emerging-therapeutic-

strategies/molecular-diagnostics-of-brain-tumours-by-measuring-the-5-methylcytosine-level-in-their-dna



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


