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1. Introduction   

Autism is a collection of neurodevelopment and abnormal behaviors which can be 
characterized by social isolation, language deficits and repetitive or stereotyped behaviors. 
It is a lifelong disorder that starts at early childhood and becomes apparent before three 
years old up to adulthood that ranging in severity from case to case. Autism spectrum 
disorder (ASD) has received a great deal of attention in recent years since the apparent 
prevalence of children with this spectrum of neurological and behavioral deficits is on the 
rise. It is currently estimated to be approximately 1 in 150 children based on a 14 state 
survey conducted by the Centers for Disease Control (CDC) in the United States of America 
(Kuehn, 2007) and it is predominately in males with a ratio of approximately of 4 males to 1 
female (Fombonne, 2003).  
While it is hotly debated in both the lay and academic communities as to whether ASD 
incidence is truly increasing and not just a function of increased reporting and changes in 
diagnostic criteria, it is uncontested that the number of children diagnosed with ASD 
presents an important pediatric health problem. The social and economical impacts on 
individuals with ASD and their families as well as the society maybe considerably reduced 
if early identification and diagnosing can be achieved using simple and accurate approach. 
Although it is initially described in the 1940s, the exact etiology and pathology of ASD 
remains rudimentary and challenging. A number of studies have reported links between the 
development of the ASD and various factors such as genetics, environmental, 
immunological, nutritional and neurological. It is likely to result from a combination of 
these factors. Different methodologies have been proposed to identify and diagnose ASD 
using different criteria. The autism diagnostic observation schedule (ADOS) is a protocol 
consists of a series of structural tasks that involve social interactions used to diagnose and 
assess ASD. Others are using functional magnetic resonance imaging (f-MRI) to scan the 
brain as pattern recognition method of the defected neurons in the autistic individuals. 
However, these methodologies depend on the interactions between the examiner and the 
patient. On the other hand, studying the function of the biological system provides 
alternative way to embrace the complexity of ASD. Although the neurobiological and 
genetics basis of ASD and related disorders is unclear, multiple lines of evidence have 
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converged on abnormal brain functions. Using previous knowledge of biological processes 
and protein interactions of neurological disorders related to ASD, there were able to identify 
several genes and genetic contributors that had been strongly associated to ASD (Sebat et al., 
2007 & Abrahams, 2008). Alterations of these contributors have been proposed as a factor 
involved in the etiology of ASD.  
Understanding the biological mechanisms related to ASD at early stage is essential for 
identifying and diagnosing the disease and will lead to better treatments. Our main 
objective in this chapter is to understand the molecular and cellular underpinnings of ASD 
by identifying the genetic contributors to this set of complex disorders. We are also keenly 
interested in developing DNA-based methods that can serve to improve our diagnostic 
evaluation of ASD. Accurate and simple diagnostic methods would go a long ways in 
promoting early and appropriate interventions. Our research is grounded in recent work 
showing that deletions and duplications of DNA contribute a very significant degree of 
genetic variation in human populations. Finally, the work presented in this chapter focuses 
primarily on determining if DNA copy number changes are associated with ASD.  

2. High-resolution genetic data 

Data on genome structural and functional features for various organisms is being 
accumulated and analyzed aiming to explore in depth the biological information and to 
convert data into meaningful biological knowledge. To date, different experimental 
technologies such as microarray and DNA sequencing had been proposed to generate high-
resolution genetic data and to understand the complex dynamic interactions between 
complex diseases and the biological system components of genes and genes products. These 
approaches made it possible to enhance our understanding of biological variations in 
healthy and diseased organisms through computational-based models. However, these 
technologies contain many sources of errors. Some types of errors are of our interests that 
have biological origins. Other types of errors are undesirable and need to be eliminated 
before further analysis. In particular, these technologies produce certain systematic sources 
of errors due to the experimental design process used in generating the genetic data such as 
labeling, printing, and scanning the examined samples. Figure 1 illustrates a simple 
description of generating DCN data using aCGH technology. Identifying the genomic 
locations and genetic contributors responsible for these variations is a problem of great 
importance to biologists. Current estimates indicate that DNA sequence differences due to 
changes in DNA copy number account for 3-4 fold more variation than that provided by 
single nucleotide polymorphisms, the most widely studied type of variation. It is also 
apparent that certain segments of the genome are susceptible to copy number alterations on 
account of particular sequence features, such as low copy repeats (LCRs). 
LCRs are relatively large (>1 Kb), highly related elements (>90% identity) that are typically 
repeated a modest number of times and frequently found on the same chromosome arm. 
Many regions of genomic instability are known to be involved in genetic syndromes, termed 
“genomic disorders”, where similar, but not identical, copy number changes produce 
specific developmental syndromes. It is remarkable that many LCR-rich intervals are 
located within chromosomal regions where rearrangements are known to be associated with 
neurobehavioral disorders, including autism (Christian et al., 2008; Marshall et al., 2008; 
Sebat et al., 2007 & Kirov et al., 2008), mental retardation (Sharp et al., 2006, 2008) and 
schizophrenia (Cantor et al.; Stefansson et al.; Stone et al. & Walsh et al., 2008). To determine 
 

www.intechopen.com



Identifying Variations Within Unstable 
Regions of the Genome Reveal Autism Associated Patterns 

 

149 

 

Fig. 1. Illustration of Microarray-based comparative genomic hybridization (array-CGH) 
process. The tumor and reference DNA are labeled and competitively hybridized to the 
array together with unlabeled blocking DNA to block repeated sequences. The ratio of the 
fluorescence intensity for each spot represented as a point in the relative copy number 
profile. 

if copy number variants found within unstable segments of the genome are associated with 
autism susceptibility, we have conducted a high-resolution array CGH analysis of five 
genomic intervals that are rich in LCRs and where chromosomal rearrangements are 
associated with neurodevelopmental disorders. These regions include 7q11 (61-82Mb), 
10q22.3-23.31 (77-92Mb), 15q11-13 (18-35 Mb), 17p11 (12-22Mb), and 22q11 (14-26Mb). The 
7q11 interval spans the segment involved in Williams-Beuren Syndrome, a contiguous gene 
syndrome that produces a variety of cognitive and adaptive deficiencies (Greer et al., 1997). 
The reciprocal duplications of the Williams-Beuren deletion interval are associated with 
language delay and autism (Somerville et al., 2005; Van der Aa et al., 2009 & Depienne et al., 
2007), suggesting that duplications in this genomic region are more closely linked to 
behavioral deficits that fall within the spectrum of autism disorder. Deletions flanked by 
segmental duplications are associated with language delay, attention deficit hyperactivity 
disorder (ADHD), and autism for the 10q22-23 interval (Balciuniene et al., 2007), and a 
balanced translocation affecting the KCNMA1 gene, which encodes a calcium-activated 
large conductance potassium channel, on 10q22 has also been reported in a child with 
autism (Laumonnier et al., 2006). Maternally-derived duplications of the 15q11-13 interval 
are the most common cytogenetic abnormalities associated with autism (Cook et al., 2001), 
and maternal as well as paternal-derived deletions are responsible for Angelman and 
Prader-Willi syndromes, respectively. In addition, deletions in the 15q11-13 interval are 
associated with mental retardation (Sharp et al., 2008), epilepsy (Sharp et al., 2008 & Helbig 
et al., 2009), and schizophrenia (Stefansson et al., & Stone et al., 2008). LCR-mediated 
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chromosomal rearrangements within 17p11 result in various nervous system dysfunctions 
(Lee et al., 2006), including Smith-Magenis and Potocki-Lupski syndromes. Deletions within 
the 22q11.2 interval are the most frequent interstitial deletions in humans, occurring in 
approximately 1 in 4000 live births (Papolos et al., 1996). These deletions cause congenital 
multisystem abnormalities referred to as 22q11 deletion syndrome, and include clinical 
entities such as Velocardiofacial syndrome, DiGeorge syndrome, and CATCH22 syndrome. 
Autism spectrum symptoms were reported in 20-50% of patients with 22q11 deletion 
syndrome; 15-20% of the patients have schizophrenia, and 40% of the patients manifest 
ADHD (Niklasson et al., 2001; Antonell et al., 2005 & Vorstman et al., 2006). Large deletions 
within the Velocardiofacial-DiGeorge syndromes critical region of 22q11 are found in 
patients with schizophrenia at a frequency of less than 1% (Stone et al., 2008). In the next 
section, we will present a novel methodology for the analysis of genetic data. 

3. Method 

In this section, we present a framework to evaluate the predictive power of recurrent 

variations at multiple genomic sites. The section is divided into two main parts. First, as a 

preprocessing step for feature extraction, a robust methodology based on statistical signal 

processing techniques is presented to clearly map and detect structural variations in the 

form of DNA copy number along the genome. Second, as a feature selection method prior to 

further analysis, a regional evaluation analysis is presented. It includes statistical learning 

procedures to measure the statistical and biological significance of the predicted variations. 

Then, classification techniques applied to segregate the tested samples into groups and to 

provide insight into the complex pattern of the predicted variations as well as discovering 

the relationship among them. There are three critical elements of our analysis that are novel: 

1) we are detecting copy number changes as small as 1000 bp1 (previous studies provided 

sensitivity typically hundreds of thousands of bp); this allows us to monitor genetic variants 

that might contribute incrementally to ASD susceptibility, 2) we are using oligo-arrays as a 

genotyping tool, performing a case-control association analysis, where copy number 

changes are the genetic variation being assessed, 3) we are developing algorithms to 

improve the sensitivity and specificity of array CGH data, assessing false positive and false 

negative rates. 

3.1 Data preprocessing 

Microarray data analysis is subject to multiple sources of variation, of which biological 
sources are of interest whereas most others are due to experimental sources. In other words, 
the goal of aCGH data analysis is to find the true boundaries of the variant regions 
(segments) which correspond to chromosomal variations and to remove other variations 
due to human factors, array printer performance, labeling, and hybridization efficiency 
(Kallioniemi et al., 1992). It consists of three key steps; 1) data preparation, 2) noise 
reduction, and 3) variation detection. In the data preparation step, copy number data is 
generated experimentally through aCGH process and then combined with their genomic 
positions. The next step is to reduce the experimental errors. This step is generally divided 
into two parts, data normalization, and data filtering. After normalizing the raw DCN data 

                                                 
1 base-pairs 
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and before detecting the variant segments, the necessary step is to filter the normalized data 
for noise reduction.  

3.1.1 Data modeling 

According to the data description and properties generated from microarray technologies 

discussed in the previous section, we approximate a given DCN data sample as a one-

dimensional piecewise discrete signal corrupted by additive white Gaussian noise with 

zero-mean and small variance. A good model for describing DNA copy number data is: 

 y[n] = f[n] + εn,           n=1, 2, …, N.  (1) 

where y[n] and f[n] are the observed and true intensities of the DCN data probe at nth 

location along the x-axis respectively. Here N is the length of DCN data and ε represents a 

vector of independent identically distributed (i.i.d.) random variables drawn from the 

Gaussian distribution of zero-mean and small variance (Wang et al., 2007). 

3.1.2 Irregular probe position 

Most prior works considered the DNA copy number profiles as discrete signals under the 

assumption that the probes are uniformly distributed along the chromosomes. This 

assumption may lead to wrong decisions with false positive or/and false negative points. 

More recent studies (Wang et al., 2007 & Willenbrock et al., 2005) show that considering the 

nonuniform spacing distance between the probes of the DCN data profiles could be 

beneficial for detecting and measuring the DNC variations. 

Hence, we remodeled the DCN data discussed in the previous section as nonuniformly 

distributed discrete signals as follows:    

 y[xn] = f[xn] + εn,         n=1, 2, …, N.  (2) 

where xn in this case is the nonuniform distributed probe at nth location along the x-axis. The 

xn’s are not uniformly distributed and the distance between two adjacent probes xn and xn+1 

may vary randomly. The y[xn] and f[xn] are the observed and true intensities of the DCN 

data probe location xn respectively. The εn represent i.i.d. random variable from the Gaussian 

distribution with zero-mean and small variance σ2. 

3.2 Maximum likelihood estimator for genetic variation detection 

Generally, Copy Number variations (CNVs) detection techniques fall into two categories: 

statistical based models and smoothing techniques. In the statistical based models, the noise 

free signal and noise models are required. Unfortunately, these models are usually 

unknown or impossible to describe adequately with simple random processes. As a result, 

the important details (i.e., breakpoints) of the CNVs regions will be included in the 

segmentation process. In addition, the techniques are computationally costly. Furthermore, 

most statistical models proposed to analyze array CGH data involve modeling the 

association between changes in neighboring probes. While this is helpful to find wide 

changes, it tends to ignore local changes. In the literature, there are various statistical 

approaches that have been proposed to detect changes in the DCN data.  

On the other hand, the smoothing techniques provide alternative methods for processing 
the DCN data that are characterized by small and long intervals with sharp transitions and 
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singularities at boundaries edges (breakpoints). The techniques are particularly suitable for 
denoising DCN data as they do not require a parametric model in finding structures in the 
data. In these methods, local operators are applied to the noisy data. Only those points in a 
small local neighborhood are involved in the computation. The main advantage of these 
techniques is their computational efficiency. They can process the data in parallel without 
waiting for their neighboring points to be processed. 
To this end, the proposed smoothing techniques provide efficient run-time speed and they 
are well suited to predict the variations in the discontinuous nature of such data. However, 
the smoothing techniques suffer from two main drawbacks. First, the breakpoints of the 
variation regions are involved in the smoothing process and these techniques exhibit 
artifacts in the neighborhood of these discontinuities that tend to blur the variation edges. 
Second, they did not consider the physical distances between the adjacent probes and 
simply assumed that they were uniformly spaced. This simplification will lead to 
suboptimal results. In this section, we propose a robust method based on maximum 
likelihood principle (Alqallaf et al., 2009) to clearly map and detect structural variation in 
the form of DNA copy number along the human genome. We apply dynamic programming 
to compute the DNA copy number estimates and reduce the computational complexity. 
Furthermore, we employ the minimum description length approach to estimate the number 
of unknown parameters. To evaluate our proposed method, we examine and compare the 
ability to reliably predict variations using molecular test, quantitative polymerase chain 
reaction. We take the comparison a step further by conducting two experiments designed 
specifically to assess the sensitivity and specificity of our proposed methods using high-
density oligonucleotide array that have been examined by a number of different platforms 
and laboratories. Using well-characterized cell lines and custom tiled arrays, we show that 
the proposed method outperforms other popular commercial software and published 
algorithms in terms of detection performance and computational complexity. 
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Fig. 2. Illustration of the observed DNA copy number data modeling of (3) with 4 segments. 

As described in the previous section, the DNA copy number observations can be modeled as 
one-dimensional discrete time series with multilevel and jumps at unknown transition 
times, corrupted by additive white Gaussian noise (AWGN) of zero-mean and small 
variance σ2. Figure 2 displays a graphical representation of the observed DNA copy number 
data modeling with 3 segments. Here we define f[n] is the true piece-wise constant DCN 
signal to be estimated. Then, we define  
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where n0=0<n1<n2< … <nM-1<nM=N and u[n] is the unit step function. Here  Ai and ni are the 
intensity level and the length of the ith variant segment, respectively, with a total of M 
segments. 
Based on the data assumption, we wish to design a detector to detect or equivalently 
estimate the uknown parameters. To do so, we first apply dynamic programming (DP) 
(Larson & Castie, 1982) to estimate the minimum number of the variant regions M using the 
minimum description principle (MDL) technique (Rissanen, 1978). Next, we apply the 
principle of maximum likelihood (ML) to estimate the values of breakpoints locations and 
intensity levels corresponding to these regions. Assuming that the number of variant 
regions M is known, then the ith variant region can be characterized by the probability 
density function (PDF) pi([y[ni-1]:y[ni-1]];Ai), where Ai and ni are the unknown parameters 
representing the intensity level and the breakpoint of the ith variant segment, respectively. 
Moreover, each variant region is assumed to be statistically independent of all other regions. 
Hence, the PDF of the entire data record can be written as 
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The DP algorithm can also be applied here to reduce the computational complexity to a 
more manageable level that is linearly proportional with the number of variant regions M. 

3.3 Comparison study 

In this section, we conduct two experiments to compare our proposed method with recent 
approaches to improve the sensitivity and specificity of array CGH data (assessing false 
positive and false negative rates).  

3.3.1 Self-self hybridization experiment 

In this experiment, we compare the performance of our proposed method MLE (Alqallaf et 
al., 2009) with Circular Binary Segmentation (CBS) algorithm (Venkatraman et al., 2007) and 
Copy Number Professional software package (BioDiscovery) Nexus algorithm by direct 
measurement of false positives. The same DNA sample is used as both the test and reference 
and hence any copy number variant assigned by an algorithm is incorrect and a false 
positive. In other words, we compare the DNA sample with itself in the aCGH process to 
generate the DCN data as described in section 2. In the ideal case, the intensity level, the 
difference between the tested sample and a known reference measured in log2 ratio, should 
equal to zero. However, due to the experimental noise, we expect to detect segments with 
relatively small intensity level value that are below cut-offs criteria. Otherwise, the detected 
segments would be considered as false positives. As shown in Table 1, the average number 
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of events detected by CBS algorithm is lower than the events detected by other algorithms. 
However, the average length of the events detected by our proposed algorithm MLE is 
relatively shorter than the average length of the events detected by CBS and Nexus. 
 

Array#
Nexus CBS MLE 

E L E L E L 

1 10 40336 2 790 6 8481 

2 30 391030 4 625 19 27866 

3 100 2894494 7 4130039 55 42440 

Avg. 47 1108620 5 1377151 27 26262 

Table 1. Comparison of the proposed algorithms using number of detected events, E, and 
their length, L, in base-pair for the three tested array samples. 

3.3.2 Duplicated dye-swap experiments for two HapMap samples 

Here we take the comparison a step further by conducting experiments designed specifically 

to assess our proposed algorithm, MLE, using high-density oligonucleotide array CGH. In 

this experiment, replicate dye-swap experiments were conducted comparing DNA samples 

from two hapmap (Redon et al., 2006) subjects that have been examined by a number of 

different platforms and laboratories, NA15510 and NA10851, for a total of four arrays. The 

relative intensities differences are measured and reported.  It should be noted that the 

directionality of any detected variant is expected to be opposite when the dyes are swapped.  

That is, deletions with the first array will appear to be duplications with the second array.  

This is due to the convention of reporting the log2 ratios as described in section 2. This 

experiment allows us to assess the sensitivity of the proposed algorithms. Table 2 shows that 

the number of CNVs detected by the MLE is considerably higher than those detected using 

CBS (a range of 4.5% to 36% more for the 4 different array experiments). Our results show 

that applying the averaging window of 2Kb allow the algorithms to be well suited for 

detecting variations in high-density oligonucleotide array aCGH. 

 

Array # CBS MLE 

1 14 20 

2 10 20 

3 20 21 

4 13 21 

Table 2. List of the number of events (CNVs) detected by CBS and MLE algorithms. 

4. Statistical significance 

After filtering multiple DCN datasets of normal control and test samples, we need to apply 

a statistical analysis to reveal the randomness and to classify the genes or genomic locations 

that are involved or play roles in the targeted disease, ASD.  In this section, we present two 

statistical approaches to measure the significance of common CNVs across the samples and 

especially in the complex LCRs regions. First, we measure the relative frequency at each 

genomic position within the LCRs regions. Second, based on the relative frequency, a 
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regional evaluation scheme is used to measure the significance of the overlapping recurrent 

CNVs and to classify the tested DCN samples. 

4.1 Statistical-based model 

In summary, most of the proposed algorithms in the literature did not consider the 

statistical and biological significance of the analysis of multiple DCN data samples. In 

particular, they did not address the task of identifying common variations that overlap a set 

or subset of the study samples to reveal the randomness of the predicted CNVs. Indeed, few 

studies have addressed class discovery across multiple samples of DCN data (Grant et al., 

1999 & Diskin et al., 2006). However, they did not consider denoising the data prior to 

applying the statistical analysis. Although these are effective methods for searching 

statistically for common variations across multiple samples, it suffers from two main issues 

which can be summarized as follows: First, it does not take into considerations that different 

variation types (gain and loss) may occur within the same genomic locations. They simply 

discard these locations and indicate them as missing values. This will lead to decreases in 

the data resolution. Second, it does not differentiate between the intensity levels. This is an 

important issue for characterizing the variations in the complex areas of low copy repeats 

(LCR). For this, we propose in our statistical analysis to identify nonrandom gains and 

losses across multiple samples with the consideration of these issues. 

To reveal the randomness and identify the genes or genomic locations that are involved or 

play roles in the targeted disease, we apply a statistical analysis to measure the significance 

of recurrent CNVs including those in the complex regions of LCRs. Here, we plot the 

frequency of the occurrence of the predicted CNVs (deletions and/or duplications) that are 

overlapped across multiple case samples with respect to control samples. Suppose that a set 

of M filtered DCN samples each with N probes, then the normalized frequency at the nth 

position can be measured as 

 
,

[ ] .                  1,  2,  ...,  
s n

s M

v

G n n N
M

 


 (5) 

 

where s represents the sample of the same variation type and vs,n  is a binary number which 

equals to 1 if the variation is present and 0 otherwise. Figure 3 shows the differences in the 

frequency of occurrence of the gains and losses between 71 normal control and 71 autistic 

samples of chromosome 7. The differences suggest further analysis to discover the 

relationship between the predicted CNVs and to classify the tested samples. 

4.2 Putative recurrent CNVs classification 

Although the predicted variant segments of each aCGH profile have their own importance, 

finding recurrent copy number variations that overlap and share the same type adds 

another dimension to link them with the targeted disease. The size of our aCGH profiles is 

relatively large and many of the variants regions of the same type (deletions/duplications) 

are found in both cases and controls.  We therefore include a filtering step by removing 

these CNVs to make it easier to find the interesting variations and reduce the number of 

data points to some subset of concatenated CNVs.  
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Fig. 3. Frequency plots of the filtered samples. A) The solid red and the dash gray lines 
represent the gain frequency of the typically developed (TD) and autistic (AU) samples, 
respectively. B) The solid blue and the dash gray lines represent the loss frequency of the TD 
and AU samples, respectively. 

Before we make a decision on the predicted segments, in this section, we extend our method 
by imposing cutoff criteria based on regional genetic information as an optimal feature 
selection. The reasons for performing this procedure are as follows. First, we seek the 
genetic structure and thus the genetic mechanisms responsible for the progression of the 
disease. Second, we would like to remove or eliminate the irrelevant features (e.g., CNVs) 
from the classification and hence, to increase the run-time speed and to improve the 
accuracy of the classification. After ranking the CNVs, a suitable set is identified and 
declared as an optimal feature set to be used for classification analysis. Although the feature 
selection step is a major step attempting to discover and reveal genetic mechanisms, it can 
not be claimed to discover the true biological relationship without further experimental 
evaluation. The extension accounts for the minimal number of probes within in each 
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Fig. 4. Schematic representation of 3 recurrent copy number variations (RCNVs) with 
different lengths (Top) and concatenation vectors of the predicted combinations of RCNVs 
(Bottom). The x-axis represents the genomic position and the y-axis represents the 
experiments indices, Ci for normal control samples and Ai for autistic samples, respectively. 
The vertical dashed lines represent the RCNVs boundaries. The red and blue bars represent 
duplication and deletion for the corresponding positions. 

segment, the intensity level represented by the log2 ratio value, and the repeat content of the 

region where the CNV is located. 

Each segment that met biological and statistical cut-off criteria is considered a CNV and 

assembled into a segmentation table for further biological analysis. Figure 4 is an illustration 

of three RCVNs with different sizes of filtered DCN data for multiple samples of normal 

control, Ci’s, and autistic, Ai‘s, individuals, respectively. 

With this setup, we apply the traditional clustering algorithms (Fuzzy c-means and k-

means) to the concatenation vectors of the predicted combinations of RCNVs to classify the 

DCN data samples and to provide insight into the pattern of the variations using the 

concatenated recurrent CNVs that are statistically significant. 

In the next section, we will investigate the classification performance using the predicted 

combinations of multiple RCNV sites of different chromosomes produced by the regional 

evaluation method presented in this section that may have direct role in the targeted 

disease, ASD. 

5. Visualization and pattern recognition 

To visualize the microarray data, we apply agglomerative hierarchical clustering algorithm 

to decide the level or scale of clustering that is most appropriate for our clustering analysis. 

It provides a graphical representation of the samples to explore the number of ways to look 

for relationships between the samples and to provide insight into the pattern of the 

recurrent CNVs. The algorithm groups the data samples based on the defined measure of 

the distances between the samples elements using similarities functions to create the 

clusters. It starts from each single sample as a cluster and it merge the samples into clusters 
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(groups or subgroups) based on the updated similarity measures (linkage), where clusters at 

one level are joined as clusters at the next level. The definition of the similarity measures 

depends on the clustering algorithm and the biological meaning of similarity. For example, a 

correlation distance, dp(x,y), based on Pearson’s correlation (6) may bring together samples 

whose probes intensity levels are different, but have a similar behavior, and which would be 

considered different by the Euclidean distance de(x,y)  (7) which is suitable for discovering 

the common CNVs. Specifically, 
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where x  and  y are the sample mean values of the two data vectors x and y with N data 

points, respectively. 
 

 

                         

Fig. 5. Hierarchical clustering of chromosome 22 using 142 samples. A) 71 autistic (AU) 
samples. B) 71 typically developed (TD) samples. Dark red represents duplications and dark 
blue represents deletions. The solid black line used to separate the AU and TD samples. 
Yellow square represents deletion region within the AU subgroup. 
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To explore the dataset before imposing the cut-off criteria, we perform unsupervised 
hierarchical clustering with the Euclidean distance as a distance metric to calculate the pair-
wise distances between the tested samples and centroid linkage method to create linkage 
between the clusters tree. The heat map is used to represent thousands of log2 ratios 
(intensity values) of the probes of each sample it uses two-color of a matrix of colored cells, 
red for duplication, where the log2 ratio is positive, and blue for deletion, where the log2 
ratio is negative. The rows represent the tested samples and the columns represent the 
probes positions, and the brightness of the cells is proportional to their intensity levels. For 
this analysis, our case-control population of study consists of 71 individuals with a 
diagnosis of autism compared to 71 typically developing controls matched for gender and 
ethnicity. Figure 5 shows an example of one of the five chromosomal regions used in this 
study. By simple comparison between the recurrent CNVs detected in the entire or subset of 
the autistic samples (Figure 5. A) and those detected in the typically developed samples 
(Figure 5. B), we can detect patterns of variations that are exclusively or selectively 
represented in one or the other group (see for example the deletions noted with yellow box). 
The yellow square show long deletion region within the AU subgroup compared to the 
other members in the AU individuals and TD controls. 

6. Conclusion  

In this chapter, we presented an overview for the analysis of genetic variations in the form 
of DNA copy number changes and their association with the targeted disease, autism 
spectrum disorder. Our study shows that our proposed algorithm, MLE, is computationally 
efficient and it can achieve even better detection capabilities by considering the effect of the 
nonuniform genomic spacing distance between the biomarkers. Moreover, to enhance our 
algorithm’s ability to map and identify regions of variation across multiple samples, we 
preformed statistical analysis on the filtered samples searching for common variations. The 
potential impact of the statistical analysis is to provide insight into the patterns of the 
variations by characterizing and classifying the samples that are involved in the targeted 
diseases. Indeed, the high frequency of variants (duplications and/or deletions) detected in 
these regions across the samples allowed the assembly of a copy number map of both 
typically developed and diseased individuals. The mapping approach reveals patterns of 
copy number change along these chromosomal intervals that are not currently represented 
in the assembly of genomic variants compiled from relatively low-resolution genome-wide 
platforms. Our findings indicate that Low copy repeat-rich intervals, known to be relatively 
susceptible to copy number changes and sequence rearrangement, show a greater degree of 
copy number alteration in diseased compared to typically developed individuals. A larger 
contribution of variations detected (duplications and/or deletions) in the total copy number 
burden differences have been reported to be associated with different genetic diseases. Our 
findings also show ethnicity is an important consideration that should be integrated into 
case-control study design. The findings suggest that autism is associated with an increased 
amount of copy number alteration in unstable segments of the genome. The experimental 
results also show that using high-resolution custom-tiled oligonucleotide array comparative 
genomic hybridization samples, improve the accuracy of the proposed methods to detect the 
true amount of structural variations of the human genome including previously reported 
variations with known biological and clinical relevance and new variations that warrant 
further investigated. To explore the idea that patterns of relatively common copy number 
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variations can increase the power of discrimination between autistic and typically 
developing patients, a set of recurrent variants that are statistically differed between the two 
groups is identified and presented. The findings suggest that combinations of copy number 
variations could provide the basis for discriminating autistic and typically developing 
groups and potentially identifying distinct subgroups within the phenotypic heterogeneity 
of autism spectrum disorder. Finally, the analysis presented in this chapter is broadly 
applicable to case-control studies of genetic diseases beyond the targeted disease, autism. 
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