We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

9

Advantages and New Applications of DHT-Based
Discovery Services in EPCglobal Network

Juan Pedro Mufioz-Gea, Pilar Manzanares-Lopez and

Josemaria Malgosa-Sanahuja

Department of Information Technologies and Communications
Polytechnic University of Cartagena

Spain

1. Introduction

Radio Frequency IDentification (RFID) technology can track the movement of products
throughout an entire supply network by giving a Globally Unique Product Identifier (GUPI)
(Framling et al., 2007) to every product. The identification is used to connect the physical
object to an information service run by a host on the Internet. It is there that all the information
associated to that physical object is stored. Nowadays, several approaches are used to
implement this connection, such as the EPCglobal Network (Armenio et al., 2009) developed
by the Auto-ID consortium, the DIALOG system (Framling et al., 2006) developed at the
Helsinki University of Technology and the World Wide Article Information (WWATI) sys’cem1
proposed by Trackway. The EPCglobal Network stands out among the rest because in 2003
it was authorized as a Global Standards I (GS1). The GS1 system of standards is the most
widely-used supply-network standards system in the world, the traditional barcode being its
most widely used standard.

1.1 Product identifier proposals

The DIALOG system was developed at the Helsinki University of Technology. In this
approach an ID@QURI notation is used to create a GUPI, where the ID part identifies the
product item located at the URIL. If the URI is an URL, it is a straightforward task to link it
to an information service. For an ID@URI to be a GUPI, the ID part should be unique for the
corresponding URI. In the DIALOG system every product is implemented as a software agent
(Nwana, 1996), and the information of each of them is accessed and updated through methods
in the product agent interface (Framling et al., 2006). These interface methods are as follows:
update() and getProductInformation(), which are used to append and retrieve information,
respectively, and getCompositeInformation(), which relates to managing component hierarchies.
The World Wide Article Information (WWAI) protocol developed by Trackway (formerly
known as Stockway) is based on P2P principles. The manufacturers form a network of
nodes which are identified by company numbers. When a node has joined the network,
it can autonomously issue identifiers for individual products, the product GUPI consisting
of a concatenation of the company prefix and item-specific suffix. The service provided by

Lhttp:/ /www.trackway.eu

www.intechopen.com

132 Designing and Deploying RFID Applications

Electronic Product Code (96—bit Version)

02 . 0000A79 . 00013D . 000154ECD

Header General Manager Object Class Serial Number

Number

8 bits 28 bits 24 bits 36 bits

Fig. 1. EPC tag data structure.

the WWALI network is the mapping of the WWAI identifiers to the URL of the information
provider, using a DHT (Distributed Hash Table). A lookup is only needed when a product
identifier for a given company is seen for the first time. After that, URLs of known nodes are
cached so that new node lookups do not need to be performed unless the cached address fails
or changes for some reason.

The common characteristic of the two previous architectures is that all the data related
to a specific product is available in only one information service. This means that every
organization with information about a specific product has to publish it in the corresponding
information service and then, the queries have to be addressed to a specific information
service depending on the specific GUPIL. On the other hand, one of the fundamental design
principles for the EPCglobal Network is that each company retains control over the data
that they collect or generate within their own organization, i.e. information about a specific
product is decentralized across multiple organizations.

The EPC? serves the role of a GUPI in the EPCglobal Network. There are two different lengths
of EPC tag data that have been ratified by the EPCglobal board: 64 bits and 96 bits. Figure 1
shows the EPC tag data structure of one 96-bit version: Header identifies the version of EPC
itself; General Manager Number identifies an organization that maintains the numbers in the
field of Object Class and Serial Number; Object Class refers to a unique type of products
produced by an EPC general manager; Serial Number uniquely identifies each item within
an object class. The EPC serial number allows individual items tracking, which is the key
feature and advantage that distinguish EPC from a bar code standard. This feature enables
RFID technology to capture the information about the movement of individual products in
supply networks. Next section explains the rest of components of the EPCglobal Network
architecture in more depth.

1.2 EPCglobal Network

One of the fundamental design principles for the EPCglobal Network is that each company
should be able to keep control of the data that they collect or generate about a specific product
within their own organization, i.e. information is decentralized across multiple organizations.
With a suitable service-oriented architecture the EPC can be used both to locate a source
of information, via lookup services, as well as for extracting relevant information about a
particular product from each source, by using the EPC as a lookup key within a database.
The EPCglobal Network architecture includes specifications that deal with the collection of
captured data and their distribution across organizations. However, the initial standards
development has focused more on the EPCglobal Network’s lower levels than on data
exchange across supply networks. Figure 2 represents the EPCglobal Network architecture
framework.

2 http:/ /www.epcglobalinc.org /standards/tds/tds_1_4-standard-20080611.pdf

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 133

‘ External Application ‘

Look R Object Name Discovery
ookup Services Services (ONS) Services (DS)

T

EPC Information Service
(EPCIS)

T

Application Level
Events (ALE)

RFID

‘ Filter & Collection ‘
Middleware

‘ Reader Protocol (RP) ‘

‘ RFID Reader H Reader Management (RM) H Reader Manager

/A

Fig. 2. EPCglobal Network Architecture.

The reader protocol (RP) is an API that abstracts from the underlying RFID hardware readers.
RP is complemented by the reader management (RM) protocol, which facilitates the naming
of readers and locations. In this context, it is necessary to take into account the fact that
the enormous quantity of data generated by even a few readers can easily result in an
unacceptable load. For this reason, an additional middleware layer is needed that filters
the data collected from readers. In the EPCglobal Network, this task is supported by the
application-level events (ALE) interface. ALE allows for the conversion of a series of tag reads
into a single event message with a time interval attribute. In addition, the ALE standard also
supports the declaration of logical readers that collect the data streams from multiple physical
readers.

RFID readers are distributed across factories, warehouses and stores. In this context, EPCIS
provide a repository of historical events and related information, and they are fed by an EPCIS
capturing application, such as a management system connected to an ALE middleware. To
find EPC-related information, business applications use the Object Name Service (ONS) to
provide an EPCIS URL when queried with a tag’s EPC. The granularity of ONS resolution is
currently limited to product type, i.e. an ONS is not expected to retain distinct records for two
objects of the same product type. Another point to note is that ONS is currently implemented
using the Domain Name System (DNS) (Mockapetris, 1987), using Type 35 Naming Authority
Pointer (NAPTR) (Mealling & Daniel, 2000) records to return the information. Queries to
ONS are therefore performed by means of a DNS query for a hostname derived from an EPC.
However, the ONS is allowed only to point to the manufacturer’s EPCIS repository. For this
reason, the EPCglobal Network is being extended to include Discovery Services (DS)3. These

3 http:/ /www.epcglobalinc.org/standards/discovery

www.intechopen.com

134 Designing and Deploying RFID Applications

services will allow applications to find third parties” EPCIS repositories with events related
to a specific EPC. A critical component of the DS is the data storage component, which stores
information about the list of EPCIS instances that have information about a particular EPC.
There currently exist several options to implement this component, although two in particular
are worthy of note, LDAP (Lightweight Directory Access Protocol) and DHT (Distributed
Hash Table).

2. Distributed Hash Tables (DHT)

DHTs are decentralized distributed systems that distribute the management of a key table
between the participating nodes. Each node maintains a routing table with a list of its
neighbors, so that it can route messages to the unique owner of a given key. DHT is designed
to scale to a large number of nodes and is prepared to deal with continuous node arrivals and
failures by constructing a structured P2P (peer-to-peer) network.

There currently exist several structured P2P overlay network proposals such as Chord (Stoica
et al., 2003), Pastry (Rowstron & Druschel, 2001), Tapestry (Zhao et al., 2004) and Kademlia
(Maymounkov & Maziéres, 2002). The difference among them is the way in which nodes
are organized in the overlay network. In Chord, nodes are organized in a ring. However,
in Pastry, Tapestry and Kademlia nodes are organized in a tree structure (Balakrishnan et al.,
2003).

As an example, we are going to present an overview of the Pastry operation. The node
identifiers and the routing procedure in Pastry depend on the base used to represent both
node and key identifiers. For example, if a hexadecimal base is used and the system requires
five digits to represent the full node space, an example of a node identifier could be 65A1F.
Each node maintains a routing table formed by as many rows as digits needed to represent the
full node space and as many columns as possible digit values (in our example each routing
table is formed by 5 rows and 16 columns). Row 0 maintains the IP addresses corresponding to
nodes without a common prefix with the local node identifier. Row 1 contains the IP addresses
corresponding to nodes with a 1 digit-long prefix common to the local node identifier, and so
on. As we have seen, a row is formed by some columns. The i-th column of a row stores, if
it exists, the IP address of a node whose identifier is determined by the associated row prefix
followed by the i digit. Please note that there could be more than one node that satisfies the
requirements of an entry. If so, the Pastry implementation will use some predefined criterion
to select an entry (for example, the node with lowest physical delay). In our example, row 0
stores the IP addresses of nodes without a common prefix with 65A1F: The first entry at row
0 stores the IP address of a node whose identifier is 0**** (if it exists), the second entry stores
the IP address of anode whose identifier is 1**** (if it exists), and so on. Row 1 stores the IP
addresses of a maximum of 16 nodes, with one digit-length common prefix: the first entry
stores the IP address of a node whose identifier is 60*** (if it exists), the second entry stores
the IP address of a node whose identifier is 61***, and so on. It must be emphasized that if the
local node does not know of a suitable node to fill a concrete entry in the routing table, that
entry is left empty.

A requester node elects from its routing table the node matching the longest prefix with the
key. The lookup message is sent to that node, and then it repeats the same algorithm until the
searched node is found. During this process, a required entry in the routing table might be
empty. In this case, the node uses the closest numerical non-empty entry. The routing table
definition assures the convergence of the lookup algorithm. In our example, if the 65A1F node
is searching for the key 654B2, the longest common prefix in the routing table is 654** (that is

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 135

insert(key,value)

DHT Application DHT Application

msg=[PUT,value,g store(key,value)

~
=)
~
1 E
| @
=
3
&
a

forward(key,msg,NH)

route(key,msg,NULL)
forward(key,msg,NH) deliver (key,msg;

Structured P2P Node Structured P2P Node Structured P2P Node Structured P2P Node

Fig. 3. insert() operation.

to say, the entry associated to row 2 and column 5). The local node uses the IP address stored
in this entry (or the numerically closest node if the entry is empty) to forward the lookup
message.

In general, structured P2P networks offer a routing service to send a message, with an
associated key, to a single node, responsible for that key. For this reason, this service is called
Key-Based Routing (KBR). There exists a common API (Dabek et al., 2003) with the ability
needed to interact with the KBR service offered by any structured P2P network. These are
as follows: wvoid route(key k, msg m), which forwards a message, m, towards the responsible
key node k (it is implemented in the structured P2P network layer); void forward(key k, msg m,
nodehandle nexthopnode), which is invoked from the structured P2P network layer of each node
that forwards message m during its routing (this function is implemented in the application
layer); void deliver(key k, msg m), which is invoked from the structured P2P network layer of
the node that is responsible for key k upon the arrival of message m (this function is also
implemented in the application layer).

Over the previous interface (in the application layer), the services offered by a DHT
application can be implemented. The DHT abstraction provides the same functionality as a
traditional hash table, by storing the mapping between a key and a value. That is, it implements
a simple store and retrieve functionality, where the value is always stored at the overlay node
to which the key is mapped by the KBR layer. This application provides two operations:
insert(key, value), and value = lookup(key). A simple implementation of insert() routes a PUT
message containing value and the local node?s nodehandle (S), using route(key, [PUT,value,S],
NULL). The node responsible of that key, upon receiving the message, stores the (key, value)
pair in its local storage. On the other hand, the lookup operation routes a GET message using
route(key, [GET,S], NULL) to the node responsible of that key, and it returns the associated value
in a single hop using route(NULL, [value], S). The single hop routing option uses the nodehandle
of the source node (S) to send the message directly to that node, without hoping along other
nodes in the network. Figures 3 and 4 represent the insert() and lookup() operation.

There exist several free software implementations of structured P2P networks, like Chimera
(a C implementation of Tapestry), the Chord project® (a C implementation of Chord) and
FreePastry® (a Java implementation of Pastry). From among these FreePastry has been
selected because it is implemented in Java and because it is an active project in development
at the MPI-MPG, although it initially started at Rice University in USA.

4

4 http:/ /current.cs.ucsb.edu/projects/chimera
5 http:/ /pdos.csail. mit.edu/chord

6 http:/ /www.freepastry.org/FreePastry /

7 http:/ /www.mpi-inf.mpg.de

www.intechopen.com

136 Designing and Deploying RFID Applications

lookup(key) J T value

DHT Application DHT Application
meg=[GETS value=retrieve(key)
msg=[value]
route(key,msg,NULL) deliver(NULL,msg) route(NULL,msg,S)
KBR interface forward(key,msg,NH) forward(key,msg,NH) deliver (key,msg)

Structured P2P Node Structured P2P Node Structured P2P Node Structured P2P Node

T

Fig. 4. lookup() operation.

3. Advantages of DHT-based discovery services

Recently, there have been several proposals for the implementation of the DS, like the DS
prototype of the Bridge project®, or the Extensible Supply-chain Discovery Service (ESDS)
developed by Afilias (Young, 2008). In both the DS has been implemented as a centralized
database, to be more specific in the Bridge Project it has been developed as a centralized
database based on LDAP (Lightweight Directory Access Protocol) (Zeilenga, 2006). In this
work, we are going to develop a DS prototype based on DHT.

LDAP is a networking protocol for querying and modifying directory services running over
TCP/IP. In this context, a directory is a set of information with similar attributes organized in a
hierarchical manner. LDAP could be thought of as type of database, different from a relational
database. Databases are usually designed to perform many changes to their data whereas
LDAP directories are optimized to read performance, as such, it is particularly useful for
storing information that needs to read from many locations. On the other hand, LDAP permits
secure delegation of reading and modification authority based on specific needs using ACLs
(Access Control Lists); although this is not part of the LDAP protocol, many implementations
offer this feature. The integration of the DS records into the data structure of the LDAP is based
on the decomposition of the EPC tag into the LDAP tree. That is, fields such as Company
Prefix, Item Reference or Serial Number can be used to distribute the EPC among the tree
structure. In addition, security can be integrated with the fine grained access control policies
of the LDAP implementation and can be used to limit the access to a particular record.

On the other hand, one of the characteristics of the DHT model is its decentralization, meaning
that there is no central coordinator in the nodes. For this reason, the failure of a node never
compromises the whole system. Another advantage is that nodes are organized in a way
that a node only needs to coordinate with a few other nodes in the system (usually log N,
with N participants). Therefore, if a node joins or leaves the system, this does not affect the
whole system. These features provide the system with high scalability and fault tolerance.
The integration of DS records into the data structure of the DHT is based on the use of a SHA1
hash of the EPC as the key for the hash table. However, in these systems, security options like
authentication or fine grained access control have to be implemented.

As a conclusion, DHTs might be said to have several advantages over LDAP: in LDAP there
is a bottleneck in the root of the architecture, whereas in the DHT the failure of one node
does not affect the whole system; LDAP is not optimized for massive update operations,
while DHTs are optimized for massive search and update operations. On the other hand,

8 http:/ /www.bridge-project.eu

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 137

QUERY APPLICATION

[soar]

DISCOVERY SERVICES (DS)

[soar]
Query Itf.

PUBLISH/QUERY RMI/SSL
INTERFACE

Publish Itf.

[s0ap]

DHT APPLICATION

EPCIS — DS INTERFACE

[soar]

EPCIS
(Fosstrak)

(TP |

[rre]

CAPTURE APPLICATION
(Fosstrak)

Fig. 5. Discovery Services architecture.

DHTs have an important drawback with respect to LDAP: while in LDAP the access control
is already implemented by Access Control Lists (ACLs) in DHT fine grained controls have to
be implemented.

4. DHT-based discovery services prototype

The objective of the designed DS is to return a time-ordered list of links to multiple ECPIS
instances which hold information related to a specific EPC. Therefore, the DS is designed to
create this list of links. The architecture of the full prototype has been divided into a set of
logical components represented in Figure 5.

4.1 Discovery services
The DS implementation is composed by two components: the DHT application and the
Publish/Query interface.

4.1.1 DHT application

The public methods (insert() and lookup()) of every DHT node in our implementation can be
accessed by a remote application using Java RMI’, which is a Java API which performs the
object-oriented equivalent of remote procedure calls (RPC). The prototype of the previous
methods is as follows: public Boolean insert(MessageDigest key, String url) and public String[]
lookup(MessageDigest key). The insert method has two parameters: String url represents the
URL of the EPCIS query interface with information about a specific EPC; MessageDigest key
represents the SHA1 hash (Eastlake & Jones, 2001) of the related EPC. This method returns a
Boolean which indicates if the insert operation has been properly finished. On the other hand,

9 http:/ /java.sun.com /javase/technologies / core /basic /rmi/index.jsp

www.intechopen.com

138 Designing and Deploying RFID Applications

the lookup method has a single parameter: the SHA1 hash of an EPC, and it returns an array
with all the associated URLs.

The insert() method of the DHT node creates a content object with the key, the URL and
the its own nodehandle. After that, it inserts the previous content in a message with the
following fields: the identifier of the origin node, the identifier of the destination node
(which corresponds with the key of the message), the message type (for an INSERT message
corresponds type 0) and the previously created content. Once the message has been created,
the insert method calls the route() function with the previously created message.

The previous message is routed to the node responsible of the message’s key. Then the
FreePastry software will call the deliver() implementation of our application. This method
extracts the type of the message, and if it is an INSERT message it extracts the key (the
SHA1 hash of the EPC) and the URL and it inserts both of them in a MySQL!? database.
The communication between our Java application and the database is possible thanks to the
JDBC! driver. Our database only has one table, with two columns: one for the key (SHA1
hash of the EPC) and the other for the URL. Multiple insertions of the same key, each one of
them with a different URL, are allowed. By this way, the database stores the different URLs
of the EPCISs with information about a specific EPC. The operation of the lookup() method
is equivalent to the insert() operation, but in this case the destination node extracts from the
database all the URLs associated to the key of a specific EPC.

4.1.2 Publish/query interface

This interface has been implemented as a Web Service'~ using two methods available thorugh
SOAP'3 operations: publish() and query(), and it has been deployed in a Glassfish application
server!®. There are currently several frameworks to program Java Web Services, but the two
most important are Apache Axis2!® and Sun JAX-WS!®. The Java API for XML based Web
Services (JAX-WS) is the successor of the JAX-RPC specification. Its configuration is managed
by annotations!’, therefore Java 5 or higher is required. With JAX-WS it is relatively easy to
write and consume web services. The default values of numerous parameters are comfortable
from the point of view of the programmer and simple methods declared with a @WebService
annotation can be used as a service. A suitable WSDL document can also be generated from
the class.

The publish() method of the web service implementation has two parameters: the SHA1 hash
of the EPC and the URL where the information related to the EPC is available. The web service
has previously been configured with the URL where the RMI stubs of all the DHT nodes are
available. Therefore, the web service selects one of the DHT nodes of the network, it obtains
its RMI stub and, after that, it calls the insert() method of the DHT application. After calling
the insert() method, the web service receives if the insert operation has been performed in a
correct way or not. Therefore, this interface is only a proxy between the EPCIS repository of
the query application and the DHT nodes.

12

10 http:/ /www.mysql.com

1 http:/ /dev.mysqgl.com/downloads/connector/j/5.1.html

12 http: / /www.w3.org /standards/ webofservices /

13 http:/ /www.w3.org/TR/soap/

14 https:/ /glassfish.dev.java.net/

15 http:/ /ws.apache.org/axis2/

16 https:/ /jax-ws.devjava.net/

17 http:/ /java.sun.com /j2se/1.5.0/docs/guide/language /annotations.html

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 139

The query() method is similar to that previously mentioned, but in this case it only accepts
one parameter: the SHA1 hash of an EPC. This method selects one of the DHT nodes and it
calls the RMI lookup() method of the DHT application. After that, the web service receives the
URLs associated to all the EPCISs with information about that EPC. All this information will
be returned to the application which called the query() method.

4.2 EPCIS-DS interface

In the first place, we have deployed the Fosstrak EPCIS software!8 in a host with a Glassfish
application server. The Fosstrack EPCIS software is a complete implementation of the EPCIS
standard specification (Version 1.0.1 of September 21, 2007) and it allows users to deploy an
EPCIS repository. In addition, Fosstrak developers also provide an interactive EPCIS capture
application which allows users to fill the EPCIS repository with EPC data using a graphical
user interface. In our prototype, we have used this graphical tool to insert events into the
EPCIS Repository.

The current EPCIS standard does not include a specific communication mechanism between
an EPCIS and a Discovery Service. For this reason, we have developed a module to be
integrated into the Fosstrak software. Its goal is to send the association between an EPC, with
information registered in that EPCIS repository, and the URL to query that information to the
DS, but only once. That is, it is possible that the EPCIS registers several events associated to
the same EPC because it is possible that it has several associated RFID readers. Therefore, our
module has to assure the DS stores only one association between that EPC and the public URL
of the EPCIS. We have studied the EPCIS software implementation and we have detected that
it has two independent modules: the EPCIS capture interface and the repository, implemented
in a MySQL database. The communication among them is by means of the TCP protocol, and
the SQL queries are sent to the 3306 TCP port of the localhost. SQL queries are sent in plain
text; therefore, we decided to develop a traffic sniffer to detect the SQL queries sent to the
MySQL database.

The sniffer module has been developed in Java language, using the jNetPcap!'® software
development kit. The basic function of jNetPcap is to provide a java wrapper to popular
libpcap library?® for capturing network packets. Our module captures the packets in the
loopback interface, because the TCP communication between the EPCIS capture interface
and the MySQL database is in the localhost. But it does not capture all the traffic; we have
implemented a filter in order to detect the SQL queries with EPCs. After the filter detects one
of these SQL queries in a specific packet it will be redirected to a special method to process
it. This method inspects the full SQL query to obtain the associated EPC. After detecting the
EPC, our program checks if the detected EPC has been observed previously. In the case that
it has not been detected, that is, it is the first time that information associated to that EPC is
registered in the EPCIS repository, the program calls the publish() method of the publish/query
web service interface.

4.3 Query application
This application allows a user to make real queries to the DS deployed. It accepts an EPC
number and returns necessary information to reconstruct the supply network. In order to do

18 http:/ /www.fosstrak.org
19 http:/ /jnetpcap.com
20 http:/ /www.tcpdump.org

www.intechopen.com

140 Designing and Deploying RFID Applications

#1 [ini]

Fig. 6. A product structure.

that, the application implements a web service client which interacts with the guery() method
of the publish/query web service interface.

The last step in the supply network reconstruction process is the graphic representation of the
received data, so that the information can be easily understood and interpreted by the final
user. This functionality has to be added to the query application. It will depends on the final
application developed using the DHT-based Discovery Service Architecture.

5. New Applications of DHT-based discovery services

5.1 Automatic traceability

5.1.1 Introduction

Suppliers, manufacturers, distributors and retailers are typically interconnected within
networks and it is for this reason that the relationships among them are represented as
supply networks (Wareham et al.,, 2005),(Phillips et al., 2006),(Poulin et al., 2006),(Li &
Chandra, 2007). In this respect, supply chains are special types of supply networks in which
organizations are organized in linear chains. However, many organizations do not have
sufficient information about the full supply networks in which they are involved, for example,
they do not know who supplies their suppliers because they are not directly connected to
them. This information would be very useful in planning strategies or in assuring product
quality. For example, in order to solve some problems of delayed shipments from suppliers,
the organization might need to analyze its full supply network to identify which supplier is
most to blame for the delay. Unfortunately however, many organizations do not have access
to this information.

In this work, we propose a mechanism for automatically obtaining the supply network
associated to a specific product using the EPCglobal Network. In (Bi & Lin, 2009) the authors
proposed a methodology with the same objective but the main difference with the proposal set
out in this article is that in (Bi & Lin, 2009) the client has to do all the operations to reconstruct
the supply network. That is, initially, it has to obtain the URLs (Uniform Resource Locator)
of the information services with information about a specific product, then it has to access
the corresponding information services to get the necessary information, and after that it can
reconstruct the full supply network. However, in our proposal the client does not have to
perform any operations, that is, it queries the supply network associated to a specific product
and the results are obtained directly.

A concrete example (extracted from (Bi & Lin, 2009)) is used to demonstrate how a supply
network can be mapped using our methodology. Suppose that a retailer A sells a product that
is assembled by a manufacturer B. Every product item and each of its components are given
an EPC tag. The structure of the product with five EPC tags is shown in Figure 6. Note that
component #2 is a sub-assembly that consists of two smaller components.

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 141

#2) #2 (#1)
#4 10days 4o 7 days #2 7 days #1
(#4) c 1 day o E 2 days - F 2 days . B 2 days oA
12 days
(#3) #3 (#5) ﬁS Legend:
1 day D 1 day 7 days G 3 days (): EPC is assigned

Fig. 7. Supply network associated to EPC #1.

After receiving a several requests to repair component #4, retailer A decides to map its supply
network for this product in order to redirect the requests for repairs to the company that
produces component #4. Retailer A is also interested in calculating the amount of time taken
for products to flow between entities in this supply network. The full supply network that
retailer A wants to reconstruct is represented in Figure 7.

Now, the necessary information to reconstruct the previous supply network needs to be
deduced. Firstly, we concentrate on the events that assign an EPC to a new product (ASSIGN
events, they are represent by () in the figure). These events can be divided in two different
sub-types. The first of which corresponds to the assignment of EPCs #3, #4, and #5 to the
corresponding products. They are not all composed of other products, that is, they do not all
have smaller components. The necessary information to represent the previous events is the
following: #EPC, Company, Event=ASSIGN and Date. On the other hand, the assignment of
EPCs #1 and #2 is different from the previous one, because in this case the new products
are composed of several components with an assigned EPC. In this case, the necessary
information to represent these events is similar to the previous one with the difference that
the identity of the components of the product is added. That is, it will be: #EPC, Company,
Event=ASSIGN, Date and #EPC of Components.

Next, we concentrate on the flow of products. To represent this we need to deduce the amount
of time for the flow of products from one company to another company and the direction of
the flow. The previous information can be deduced if we extract the exact date on which the
product is sent from the company of origin (SHIP event) to a specific destination company, and
the exact date on which the product is received by the destination company (RECEIVE event).
In order to represent the SHIP event we need the following information: #EPC, Company,
Event=SHIP, Date and Destination. On the other hand, to represent the RECEIVE event we
only need: #EPC, Company, Event=RECEIVE and Date. In conclusion, in order to reconstruct
a full supply network we need a time-ordered list of ASSIGN, SHIP and RECEIVE events with
the necessary information to represent them all.

In order to obtain the previous information, it is necessary to send a query to the query
interface of the Foostrak EPCISs with information about a specific EPC, asking for some
information which depends on the event (ASSIGN, SHIP or RECEIVE) which we want to
identify.

For an ASSIGN event without components, it is necessary to ask for the date of an ObjectEvent
with action=ADD associated to a specific EPC. For an ASSIGN event with components, it
is necessary to ask for the date and the childEPCs of an AgregationEvent with action=ADD
associated to a specific EPC. For a SHIP event it is necessary to ask for the date and the
purchase order associated to the business transaction of an ObjectEvent with action=OBSERVE
and businessStep=SHIPPING associated to a specific EPC. In order to guess the destination
company of a SHIP event we are going to use the purchase order associated to the business

www.intechopen.com

142 Designing and Deploying RFID Applications

Event eventType EQ_action 3rd Parameter

ASSIGN ObjectEvent ADD MATCH_epc = urn:epc:id:sgtin:0034000.987650.2686
ASSIGN with comp. | AggregationEvent| ADD | MATCH_parentID = urn:epc:id:sscc:0614141.1234567890
SHIP ObjectEvent OBSERVE EQ_bizStep = urn:epcglobal:cbv:bizstep:shipping

RECEIVE ObjectEvent OBSERVE EQ_bizStep = urn:epcglobal:cbv:bizstep:receiving

Table 1. Parameters to query the ASSIGN, SHIP and RECEIVE events.

transaction. This purchase order includes the identities of the buyer and the supplier, the
product related to the purchase order and the quantity of the ordered product. Finally, for a
RECEIVE event, it is necessary to ask for the date of an ObjectEvent with action=OBSERVE and
businessStep=RECEIVING associated to a specific EPC.

The query interface of the Foostrak EPCISs is provided by means of a web service; therefore,
it is necessary to program a client web service to ask for the previous information.Table 1
represents the parameters to query the previous ASSIGN, SHIP and RECEIVE events.

The poll() method returns an array with the following information: Event, occurred, recorded,
Parent ID, Quantity, EPCs, Action, Business step, Disposition, Readpointld, Business location,
Business transaction. Therefore, we only have to go to the corresponding column to obtain
the necessary information.

5.1.2 Implementation

In this section, we are going to present the integration of a supply networks discovery
mechanism within our DHT-based DS prototype. We have added a new public method to our
DHT application, called supply_network(), which can also be accessed by a remote application
using Java RMI. The prototype of the previous method is the following: public Object[][]
supply_network(MessageDigest key). This method has a single parameter, the SHA1 hash of
an EPC, and it returns a bi-dimensional array of Objects. The Java Object class sits at the top
of the class hierarchy tree in the Java development environment, that is to say, every class in
the Java system is a descendent of the Object class. The bi-dimensional Object array has all
the necessary information to represent the supply network. That is, the columns have these
values: #EPC, Company, Event (ASSIGN, RECEIVE, SHIP), Data, Destination Company (for
SHIP events) and Components (for ASSIGN events with different sub-products). In addition,
every row represents an event (ASSIGN, RECEIVE or SHIP) associated to a specific EPC.

We have also added a new method to the web service publish/query interface called network().
The network() method is similar to the guery() method. It only accepts one parameter: the
SHA-1 hash of an EPC. This method selects one of the DHT nodes and it calls the RMI
supply_network() method of the DHT application. After that, the web service receives the
previous Object bi-dimensional array, with all the necessary information to represent the
supply network. All this information will be returned to the application which called the
network() method.

The supply_network() method of the DHT node creates a content object with the key and
its own nodehandle. After that, it inserts the previous content in a message with the
following fields: the identifier of the origin node, the identifier of the destination node (which
corresponds to the key of the message), the message type (for a SUPPLY_NETWORK message
corresponds to type 4) and the previously created content. Once the message has been created,
the supply_network() method calls the route() function with the previously created message.
The supply_network() method also uses the continuations functionality offered by FreePastry.

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 143

IF URL[].length == 1 THEN
ASSIGN_function (URL)
ELSE
FOR each component of URL[]
IF URL is the last
URL.poll (RECEIVE)
ELSEIF URL is the first
URL.poll (SHIP)
ASSIGN_function (URL)
ELSE
URL.poll (SHIP)
URL.poll (RECEIVE)
ENDIF
ENDFOR
ENDIF

FUNCTION ASSIGN_function (URL)
COMPONENTS []=URL.poll (ASSIGN with components)
IF COMPONENTS[].length > 0
FOR each COMPONENT
supply_network (COMPONENT. \#EPC)
ENDFOR
ELSE
URL.poll (ASSIGN without components)
ENDIF
RETURN

Table 2. Algorithm of the supply_network() method.

The previous message is routed to the node responsible for the message’s key. Then the
FreePastry software calls the deliver() implementation of our application. This method extract
the type of the message, and if it is a SUPPLY_NETWORK message it extracts the key of the
EPC, and after that it extracts from the database all the URLs associated to the key of a specific
EPC. It is necessary to take into account that the URLs are obtained in a time order. That is,
the first extracted URL corresponds with the first EPCIS which registered information about
the corresponding EPC. Then, the application follows the reconstruction algorithm presented
in Table 2.

As an example, we present the operations performed by the DHT application in order to
reconstruct the supply network associated to the previously presented product. In this
process, we assume that the DHT node responsible for storing the URLs of the EPCIS with
information about the EPC #x is the DHTx node (e.g., DHT1 has the URLs with information
about the EPC #1). Therefore, the call to the supply_network() method with EPC #1 as a
parameter, gets to DHT1. This node has two URLs associated to EPC #1, [URLB, URLA].
The application takes the last URL (URLA) and it sends a query to the query interface of
the corresponding EPCIS asking for a RECEIVE event. After that, it receives the necessary
information to construct an Object array. That is, it constructs [#1; RECEIVE; A; 10/02/09;
NULL; NULL]. Then, the application takes the first URL (URLB), it sends a query asking
for a SHIP event, with the received information it construct the Object array [#1; SHIP;
B, 08/02/09; A; NULL] and it adds this array to the previously constructed Object array.
Immediately, the application sends a new query to the same URL asking for an ASSIGN event
with components, with the received information it construct the Object array [#1; ASSIGN;
B; 01/02/09; NULL; #2, #5], and it adds this array to the previously array. Finally, the
application calls the supply_network() method taking EPC #5 as a parameter. When it receives
all the information related to this EPC, it will call the supply_network() method taking EPC #2
as a parameter. The operation mode of these two suply_network() calls is equivalent to the
presented one and, as a result, both of them return an Object bi-dimensional array, with all
the information associated to the corresponding sub-supply networks associated to EPC #2
and EPC #5. All this information is added to the previously constructed Object bi-dimensional
array (with the information about EPC #1) and it is returned to the network() web service

www.intechopen.com

144

Designing and Deploying RFID Applications

EPC| EVENT |COMPANY| DATE |TO|CONTAINS
#1 | ASSIGN B 01/02/09| — #2,#5
#1 SHIP B 08/02/09| A —
#1 |RECEIVE A 10/02/09| — —
#2 | ASSIGN E 10/01/09| — #3,#4
#2 SHIP E 20/01/09| F —
#2 |RECEIVE F 22/01/09| — —
#2 SHIP F 29/01/09| B —_
#2 |RECEIVE B 31/01/09| — =
#5 | ASSIGN G 13/12/08| — —
#5 SHIP G 20/12/08| B —
#5 |RECEIVE B 23/12/08| — —
#3 | ASSIGN D 10/12/08| — —
#3 SHIP D 11/12/08| E —
#3 |RECEIVE E 12/12/08| — —
#4 | ASSIGN C 08/12/08| — —
#4 SHIP C 20/12/08| E —
#4 |RECEIVE E 21/12/08| — —

Table 3. Information to reconstruct the supply network associated to EPC #1.

method. The information contained in this Object bi-dimensional array corresponds to the
information presented in Table 3. Figure 8 represents the interaction among the different DHT
notes involved in the reconstruction of this supply network.

In addition, every DHT node which receives a SUPPLY_NETWORK query stores temporarily
in a new database all the deduced information (contained in the Object bi-dimensional array),
and it associates all this information to the corresponding EPC. By this way, subsequent calls
to the supply_network() method will be resolved in a shorter period of time. Finally, the access
control service is also used by this mechanism. The PEP located in the DHT node (responsible
for storing the URLs associated to the EPC included in the supply_network() method) calls the
getDecision() method of the PDP situated in the publish/query interface in order to get a read
authorization decision. If it is allowed, the DHT application gets the necessary information
to reconstruct the supply network. Otherwise, the DHT application returns an error message.
This is possible because we have added a new field to the SUPPLY_NETWORK message:
the identity of the query application which calls the network() web service method. Our
access control mechanism implements one policy for the read operation implemented in the
supply_network() method of the DHT application. The default behavior is to deny the access
to the information except for those clients defined by the companies of the consortium as
partners.

5.2 Nested package in supply chains

5.2.1 Introduction

In the EPC technology research, most of the work about track and trace corresponds to item
level tracking (Bi & Lin, 2009), (Goebel et al., 2009), (Beier et al., 2006). To face this challenge,
all of them assume that items are always visible along the whole supply chain. However,
in many industrial fields this supposition does not reflect the reality. For example, clothing
industry tags at item level, but products are distributed and move along the supply chain

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 145

A DHT1 DHTS DHT2 DHT3 DHT4

T T T T T T
5 supply_networ k(#1)' !
I~ supply_networ k(#5)'

Fig. 8. Interaction among the DHT nodes involved in the reconstruction of this supply
network.

within different storage systems (trays, packages, boxes, etc.) (Charles Voegele Group Finds
RFID Helps It Stay Competitive, 2009). Although each item has its own EPC, items do not go
independently towards the destination. In many cases, some items will be packaged together
to facilitate transport and distribution.

Item package may produce scenarios with null (or limited) item level visibility. Each item
is associated to a RFID tag but, if they are packaged together in a particular storage system,
items are not visible to RFID readers. Only the RFID tag associated to the new package is
visible. Storage process may be repeated as many times as needed (items into small boxes,
small boxes into cases, cases into pallets, etc.). Usually, the EPC associated to the overall
wrapper identifies the order.

This section presents an extension of the automatic traceability application to recover, in an
efficient way, the complete supply chain of an item in a nested package scenario.

5.2.2 Description of the scenario

An example of nested package identification is shown in figure 9. There, four levels of package
are carried out. #it; tags identify the items, Ci,, Coy, C3x and Cy, tags identify the different
level packages, being Cy4; the tag associated to the overall wrapper.

Figure 10 shows two supply chains corresponding to the previous nested package scenario:
item 1’s and item 10’s supply chains. Because item tags are not always readable, supply chains
will be reconstructed from the tag collections obtained by the RFID readers from the own
item or the packages that, at different levels, contain the item. Each supply chain shows three
possible actions: package actions, advance actions and unpackage actions. Associated to these
actions, three zones can be identified from left to right:

 The first zone represents the package process. (#it;) indicates the assignment of an EPC to
an item. (#Cj;) indicates the assignment of an EPC to a level j package where j = 1..4. #it,
and #Cj indicate the reading of RFID tags by a RFID reader. For the sake of simplicity and
without loss of generality, it is considered that all package actions, from the item creation
to the highest level package, are done at the same chain element.

www.intechopen.com

146 Designing and Deploying RFID Applications

#C41
#C3A
#Cla #Clc #CIf
#Clb #Cld #Clg
,
#C2 o #C2 B #C2y
#Cla’ #Clc’ #CIE’
#Clb’ #C1d’ #Clg’
#it X
#C20” #C2 B #C2V

Fig. 9. An example of nested package identification, corresponding to four level package.

(#itl) SUPPLY CHAIN ITEM #itl
[ci #Cla

(#C2a) 20T
’:(ﬁCSAl #C3A = #itl

(#C41) #C41 #C41 #C41 HCla

DISTRIBUTION DISTRIBUTION DISTRIBUTION
: STORE 1
[W‘NU”‘CTURER]—’[CENTER A]—’[CENTER B]—’[CENTER C]—m
ZONE 1 ZONE2
ZONE3

(#it10) SUPPLY CHAIN ITEM #it10

(#Cla’)
C_#ae #itlo

(#C3B) #C3B = 20— #Cla %
’:(:.*(:41) #C4l #C41 #C41 #C41 #C3B #C2 0

s DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION STORDY
MANUFACTURER CENTER A CENTER B CENTER C CENTER D CENTER E
ZONE 1 ZONE2
ZONE 3

Fig. 10. Supply chains corresponding to items #it1 and #it10. (#it;) and (C#;;) indicate the
assignment of EPCs to items and packages. #it; and C#j; indicate the reading of tags by RFID
readers. Package and unpackage actions are represented by arrows.

* When the highest package level is created (in our example it corresponds with Cy;), it will
pass through several organizations during the advance along the distribution channel.

¢ The third zone corresponds with the unpackage process. This task could involve several
organizations, depending on the unpackage level reached at each organization. In item
1’s supply chain, the unpackage process involves Distribution Center C (DC C) and Store
1. DC C unpackages to the lowest package level (Cy,), and after receiving the smallest

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 147

package unit, Store 1 unpackages the item. On the other hand, the unpackage process in
item 10’s supply chain involves three organizations: Distribution Center D, Distribution
Center E and Store 2.

Although it is not represented in the supply chain example above, in some cases there is
tracking information which is obtained during the second zone. In many industrial sectors,
random verifications at item level are done at intermediate points of the supply chain. That
means, a random lowest level package is chosen and then, all the items of this package (or just
some of them) are examined. This action will generate additional information, corresponding
to events happened in the central zone of the supply chain.

5.2.3 Supply chain recovery

The solution described in this section will allow the reconstruction of a supply chain at item
level, in a totally distributed way. As it was described, the DHT-based DS architecture
minimizes the number of messages that a requester organization must send (normally
the requester will be an organization with a limited network connection). Most of the
queries required to obtain all the information will be performed by DHT (Distributed
Hash Table) nodes that, like EPCIS servers, will be components with better features in
connectivity, reliability and security. On the other hand, the use of this architecture in
nested package scenarios reduces the total number of messages required to obtain multiple
supply chains corresponding to different items. Due to the distributed work during supply
chain reconstruction, and only maintaining a cache at the DHT nodes, previously requested
information can be reused during the reconstruction of new supply chains.

Figure 11 shows, by means of an example, the behavior of the distributed architecture during
the storage and recovery of information required to reconstruct the supply chain of a nested
package. In this example, the item whose EPC is #1 is created and packaged into three levels
(the package systems are identified by #Cq;, #Cp; and #Cj3; respectively) by company A.
The highest level package passes through the distribution channel (companies B and C) to
company D, where all the unpackage actions will be done. Interaction among the different
elements involved in the reconstruction of the supply chain is represented in the figure.
Messages 1 to 20 correspond with the storage in the EPCISs of the read EPC events and the
registration of the EPCISs with the DHT network. After that, DHT node P -the responsible
of key hash(#1)- stores the IP addresses of EPCIS 4 and EPCISp (that is, the EPCISs storing
events about EPC #1). DHT node Y -the responsible of key hash(#Cy1)- stores the IP addresses
of EPCIS 4 and EPCISp (that is, the EPCISs storing events about EPC #Cq1). DHT node M
-the responsible of key hash(#C,)- stores the IP addresses of EPCIS 4 and EPCISp (that is,
the EPCISs storing events about EPC #C;1). Finally, DHT node O -the responsible of key
hash(#Csq)- stores the IP addresses of EPCIS,, EPCISg, EPCISc and EPCISp (that is, the
EPCISs storing events about EPC #Cs1). The rest of the messages are required to reconstruct
the supply chain of item #1, process that is initiated by company D. Organization D will query
its associated DHT node (node Z) to initiate the recovering of the supply chain (message 21).
That DHT node will locate the DHT node responsible for the item EPC #1 (message 22). The
node responsible for #1 (in the example node P) stores the addresses of the EPCIS that have
data about the EPC (EPCIS 4 y EPCISp). Consequently, node P will be able to query them all
the information about #1 (messages labeled jointly in the figure as 23). Information associated
to EPC #1 indicates that the item was packaged into #Cj;. Therefore, instead of replying
directly to node Z (the node that initiates the lookup), node P will locate the DHT node
responsible for #Cq; (message 24). Only when node P receives the data about #Cqq, it will

www.intechopen.com

148 Designing and Deploying RFID Applications

EPCIS D

COMPANY D

COMPANY A

COMPANY B

responsible for
hash(#C11)

responsible for ible for

le for

hash(#C21) hash(#C31) hash(41)

Company A: Cump.any B: Company D:
— creates #1 — receives #C31 — e el

— creates #C11, it packs #1

— unwraps #C21
— creates #C21, it packs #C11 Company C: —unwraps #C11
— creates #C31, it packs #C21 cceives #G31 — unwraps #1

EPCIS A EPCIS B

Co. A vV Co.B X P M o Co.C v Co.D
L, 2. register EPCIS A
3., 4. register EPCIS A
54-> 6. register EPCIS A
7., 8. register EPCIS A
9. 10. register EPCIS B
-
12. r¢gister EPCIS|C 11.
l—]
14.|regist¢r EPCIS D 13.
]
16.|regist¢r EPCIS D 15.
] 2]
18.|regist¢r EPCIS D 17.
20.|regist¢r EPCIS D 19.
21} Query DS for #1
22. lpcate ible for #1
23. data about
#1 is obtained
24. locate responsible fof #C11
i 25. data about
26. locate fesponsible ngde fof #C21 #Cl1 is obtained
i 27. data about
28. locate r¢sponsible forl#C31 #C21 is obtained
29. data about
#C31 is obtained
30. responge with #C31 data
31. responge with #C21 data
32. resporjse with #C11 data
33. responge with #1 dat:
34. completg supply chain information
Legend:
1. store events associated to #1 9. store events associated to #C31 13. store events associated to #1
3. store events associated to #C11 11. store events associated to #C31 15. store events associated to #C11
5. store events associated to #C21 17. store events associated to #C21
7. store events associated to #C31 19. store events associated to #C31

Fig. 11. Reconstruction of a supply chain in a nested package scenario.

reply to node Z with all the information. Due to #Cy; is associated to #Cp1, node Y also locates
the DHT node responsible for #Cp; before answering to node P (message 26). Finally, node
M, which is responsible for #C;1, will locate the DHT node responsible for #Cs; (message 28).
Starting at node O, all the involved DHT nodes will respond successively and in the opposite
direction to the lookups, with the requested information (messages 30 to 33). Finally, node Z
will be able to answer the initial query performed by company D. This response will contain
all the information required to reconstruct the supply chain of item #1.

This solution allows to recover, in a distributed way, supply chains in a nested package
scenario. As it can be seen, each DHT node will find out a portion of the supply chain, and all
these portions will form the complete supply chain. In fact, thanks to this feature the proposed
solution offers a significant gain against the EPCglobal solution in terms of network usage. To
obtain this gain, it would be sufficient if DHT nodes acted as proxies, that is, if they stored in
a cache the information that was recovered during the reconstruction of a supply chain after

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 149

answering the requesting node. In this way, when the supply chain of a new item is required,
and this item coincides at any package level with another item whose supply chain has been
obtained before, some portions of the supply chain have already been reconstructed and it is
not necessary to query again. Depending on the level of coincidence between the items, the
gain will be greater or smaller. On the other hand, depending on the cache maintenance (in
terms of time-to-live of entries), the system gain will also vary.

5.2.4 Evaluation
5.2.4.1 Use of DHT nodes

The main contribution of this solution is the use of a DHT network to implement, in an
efficient and distributed way, the item level track&trace service. Therefore, it is interesting
to evaluate the consequences in the DHT nodes of storing the information associated to the
supply chains. Specifically, the amount of involved nodes and information that each node
must maintain is going to be evaluated. Remember that each node will store, for all the EPC
under its responsibility, the URL of the EPCIS that have information about the EPC.

If an item package process reaches i levels, the number of DHT nodes which will be involved is
(i 4 1) (the nodes responsible for keys #it, #Cyy,..., #C;;,,). Each node should store an entry, that
corresponds to the Internet address of the manufacturer. On the other hand, the movement of
the highest level package along the distribution chain does not involve other nodes, though
it will add new entries on the node responsible for that package. That is, if j elements are
gone through, the node responsible for #C;,, should store j new entries. In the same way,
the unpackage tasks will only affect to the number of entries stored on the nodes who are
responsible for the assigned EPCs, but it does not modify the number of involved DHT nodes.
Due to this last phase, a new entry for each unpackage level will be generated.

Usually, any industrial activity does not create a single item but a high number of them. If P
items are produced, and they are grouped into i levels, the number of EPCs that are used by
the manufacturer is:

P+ [P/ny] + [[P/ny]/na] + [[[P/n1]/na]/n3] +.. < P+i+ Zl:]L 1)

j=1 Hm:l i
where 1; is the number of packages of i — 1 level that are packaged into a i level package.
Because the number of involved nodes depends only on the number of EPCs, if N is the
number of nodes that belong to the DHT network and considering that the amount of items is
substantially higher than the number of nodes (N << P), due to the DHT network features,
each node will be responsible for the following number of EPCs:
v P
Priddjo g _2P+i 2P)
N N N

that is, a limited number of entries that can easily be managed by any current database system.

5.2.4.2 Network capacity gain

One of the most frequently used performance features of information system is the efficient
use of network capacity. Here, this feature is measured in terms of absolute number of
application messages exchanged to store and obtain the data related to an item supply chain.
Application messages are the queries, responses, inserts, lookups, etc. generated in the
evaluated systems. In fact, each application message could involve more than one network

www.intechopen.com

150 Designing and Deploying RFID Applications

message. For example, in the centralized EPCglobal proposal, a query to the Discovery Service
will involve a certain number of messages partly due to the use of a DNS-based ONS. In the
proposed distributed solution, an insert or a lookup message will involve a certain number
of messages due to the structured overlay network mechanisms (Chord, Pastry, Tapestry,...),
which is due to the use of a DHT-based ONS.

Both ONS architectures are compared by simulation in section 5.2.4.4. As it will be concluded
there, the number of nodes that must be contacted to resolve a ONS query is always lower in
the DHT-based solution than in the DNS-based solution. Therefore, an DHT-based application
message implies a lower number of network messages.

In this section, it is considered that both solutions implement the same functionality. That is,
DHT nodes in the distributed solution do not use cache tables.

To carry out the evaluation, the following parameters are considered: [is the number of
elements of a supply chain (I € NT\{1}), i is the number of package levels and p is the
coincidence level between two items. If both items are packaged in the same level 1 package,
p value is 1. However, if both items are packaged in different level 1 units, but in the same
level 2 package, p value is 2, and so on.

For the sake of simplicity (like in the example in figure 11), it is considered that the package
and unpackage actions take place in the beginning and at the end of the supply chain
respectively, and therefore, the intermediate elements along the supply chain just read the
highest level package. It is also considered that the item supply chain reconstruction is
initiated by the last element.

According to a centralized solution, the number of messages required to store and later
reconstruct the supply chain of an item is:

Meentratized =2 i+ 1)+ (1 =2) +2-(i+1)+ (1 —=2)+2-(i+1)+1-2-1+i-2-2 (3)

The first four terms correspond with messages which are generated during the storage of
data, that is, messages which are generated when the item is created and moves along the
distribution channel until the destination. 2 - (i + 1) + (I — 2) messages are sent to the EPCISs
and 2- (i 4+ 1) + (I — 2) are sent to DS. The rest of terms are created due to the recovering of
the item supply chain. Let’s identify each one: 2 - (i 4+ 1) messages are exchanged between the
element requiring the supply chain and the DS, and 1-2 -1+ 2 -2 - i messages are exchanged
between the last element and each involved EPCIS.

According to a distributed solution, the total number of messages is:

Myistrivuted =2 (i+1)+(1—-2)+2-((+1)+(I—-2)+2+2-(i+1)+1-2-14+i-2-2 (4)

Like equation 3, the four first terms correspond to messages which are generated during the
storage of data. If 2- (i + 1) + (I — 2) messages are sent to the DS in the centralized solution,
in this solution all these messages are distributed amount (i + 1) nodes: The nodes that
are responsible for the i + 1 EPCs involved in the item supply chain. The rest of messages
are generated during the supply chain reconstruction process. Although the amount of
messages is almost the same, the sending and the reception of the messages is completely
decentralized. Whereas in a centralized solution the last element is responsible for sending all
the messages, in a distributed solution, all the DHT nodes that store data about the required
supply chain will participate in the supply chain data recovery. In the distributed solution,
the requester element initiates the supply chain reconstruction process by querying the DHT

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 151

node associated to its EPCIS. Finally, that element will receive from that DHT node all the data
required to reconstruct the supply chain. That is the reason for the 42 term in equation 4.

It can be concluded that the gain between the centralized solution and the distributed proposal
is not related to message consumption. In fact, the main improvement of the last solution is the
distribution and decentralization of message sending and reception. In addition, as it will be
described in the next section, the distributed behavior of the last solution will make possible
to reduce the number of required messages when reconstructing more than one supply chain
if they work as proxies.

5.2.4.3 Network capacity gain using cache

The DHT-based DS architecture offers an efficient and distributed solution to reconstruct
supply chains. In fact, the proposed distributed solution also offers an additional advantage
in nested package scenarios. To obtain this improvement, it is necessary that the DHT nodes
maintain a cache table, where the information that they have obtained to respond to another
DHT node’s query during a supply chain recovery process will be stored. Thus, the total
number of messages needed to reconstruct the supply chain of different items is reduced. For
example, using the example shown in figure 11, if item #2 is packaged together with item
#1 (and item #1 supply chain has been obtained), data about #Cy1, #Cp1 and #C3; is already
available to DHT node Y, which will respond to the lookup sent by the DHT node responsible
for #2 during the supply chain reconstruction process.

In the previous section, equation 4 corresponds to the number of messages that are exchanged
during the storage of supply chain information and the recovery of that information without
using cache. If DHT nodes maintain a cache table, the number of messages required to store
and retrieve the supply chain information of an item which does not coincide with other item
at any level (level of coincidence p=0) is logically the same in that equation. However, if the
required item coincides at any level (p) with a previous item whose supply chain was already
reconstructed, the number of messages is reduced according to the next expression:

Mdistrcache:2'[2'(i+1)+(l_2>]+2+2'(p+1>+2'2'p 5)

As in equation 4, the first term corresponds with messages which are generated during the
storage of data. Actually, both equations only differ on the number of message during the
data recovering process. Therefore, to obtain the gain of the distributed solution using DHT
nodes as proxies, only these terms are considered, as described in equation 6.

24+2-(p+1)+2-2-p ©)
24+2-(i+1)+2-2-i+1-2-1
Table 4 shows the gain values according to equation 6 corresponding to different package
levels (i) and different levels of coincidence (p). I indicates the length of the supply chains.
Next, the main conclusions of these results are exposed.
First, it can be noticed that for the same i and p values (that is, for the same number of
package levels and the same level of coincidence between items), the gain increases as supply
chain length is longer. This is because the information about the highest level package, which
contains both coincidence items within any of its internal packages, has already been obtained
during the first supply chain reconstruction. It will not be necessary to find out again what
happened with the highest level package along the supply chain. Therefore, the greater the
number of elements in the supply chain is, the greater the gain is.

gain =1 —

www.intechopen.com

152 Designing and Deploying RFID Applications

i=1 | i=2 | i=3 | i=4 | i=5
0.285710.5000{0.6154|0.6875{0.7368
- 0.200 {0.3846|0.5000{0.5768
- -]0.1538]0.3125(0.4211
- - - 10.1250{0.2632
- - - 10.1053
0.3750(0.5455|0.6429|0.7059|0.7500
- 10.2727(0.4286|0.5294|0.6000
- - |0.2143|0.35290.4500
- - - |0.1765| 0.300
- - - 10.1500
0.444410.5833(0.6667| 0.722 {0.7619
- 10.3333|0.4667|0.5556|0.6190
- - 10.2667|0.3889(0.4762
- - - 10.2222{0.3333
- - - - 10.1905
0.5000(0.6154|0.6875|0.7368|0.7727
- 10.3846|0.5000(0.57890.6364
- - |0.3125|0.4211(0.5000
- - - 10.2632{0.3636
- - - - 10.2773

1=2

1=3

1=4

Gk OO OO WON RO WN =

"U"U*U*U*U"O*U"U"O"?"O"U"U*U*U"U*U"U*U*O

Table 4. Network capacity gain when using caches. i is the number of package levels, p is the
level of coincidence between the requested item and a previous item. [is the length of the
supply chain.

Secondly, for items that move along the supply chain within the same highest level package,
the lower p value is, the greater the gain is. That is, the best gain values are obtained when
the coincidence between items happens in a lower level. Logically, if the number of common
levels is higher, the number of queries is smaller because this information is already obtained.
Finally, for supply chains of the same length and the same level of coincidence between items,
the higher the total number of levels is, the greater the gain is. A bigger difference between p
and 7 indicates that the number of common levels is higher. Thus, the amount of information
to find out is reduced.

The above values represent the gain when recovering the information about an item using
cache at DHT nodes in comparison to the recovering of a previous item if any cache is used.
However, these values also represent the relation between the amount of messages generated
during the first (all caches will be empty) and the second recovery in a distributed system
with caches. Here, if a third item is considered, the gain is determined by the best level of
coincidence with both previously requested items. Therefore, to obtain the network capacity
gain of DHT-based DS architecture due to the use of cache tables, it is necessary to consider
all the previously requested items.

Figure 12 shows the network capacity gain results in a nested package scenario. In this
scenario, 100 items are packaged at level 1, 20 level 1 units are packaged at level 2, 10 level 2
units are packaged at level 3. Three level 3 packages have been created, which correspond to
100000 items. The length of the supply chain (I) is 5. The X axis corresponds to the amount of
supply chains that have been resolved as time goes by. Items are randomly chosen. This figure
represents the gain obtained for each requested supply chain and also the average network
capacity gain. Since only three levels of package are used, the possible gain values are 0.6875,
0.5 and 0.3125, depending on the level of coincidence. Thus, three zones can be distinguished
in the figure. In the first zone (until the value 100, approximately) the most common gain

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 153

Gain values
Average network capacity gain

0.8

0.6

0.4

Network capacity gain

02 F

0

0 5000 10000 15000 20000
Requested Supply chains

Fig. 12. Gain value of each requested supply chain and the average network capacity gain.

value begins 0.375, then changes up to 0.5 and even some 0.6875. In the second zone (between
100 and 2500), gain values move between 0.5 and 0.6875. Finally, in the last zone the most
repeated gain value is 0.6785. Figure 12 shows how the average network capacity gain quickly
increases until the constant value of 0.6743 is reached.

5.2.4.4 Application level messages

The parameter used in the previous sections to measure the network capacity is the number
of application messages exchanged to store and obtain the data related to an item supply
chain. In fact, these messages (queries, responses, inserts, lookups,...) involve more than one
network message, depending on the number of nodes that it is necessary to contact in order
to perform the required operation.

Here, this last parameter is going to be evaluated in two architectures: the first one implements
a ONS based on the traditional DNS, and the second one implements a ONS based on a DHT
network. The evaluation has been performed by simulation. The supply chains related to each
EPC have been constructed using a C++ STL-like container class for trees, which depends of
the probabilities of increasing the length and the width of the tree. The DNS-based approach
has been evaluated using the OMNeT++ discrete event simulator, and the DHT-based
approach has been evaluated using the OverSim P2P simulation framework for OMNeT++.
All the simulation parameters are equally configured in both cases. For example, the number
of nodes immersed in the ONS service is 65 (in the DNS-based implementation these nodes
are organized in a tree hierarchy and in the DHT-based implementation these nodes compose
a Chord overlay network (Stoica et al., 2003)).

Table 5 presents the simulation results. The first column represents the probability of
increasing the length of the supply chain and the second one the probability of increasing
the width. The third and fourth columns represent the average number of nodes that it is
necessary to contact to reconstruct a full supply chain that has been built taking into account
the previous probabilities. The average values are obtained from the reconstruction of 100000

www.intechopen.com

154 Designing and Deploying RFID Applications

. Number of nodes
p(ength) p(width) DHT DNS
0.30 0.10 3.24 7.56
0.30 0.30 3.80 8.89
0.30 0.50 451 10.54
0.50 0.10 3.61 8.44
0.50 0.30 5.38 12.54
0.50 0.50 8.51 19.85
0.70 0.10 4.72 11.03
0.70 0.30 15.84 36.89
0.70 0.50 288.46| 673.05

Table 5. Number of contacted nodes using DHT-based solution and DNS-based solution

supply chains, which is greater enough to guarantee stationary values. From the results it can
be concluded that the number of nodes contacted is always lower in the DHT-based solution
than in a DNS tree. On the other hand, it has also been noticed that the necessary number of
contacted nodes in the DNS tree is roughly a 133% greater than the required number in the
DHT-based solution. That is, the increment is approximately a constant value.

6. Conclusion

In this chapter we have analyzed the advantages of implementing the Discovery Services (DS)
component of the EPCglobal Network architecture using a Distributed Hash Table (DHT)
application. In addition, we have also showed that it is possible to develop new applications
over the DHT-based discovery services.

Recently, there have been several proposals for the implementation of the DS, like the DS
prototype of the Bridge project, or the Extensible Supply-chain Discovery Service (ESDS)
developed by Afilias. In both the DS has been implemented as a centralized database, to
be more specific in the Bridge Project it has been developed as a centralized database based
on LDAP (Lightweight Directory Access Protocol).

DHTs might be said to have several advantages over LDAP: in LDAP there is a bottleneck
in the root of the architecture, whereas in the DHT the failure of one node does not affect
the whole system; LDAP is not optimized for massive update operations, while DHTs are
optimized for massive search and update operations. On the other hand, DHTs have an
important drawback with respect to LDAP: while in LDAP the access control is already
implemented by Access Control Lists (ACLs) in DHT fine grained controls have to be
implemented.

We have proposed a mechanism for automatically obtaining the supply network associated
to a specific product. There are other systems with the same objective but the main difference
with the proposal set out in this chapter is that in other systems the client has to do all the
operations to reconstruct the supply network. That is, initially, it has to obtain the URLs
(Uniform Resource Locator) of the information services with information about a specific
product, then it has to access the corresponding information services to get the necessary
information, and after that it can reconstruct the full supply network. However, in our
proposal the client does not have to perform any operation, that is, it queries the supply
network associated to a specific product and the results are obtained directly.

On the other hand, in the EPC technology research, most of the work about track and trace
corresponds to item level tracking. To face this challenge, all of them assume that items
are always visible along the whole supply chain. However, in many industrial fields this

www.intechopen.com

Advantages and New Applications of DHT-Based Discovery Services in EPCglobal Network 155

supposition does not reflect the reality. For example, clothing industry tags at item level, but
products are distributed and move along the supply chain within different storage systems
(trays, packages, boxes, etc.). This chapter has proposed a distributed architecture to recover,
in an efficient way, the complete supply chain of an item in a nested package scenario.
In addition, the proposed solution improves the EPCglobal Network features in terms of
network usage and also in terms of distribution and decentralization of tasks associated to
capturing and querying event information.

7. Acknowledgments

This research has been supported by the MICINN/FEDER project grant
TEC2010-21405-C02-02/TCM (CALM) and it is also developed in the framework of
“Programa de Ayudas a Grupos de Excelencia de la Regién de Murcia, de la Fundacién

Séneca, Agencia de Ciencia y Tecnologia de la RM (Plan Regional de Ciencia y Tecnologia
2007/2010)".

8. References

Armenio, E, Barthel, H., Dietrich, P., Duker, J., Floerkemeier, C., Garrett, J., Harrison,
M., Hogan, B., Mitsugi, J., Preishuber-Pfluegl, J., Ryaboy, O., Sarma, S., Suen,
K., Traub, K. & Williams, J. (2009). Epcglobal architecture framework, Available
online at: http://www.epcglobalinc.org/standards/architecture/architecture_1_3
-framework-20090319.pdf.

Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, R. & Stoica, I. (2003). Looking up data
in p2p systems, Communications of the ACM 46(2): 43-48.

Beier, S., Grandison, T., Kailing, K. & Rantzau, R. (2006). Discovery services - enabling
rfid traceability in epcglobal networks, Proceedings of International Conference on
Management of Data (COMAD).

Bi, H. H. & Lin, D. K. J. (2009). Rfid-enabled discovery of supply networks, IEEE Transactions
on Engineering Management 56(1): 129-141.

Charles Voegele Group Finds RFID Helps It Stay Competitive (2009). Available at:
http:/ /fridjournal.com/article/view /4836.

Dabek, E., Zhao, B., Druschel, P., Kubiatowicz, J. & Stoica, I. (2003). Towards a common api
for structured peer-to-peer overlays, Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS03), Berkeley, CA, pp. 33-44.

Eastlake, D. & Jones, P. (2001). RFC 3174: Secure hash algorithm 1 (shal), Available online at:
http:/ /tools.ietf.org/rfc/rfc3174.txt.

Framling, K., Ala-Risku, T., Karkkdinen, M. & Holmstrém, J. (2006). Agent-based model for
managing composite product information, Computers in Industry 57(1): 72-81.

Framling, K., Harrison, M., Brusey, J. & Petrow, J. (2007). Requirements on unique identifiers
for managing product lifecycle information: comparison of alternative approaches,
International Journal of Computer Integrated Manufacturing 20(7): 715-726.

Goebel, C., Tribowski, C. & Giinter, O. (2009). Epcis-based supply chain event management
- a quantitive comparison of candidate system architectures, Proceedings of the
International Conference on Complex, Intelligent, and Software Intensive Systems
(CISIS’2009), pp. 494-499.

www.intechopen.com

156 Designing and Deploying RFID Applications

Li, X. & Chandra, C. (2007). Efficient knowledge integration to support a complex
supply network management, International Journal of Manufacturing Technology and
Management 10(1): 1-18.

Maymounkov, P. & Mazieres, D. (2002). Kademlia: A peer-to-peer information system based
on the xor metric, IPTPS "01: Revised Papers from the First International Workshop on
Peer-to-Peer Systems, London, UK, pp. 53-65.

Mealling, M. & Daniel, R. (2000). RFC 2915: The naming authority pointer (naptr) dns resource
record, Available online at: http:/ /tools.ietf.org/rfc/rfc2915.txt.

Mockapetris, P. (1987). RFC 1035: Domain name system, Available online at:
http:/ /tools.ietf.org /rfc/rfc1035.txt.

Nwana, H. S. (1996). Software agents: An overview, Knowledge Engineering Review 11(3): 1-40.

Phillips, W., Johnsen, T., Caldwell, N. & Lewis, M. A. (2006). Investigating innovation
in complex health care supply networks, Health Services Management Research
19(3): 197-206.

Poulin, M., Montreuil, B. & Martel, A. (2006). Implications of personalization offers on
demand and supply networks design: A case from the golf club industry, European
Journal of Operational Research 169(3): 996-1009.

Rowstron, A. & Druschel, P. (2001). Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems, IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, pp. 329-350.

Stoica, I, Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F, Dabek, F. &
Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol for internet
applications, IEEE/ACM Transactions on Networking 11(1): 17-32.

Wareham, J., Mathiassen, L., Rai, A., Straub, D. & Klein, R. (2005). The business value of digital
supply networks: A program of research on the impacts of globalization, Journal of
International Management 11(2): 201-227.

Young, M. (2008). Extensible supply-chain discovery service (esds) concepts, Available online
at: http:/ /tools.ietf.org/id / draft-young-esds-concepts-04.txt.

Zeilenga, K. (2006). RFC 4510: Lightweight directory access protocol (Idap), Available online
at: http:/ /tools.ietf.org/rfc/rfc4510.txt.

Zhao, B. Y., Huang, L., Stribling, J., rhea, S. C., Joseph, A. D. & Kubiatowicz, J. (2004). Tapestry:
A resilient global-scale overlay for service deployment, IEEE Journal on Selected Areas
in Communications 22(1): 41-53.

www.intechopen.com

Designing and Deploying RFID Applications
Edited by Dr. Cristina Turcu

Dﬁﬁﬁlﬁ@"hiﬂn\rﬁﬁ i B
RFID APPLICATIONS

Futter by e Inthr T

7‘/* '

ISBN 978-953-307-265-4

Hard cover, 384 pages

Publisher InTech

Published online 15, June, 2011
Published in print edition June, 2011

Radio Frequency Identification (RFID), a method of remotely storing and receiving data using devices called
RFID tags, brings many real business benefits to today world's organizations. Over the years, RFID research
has resulted in many concrete achievements and also contributed to the creation of communities that bring
scientists and engineers together with users. This book includes valuable research studies of the experienced
scientists in the field of RFID, including most recent developments. The book offers new insights, solutions and
ideas for the design of efficient RFID architectures and applications. While not pretending to be
comprehensive, its wide coverage may be appropriate not only for RFID novices, but also for engineers,
researchers, industry personnel, and all possible candidates to produce new and valuable results in RFID
domain.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Juan Pedro Mufioz-Gea, Pilar Manzanares-Lopez and Josemaria Malgosa-Sanahuja (2011). Advantages and
New Applications of DHT-Based Discovery Services in EPCglobal Network, Designing and Deploying RFID
Applications, Dr. Cristina Turcu (Ed.), ISBN: 978-953-307-265-4, InTech, Available from:
http://www.intechopen.com/books/designing-and-deploying-rfid-applications/advantages-and-new-
applications-of-dht-based-discovery-services-in-epcglobal-network

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EBHIERFEK6SS iEEPrRE ARG DA E4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.

