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1. Introduction 

Autism and autism spectrum disorders (ASD) are diseases which are characterized by 
physical (neurological function and pathology) and behavioral (social interaction) 
abnormalities that are most commonly diagnosed in children (predominately males) 
between the ages of 2 and 10 years. Autism is a neurodevelopmental disorder. In autism the 
Central Nervous System (CNS) cells preferentially affected are the GABAergic Purkinje 
neurons of the cerebellum. However unlike classical neurodegenerative diseases, in autism, 
progressive decline is uncommon and there is a concomitant superimposition of neuronal 
hypersensitivity. This apparent contradiction can be best explained by metabolic 
abnormalities which have differing effects on specific cell types. Identifying the root of these 
pleiotropic events has been a topic of intense investigation. From a biochemical perspective, 
the preponderance of evidence implicates the breakdown of mitochondrial function. From a 
genetics perspective, genetic mutations targeting mitochondrial function collectively 
account for more than 10% of all cases, by far the largest single site genetic contribution. 
However, despite the evidence implicating impaired mitochondrial function, the extra-
mitochondrial biochemical implications and consequences of an impaired mitochondrial 
system have not been thoroughly investigated. The following chapter outlines the causes 
and implications of mitochondrial impairment in autism.  

2. Overview of mitochondrial dysfunction in ASD  

Mitochondrial dysfunction in autism has been implicated by several research groups [1-3]. 
Elevated plasma lactate, a commonly used indicator of mitochondrial dysfunction, has been 
observed to present in 20 [4] to 40 percent of ASD subjects [5]. Levels of carnitine, the 
required fatty acid carrier from the cytosol to the mitochondria, have been reported to be 
low in ASD subjects’ serum [6]. The activity of the mitochondrial electron transport chain 
(ETC), complexes I and III, has been reported to be decreased [7-9]. Glutathione, the key 
intramitochondrial reactive oxygen species (ROS) neutralizer, is decreased in ASD [2,10-13]. 
In addition, lipid peroxidation, a down-stream effect of reduced ROS deactivation, is 
increased in autistic children [14,15]. Extra-mitochondrial processing of palmitate, the key 
energy source for mitochondria, was observed to be universally increased in ASD [2]. 
Subjects with definite mitochondrial disease (according to the criteria defined by [16]) have 

a higher occurrence of autism than expected by chance in the average population [1], 
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especially of regressive autism [17]. Stressors such as fever can lead to the appearance of 

autistic phenotypic traits in individuals with mitochondrial disease [17]. Since 

neurodegeneration is a feature of mitochondrial disease, Richard Haas hypothesized that 

ASD subjects children who undergo regression and/or with symptoms of multisystem 

disorders are the populations with the highest mitochondrial disease occurrence [1].  

Despite tremendous efforts dedicated to the identification of loci associated to autism 
susceptibility, the numbers of genes and genomic regions involved in ASD families can still 
not account for the majority of autism cases, with an estimated 10% to 20% of all ASD 
explained by genetic defects [18]. However the occurrence of genetic impairments in 
mitochondrial genome and, as importantly, in the nuclear DNA coding for the estimated 
1,500 mitochondrial proteins, represents a high fraction of this estimate. A study on a 
Portuguese autism population estimated that as high as 7% of autistic cases could be 
attributed to mitochondrial respiratory chain disorders, suggesting that this might be one of 
the most common disorders associated with autism, especially since not all of the children 
had been tested for these disorders [19]. Anecdotally, a study on Copy Number Variations 
reported a copy number gain in the SUCLG2 gene encoding the beta subunit of succinyl-
CoA synthetase ligase, involved in the tricarboxylic acid (TCA) cycle, and in NDUFA11 and 
ATP5J, both involved in oxidative phosphorylation, in three autistic patients [20]. In 
addition, many linkage analyses pointed to chromosomal regions that contain 
mitochondria- related genes. At least two studies reported an association between autism 
and SLC25A12 gene, which encodes the mitochondrial aspartate-glutamate carrier AGC1 
[21,22] and whose expression has been shown to be up-regulated in autistic prefrontal cortex 
[23]; recombinant expression of SLC25A12 had been reported to increase mitochondrial 
metabolism [24]. One of the most commonly identified abnormalities in ASD, the inverted 
duplication of chromosome 15q11-q13, displayed mitochondrial dysfunction, with 
mitochondrial proliferation, partial deficiency of respiratory complex III, and moderate acid 
lactosis in two initially studied autistic patients [25]. 
Conversely, mitochondrial DNA mutations have been associated to autistic features [8]. 

Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) is 

frequently caused by the A3243G mutation in the mitochondrial tRNALeu gene and has been 

associated to autistic clinical traits [8]; another mutation of the mitochondrial genome, 

A3260G, usually associated with cardiomyopathy and myopathy, has been recently 

reported to be also associated to MELAS and autism [26]. Mitochondrial DNA depletion 

syndrome (MDS) is characterized by a reduction of the mtDNA copy number in affected 

tissues. The same mitochondrial mutation A3243G has been identified in autistic children 

with MDS [8].  

Mitochondrial DNA mutations may be far more frequent in ASD than anticipated, with a 

very interesting study on neonatal cord blood samples showing a frequency of 1/200 of 

common point mutations in mitochondrial DNA [27]; the authors state that “at least one in 

200 healthy humans harbors a pathogenic mtDNA mutation that potentially causes disease 

in the offspring of female carriers” [27]. The offspring of the transmitting females would 

indeed inherit some of the mutant mitochondria by heteroplasmy. 

The contribution of environmental factors to the elevation of autism prevalence has now 

been clearly established [28]. Some mechanisms underlying these environmental toxic 

insults have been identified and largely point to mitochondrial dysfunction. One of the most 

detailed examples is propionic acid, by-product of Clostridium Difficile and now a common 
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food preservative [29]. Propionate infused rats are an appropriate animal model of autism 

not only because of their very similar behaviour to autistic children’s but also because of 

their similar biochemical profiles [30]; for instance, carnitine levels and acyl-carnitine levels 

are respectively lower and higher in the brain of rats infused intraventricularly with 

propionate than with PBS [30]. Oxidative stress is increased in the infused rats’ brain, which 

according to the authors may lead to mitochondrial failure, or alternatively, is a result of 

mitochondrial failure induced by propionate [29]. Among the anticonvulsant drugs whose 

prenatal exposure has been associated to ASD development, valproate sodium seems to 

present the highest risk with 9% of ASD or Asperger syndrome diagnoses among the 

exposed fetuses as reported in a Scottish study [31]. Valproic acid (VPA) is a well-known 

carnitine inhibitor, with a mechanism of action involving the TCA cycle component ┙-

ketoglutarate [32]. 

It is also tempting to associate the increase in autism prevalence and the expansion of 

microwave radiation sources in our environment. Early in the eighties it was already shown 

that rat brain exposure to microwave radiation inhibited mitochondrial electron transport 

chain function, which resulted in decreased ATP and creatine phosphate levels [33]. 

Particulate matters from air or water pollution, which are now commonly found in our 

environment, have been shown to induce microglial activation as reviewed by Block and 

Calderón-Garcidueñas [34]. Microgliosis is a critical process in neurodegenerative disorders 

but also and as importantly in ASD [35]. Examples of particulate matters include 

manufactured aluminum oxide particles, the treatment of which alters mitochondrial 

potential in human brain microvascular endothelial cells [36], or the pesticide rotenone, 

which inhibits the ETC complex I and deprives cells of ATP, although not directly inducing 

microglial activation [37]. 

Biochemical abnormalities in autism are the norm, not the exception. Genetic abnormalities 

in mitochondrial processes are the most prevalent in ASD and are likely underestimated, 

mainly because of poor testing. The list of environmental toxicants clearly associated to 

ASD is expected to be growing as mitochondrial toxicology is a rapidly emerging field 

[38]. Biochemical, genetic and environmental data in ASD all point to a very likely role of 

mitochondria dysfunction in the aetiology of autism, or at least as an autism phenotype 

[39]. The causes and the effects of these abnormalities are topics of heated discussion within 

the research community. The focus of this chapter is to describe in greater detail the intra 

and intercellular role of mitochondria and the consequences of impaired mitochondrial 

function. 

3. Glutamate, mitochondrial toxicity and selective autistic neuropathology 

Reduced cerebellar Purkinje neuron density is the key neuropathological observation in 

autism [40,41]. Purkinje neurons are glutamate receiving (from excitatory climbing fibers) 

and GABA transmitting (to the deep cerebellar nuclei) neurons. Purkinje neurons coexist 

with specialized astrocytes (Bergman glia), which protect the neurons. Subjects with ASD 

have activated microglia [35], which export copious amounts of glutamate [42]. Glutamate is 

a mitochondrial toxin [43-45], and is selectively toxic to neurons [46-48]. Could glutamate be 

the cause of the mitochondrial dysfunction and selective Purkinje neuron degeneration 

observed in autism? 
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4. Extracellular glutamate transport and receptor activation 

There are two sources of extracellular glutamate near Purkinje neurons. The first is 
glutamate arising from pre-synaptic depolarization of climbing fiber neurons. This 
mechanism is estimated to result in synaptic glutamate concentrations in the low mM range, 
sufficient to activate all known glutamate receptors [49]. The second source of glutamate can 
arise from synaptic spillover, which is estimated to be in the 100-200µM range [49], or 
microglial activation which can result in mM levels of glutamate [50,51]. In situ, glutamate 
released during neurotransmission is primarily transported into astrocytes [52]. 
Accordingly, astrocytes are neuroprotective [53,54] against neuronal glutamate toxicity. 
Although the average intracellular concentration of glutamate in the central nervous system 
(CNS) is greater than 10mM [55], extracellular concentrations in the low µM range are toxic 
[56]. Therefore all major CNS cell types contain high affinity glutamate transport 
mechanisms [57] which maintain extracellular concentrations at less than 1 µM [55]. 
There is considerable regional and cell type variability of glutamate transporters. Cerebellar 
astrocytes have similar Km values for glutamate uptake relative to other brain regions (~50 
µM), however the Vmax of these astrocytes is the lowest of all brain regions studied (2.2 
nmol/min/mg protein vs. >10nmol/min/mg in cortical regions) [58]. The key glutamate 
transporters in this region and their relative contributions to glutamate uptake have been 
recently studied extensively [59-63]. The general consensus is that although Bergmann glia 
express both EAAT2 (GLT-1) and EAAT1 (GLAST), EAAT1 is responsible for the majority of 
glutamate uptake [63]. Likewise, although Purkinje neurons express both EAAT4 and 
EAAT3 (EAAC), EAAT4 is the principal glutamate uptake transporter [64]. It has been 
estimated that <10% of glutamate arising from climbing fiber depolarization is taken up by 
Purkinje neurons [64]. However, it has also been proposed that the neuronal EAAT4 
transporter is responsible for maintaining low extracellular glutamate levels in between 
neuronal firing events [59] and that this transporter has a 20-fold greater affinity for 
glutamate (2.5 µM) [65] vs. EAAT1 (48 µM), EAAT2 (97 µM), or EAAT3 (62 µM) [66]. 
Although EAAT4 is also present in astrocytes [67], cerebellar Purkinje neurons express the 
highest levels of EAAT4 in the human brain [68]. These results suggest that there is an 
inherent weakness in astrocytic glutamate uptake in cerebellar regions These data 
collectively suggest that chronic low-level exposure to extracellular glutamate would be 
expected to have a disproportionate effect on these neurons. 
Time course studies of glutamate toxicity on neurons [69] and astrocytes [70] suggest that 
toxicity resulting from chronic exposure to glutamate is mediated by intracellular metabolic 
disturbances, most notably an increase in oxidative stress and depleted glutathione levels. 
However, both receptor-dependent and receptor-independent mechanisms of glutamate 
toxicity have been reported. The N-methyl-D-Aspartate (NMDA) and the ┙-amino-3-
hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors are the most commonly 
associated with glutamate toxicity. Glutamate activates NMDA receptors with a EC50 of 2.3 
µM and AMPA receptors with a EC50 of 480 µM [71]. In neuron-astrocyte co-cultures, the 
blockade of neuronal NMDA receptors reduces glutamate toxicity whereas the blockade of 
glutamate transport into astrocytes increases neuronal glutamate toxicity [56]. These results 
suggest that the acute toxic effect of extracellular glutamate on neurons is primarily 
mediated via glutamate receptors and that glutamate uptake, primarily into astrocytes, is 
the principal deactivation / neuroprotection mechanism [72]. Studies involving co-cultures 
of astrocytes and neurons reveal that astrocytes are neuroprotective and that the uptake and 
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metabolic deactivation of glutamate is a key factor in their neuroprotection [48,53,54]. 
Receptor independent mechanisms (i.e. intracellular transport) of extracellular glutamate 
toxicity are also well documented [69,70,73]. The chronic toxic effects of glutamate are most 
likely mediated via these mechanisms. In particular, Purkinje neuron viability is dependent 
upon functional glutamate uptake and metabolism in Bergmann glia [60,61]. The regulation 
of extracellular glutamate levels and their toxicity to Purkinje neurons are determined by the 
collective ability of these cells reduce extracellular glutamate levels via transport and then to 
detoxify glutamate via intracellular metabolic deactivation.  

5. Glutamate transport and intracellular metabolism in Purkinje neurons and 
Bergmann glia 

Each molecule of glutamate transported into the cell is co-transported with 3 sodium (Na+) 
ions, one hydroxyl (OH-) or chloride (Cl-) ion, and one proton (H+) with one potassium (K+) 
ion being transported out, resulting in a net import of one positive charge (glutamate having 
a negative charge) and thus depolarization of the cell. Both Purkinje neurons and Bergmann 
glia express Na+/K+-ATPase [74], which restores the sodium gradient by exporting three 
Na+ ions and importing two K+ ions. Therefore, glutamate transport consumes one ATP per 
glutamate transported. In regards to restoring cytosolic ATP levels both astrocytes and 
neurons rely upon glucose as the first response [the rate of glycolysis is regulated by 
cytosolic ATP, see [75] for an excellent review on this topic]. Glucose utilization appears to 
be roughly equal in both Purkinje neurons and cerebellar astrocytes [76,77]. Predictably, 
glutamate uptake is therefore a secondary activator of glycolysis [78] and results in the 
stoichiometric utilization of glucose [79]. 
Pyruvate is the metabolic product of glycolysis. Studies using (2-14C)-pyruvate (TCA and 
non-TCA metabolism) indicate that both neurons and astrocytes primarily process pyruvate 
via the TCA cycle and that glutamate (50%) and aspartate (20%) are the two key metabolites 
formed. However, astrocytes also generate significant amounts of alanine with less than 10% 
of the label unaccounted for whereas in neurons a small amount of GABA is formed and 
20% of the label is unaccounted for [80]. Studies using (1-14C)-pyruvate (non-TCA 
metabolism only) indicate that in Purkinje neurons, most of the label ends up in Asp, 
whereas in cerebellar astrocytes most of the label ends up in alanine [80]. Since the synthesis 
of aspartate from pyruvate proceeds via oxaloacetate (OAA), mitochondrial pyruvate 
carboxylation must be active in neurons, as previously reported [81,82]. In contrast, non-
TCA cycle processing of pyruvate in astrocytes occurs primarily via alanine 
aminotransferase. These data clearly indicate that under normal conditions, extra pyruvate 
is preferentially processed via the first half of the TCA cycle and that glutamate is the 
predominant non-CO2 product in both neurons and astrocytes. The above data indicate that 
lactate is definitely not a significant product of pyruvate metabolism in astrocytes, but the 
possibility exists that up to 20% of pyruvate could be converted to lactate via lactate 
dehydrogenase (LDH) in Purkinje neurons. It is interesting to note that Purkinje neurons 
have a disproportionately high LDH activity relative to other CNS neurons [83].  
Studies involving purified mitochondria and cell cultures have repeatedly shown that, in the 
brain, glutamate is stoichiometrically converted to aspartate [84,85]. However more recent 
cell culture studies utilizing 15N-glutamate indicate that in astrocytes, glutamate nitrogen is 
almost exclusively converted to glutamine along with a small but significant formation of 
alanine [86,87] whereas in neurons, the glutamate nitrogen is almost exclusively converted 
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into aspartate [88,89]. In addition, in vitro tracer studies of (U-14C)-L-glutamate reveal that 
both aspartate and glutamine are labeled with the synaptosomal ratio being 2:1 in favor of 
aspartate but the astrocytic fraction being just over 1:1 in favor of glutamine [80]. Enzyme 
activity studies indicate that Purkinje neurons predominantly express aspartate 
aminotransferase (AAT), a little glutamine synthetase (GS) and almost no glutamate 
dehydrogenase (GDH), whereas astrocytes and Bergmann glia strongly express GDH and 
GS with only a minor amount of AAT [90-94]. Clearly, astrocytes and neurons metabolize 
glutamate differently. However the underlying reason has been difficult to understand until 
recently. AAT, the favored glutamate-metabolizing enzyme, is ubiquitously distributed in 
the brain and exists in both the cytosol and mitochondria [89]. The metabolic flux through 
AAT, especially in the mitochondria, has long been shown to be heavily controlled by the 
electrogenic mitochondrial aspartate/glutamate carrier (AGC) [95,96], as well as by 
metabolite substrate availability where the addition of pyruvate (which drives OAA 
through citrate synthase) or ┙-ketoglutarate (┙-KG) reduces glutamate flux, unlike malate 
(which increases OAA availability) [85,97]. These effects are dramatically reduced in liver 
mitochondria which have high GDH activity, exemplifying the brain’s reliance on AAT 
[85,97]. Recently, three independent groups have confirmed that, in situ, only neurons 
express AGC [98-100]. The lack of this carrier in astrocytes explains the increased 
mitochondrial flux of glutamate into glutamine [101] and aspartate into OAA [102], and the 
lack of deamination of aspartate in neurons [102]. 
The subsequent metabolism of aspartate in neurons and astrocytes is even more specialized. 

First of all, the two key glutamate transporters expressed in astrocytes (EAAT1, EAAT2) 

have a two times higher affinity for L-aspartate vs. L-glutamate [66], yet the 

intracellular/extracellular ratio for glutamate in astrocytes is significantly higher [86], which 

is suggestive of a very rapid intracellular aspartate metabolic rate. Comparison of 15N-

aspartate with 15N-glutamate metabolism in cultured astrocytes in the presence of adequate 

glucose reveals that 15N-aspartate flux is almost two times that of 15N-glutamate [86,101]. In 

these two studies, it is clear that the majority of aspartate and glutamate metabolism in 

astrocytes is occurring in the cytosol and that the principal products are arginine and 

glutamine, respectively. Perhaps more importantly is that it appears that glutamate transfers 

its nitrogen to glutamine via deamination in the mitochondria, not transamination, and that 

the resulting ┙-KG is metabolized via the TCA cycle [103]. These findings are remarkably 

consistent with [102] where aspartate was found to be deaminated in astrocytes. The most 

likely explanation for these findings stems from the work of Fahien et al. [104,105] where it 

was found that GDH-AAT complexes resulted in the oxidative deamination of aspartate. 

When the membrane potential gets above -20nA in neurons, EAAT4 actually exports 

aspartate [65], a property not shared by either EAAT1 [106] or EAAT2 [107], the primary 

astrocyte transporters. These data strongly suggest that neurons primarily convert 

glutamate to aspartate and export aspartate to the extracellular space where it can be taken 

up by astrocytes (Figure 1). Astrocytes, on the other hand primarily neutralize glutamate 

and aspartate by converting glutamate to glutamine and aspartate to arginine with the 

excess being metabolized via the TCA cycle.  

As discussed above, the preferred fate of glutamate in neurons is the transport of glutamate 

via the AGC into the mitochondria, conversion to aspartate via AAT, and the export of 

aspartate via AGC to the cytosol and finally out of the cell via EAAT4. Therefore the 

maintenance of high flux (and thus detoxification) of glutamate in neurons is principally 
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dependent upon mitochondrial aspartate efflux via AGC. This efflux is directly regulated by 

the mitochondrial ETC proton gradient and indirectly regulated by precursor availability for 

AAT (i.e. OAA). Aspartate efflux requires that the cytosol is acidic relative to mitochondrial 

matrix. Glutamate is transported into the mitochondria in its protonated state and aspartate 

is transported out of the mitochondria in its de-protonated state. Therefore the exchange 

process results in the net import of one proton per glutamate. This leads to acidification of 

the mitochondria, reduction in the membrane proton gradient, and thus reduction in 

aspartate efflux. To maintain the proton gradient, it is essential that the ETC is operating 

efficiently as it is this process that ejects protons from the mitochondria and maintains the 

proton gradient. Therefore to restore the electrogenic balance during glutamate exposure, 

neuronal mitochondria need to convert one NADH to NAD+ per molecule of glutamate 

imported. The standard hypothesis is that the ┙-KG formed from AAT is exported out in 

exchange for cytosolic malate. This malate is then converted to OAA via malate 

dehydrogenase which consumes one NAD+, producing one NADH which is then processed 

by complex I of the ETC. The importance of cytosolic malate in maintaining efficient 

mitochondrial processing of glutamate cannot be overstated (see [85]). The exported ┙-KG 

and aspartate are then converted to glutamate and OAA by cytosolic AAT and the resultant 

OAA converted to malate in the cytosol. However, under a toxic glutamate load, the 

cytosolic environment would not favor this reaction. Instead, cytosolic AAT will be driven 

to aspartate, not glutamate, and since neurons have no other major metabolic pathway for 

aspartate, the export of aspartate via EAAT4 would be its logical fate. Just as the export of 

aspartate from mitochondria is the rate limiting step of AAT, total cellular export of 

aspartate would be rate limiting for the metabolic detoxification of glutamate to aspartate in 

neurons (Figure 1). Increased levels of pyruvate from stimulated glycolysis combined with 

reduced mitochondrial capacity for acetyl-CoA utilization (due to mitochondrial OAA being 

 

 

Fig. 1. Neuronal Metabolism of Glutamate 
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used to create aspartate instead of citrate) would result in pyruvate being driven to lactate 

via lactate dehydrogenase (LDH). The combination of high acidity (from glutamate) and 

lactate (from glycolysis) would favor the export of lactate via the monocarboxylate 

transporter 2 (MCT2). Therefore the export of lactate via MCT2 becomes rate limiting for the 

conversion of pyruvate to lactate via LDH and the cytosolic regeneration of NAD+ (Figure 

2). As lactate builds up, the regeneration of NAD+ from LDH will go down. In the 

mitochondria, as the AGC gets overwhelmed, intra-mitochondrial ┙-KG goes up and 

NADH goes up. This results in ┙-KG dehydrogenase switching from succinate formation to 

peroxide formation [108]. The principal mechanism of detoxifying peroxide is via 

glutathione. The oxidation of GSH is one of the first toxic metabolic consequences of 

glutamate toxicity in neurons [69], and decreased GSH is a common observation in autism 

[2,11-13,109]. 

Unlike neurons, which have metabolic mechanisms that enable it to rapidly cycle glutamate, 

astrocytes must process the aspartate and glutamate they import. Astrocytes highly express 

EAAT1 which transports both aspartate and glutamate with high affinity. Astrocytes are far 

 

 

Fig. 2. Effect of Glutamate Transport on Glycolysis and Pyruvate 
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more reliant on the mitochondrial TCA cycle than neurons due to the lack of the AGC. 
Glutamate can enter the mitochondria via the dicarboxylic acid carrier [98]. Once in the 
mitochondrial matrix, two glutamate molecules can be converted to one ┙-KG and one 
glutamine via GDH and GS respectively. ┙-KG can then directly enter the TCA cycle. 
Therefore the production of ┙-KG from glutamate via GDH can completely bypass glucose 
metabolism. Normally, the primary TCA energy source is acetyl-CoA which can come from 
either glycolysis (pyruvate) or fatty acid oxidation (palmitate, 16:0) and this acetyl-CoA enters 
the TCA cycle via citrate synthase, which condenses one OAA with one acetyl-CoA to form 
citrate, which then goes through the cycle releasing two CO2 molecules ultimately leading 
back to OAA. Since ┙-KG can be derived from either citrate or glutamate, the oxidative 
capacity of the TCA cycle can be broken into two parts: OAA to ┙-KG via citrate and then ┙-
KG to OAA, independent of citrate (or acetyl-CoA for that matter). It turns out that this latter 
part of the TCA cycle has three times the capacity vs. the former [110]. So, for every one acetyl-
CoA entering via glycolysis or fatty acid oxidation, the TCA cycle can accept two additional ┙-
KG molecules. Since the primary metabolic route of glutamate directly creates ┙-KG, this 
provides an effective means of detoxifying glutamate in astrocytes. 
The TCA cycle has multiple regulatory systems. One of the more important ones is the 
succinyl-CoA/acetyl-CoA ratio. As this ratio goes up both citrate synthase and ┙-KG 
dehydrogenase are inhibited. However, the inhibition of ┙-KG dehydrogenase can be over-
ridden by high levels of ┙-KG, as is the case when glutamate is present in abundance. So the 
net effect of glutamate loading is to inhibit citrate synthase, which shuts down both aerobic 
glycolysis and fatty acid oxidation. However, this intra-mitochondrial glutamate 
detoxification pathway consumes two NAD+, which need to be restored by the ETC. When 
the succinyl-CoA:acetyl-CoA ratio gets too high, respiration is shut down. When cytosolic 
glutamate accumulates, cytosolic conversion to aspartate occurs resulting in ┙-KG. Unlike 
the aspartate shuttle which energetically operates in only one direction, the ┙-KG 
transporter is completely reversible, which enables cytosolic ┙-KG to equilibrate with 
mitochondrial levels; this leads to increased mitochondrial ┙-KG, which will over-ride the ┙-
KG dehydrogenase inhibition caused by a high succinyl-CoA:acetyl-CoA ratio. Since these 
conditions also create conditions of low NAD+/NADH ratio, the ┙-KG dehydrogenase 
reaction switches from creating succinate to creating hydrogen peroxide [108]. This 
hydrogen peroxide must be detoxified by GSH, which is why decreased GSH occurs rapidly 
upon glutamate loading. Furthermore, GSH is exclusively synthesized in the cytosol and 
then transported to the mitochondria, a process that is inhibited by glutamate [111]. The 
shut-down of mitochondrial oxidative phosphorylation results in a decrease in the 
ATP:ADP ratio which further turns on hexokinase, and since pyruvate is blocked from 
entering the TCA cycle, the anaerobic pathway becomes a critical short-term source of ATP. 
However, for anaerobic glycolysis not to become self-limiting, the cell needs to export 
lactate. Astrocytes export lactate via MCT1 [112]. 

6. Effect of glutamate on neuronal and astrocytic glutathione metabolism 

Oxidative metabolism generates reactive oxygen species (ROS). The primary intracellular 
neutralizer of ROS is GSH. The cystine-glutamate antiporter, which is highly active in 
microglia [42], is also highly expressed on both astrocytes in the granular layer and on 
Bergmann glia in the molecular layer, but not on oligodendrocytes or Purkinje neurons 
[113]. This transporter is an energy-neutral ion exchange protein that operates according to 
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the relative intracellular and extracellular concentrations of glutamate and cystine [114]. 
The fact that intracellular glutamate levels are orders of magnitude greater than 
extracellular glutamate means that this transporter’s primary purpose in astrocytes is for 
the import of cystine and does not contribute significantly under resting conditions to the 
uptake of glutamate. Astrocytes contain high concentrations of glutathione relative to 
neurons (more than 20 times higher [115]). In addition, resistance to glutamate toxicity in 
astrocytes is primarily mediated by glutathione [70]. Glutamate-derived oxidative 
phosphorylation in astrocytes is about twenty times that in neurons [116] and >80% of 
extracellular glutamate is transported into astrocytes. Since intracellular glutamate 
stimulates both glutathione synthesis [2,117] and the inward flow of cystine [114], this 
anti-porter provides astrocytes with a glutamate-dependent means of maintaining high 
GSH levels. Neurons, on the other hand, utilize EAAT2 and EAAT3 to import cysteine for 
the synthesis of GSH and this import process is competitively inhibited by glutamate 
[118]. Therefore the net effect of high levels of extracellular glutamate arising from 
activated microglia would be to preferentially starve neurons of cysteine in favor of 
ensuring adequate astrocytic levels of GSH. This observation is consistent with both in 
vitro studies that show decreased GSH levels in neurons as a result of glutamate treatment 
[69,119] and clinical studies that show that GSH levels are reduced in autism [2,11-14]. 
Furthermore, the metabolic precursors of GSH, methionine and cysteine, are also reduced 
in autism [2,12,13]. Collectively, these data suggest that glutamate toxicity resulting from 
activated microglia would simultaneously increase astrocytic GSH synthesis and 
oxidation, which would be expected to result in decreased levels of both GSH precursors 
and GSH, conditions shown to be present in autistic children. 

7. Impaired mitochondrial fatty acid oxidation in autism 

Glutamate-induced mitochondrial dysfunction indirectly and selectively suppresses 
mitochondrial fatty acid ┚-oxidation. The formation of aspartate from glutamate via the 
transaminase reaction outcompetes citrate synthase for OAA resulting in a dramatic 
decrease in citrate and effectively shutting down mitochondrial processing of acetyl-CoA 
[2]. High levels of acetyl-CoA then feedback inhibit mitochondrial ┚-oxidation. Indirectly, 
the energetic outward transport of aspartate leads to an increased flux through malate 
dehydrogenase, which causes an increase in the mitochondrial NADH/NAD+ ratio, which 
inhibits ┚-oxidation at the NAD+-linked ┚-hydroxyacyl-CoA dehydrogenase reaction [120]. 
The extra-mitochondrial effects of disrupted mitochondrial fatty acid ┚-oxidation are related 
to the carnitine-dependency of this system. Carnitine performs two essential metabolic 
functions. Its primary and most widely recognized function is to shuttle fatty acids 
(palmitate (16:0) and stearate (18:0)) from the cytosol into the mitochondrial matrix where it 
can be ┚-oxidized to acetyl-CoA. Its secondary, less recognized function is to shuttle excess 
acetyl-CoA out of the mitochondrial matrix to the cytosol (for reviews see [121-124]). 
If mitochondrial acetyl-CoA metabolism is impaired, carnitine-fatty acid cycling is impaired 

and carnitine usage is shifted to acetyl-carnitine from palmitoyl-carnitine (Figure 3). This 

results in a build-up of palmitate in the cytosol. Normally, peroxisomes only oxidize 20-30% 

of cellular palmitate [125,126]. Fatty acid transport into peroxisomes occurs via their CoA 

esters, not carnitine. Peroxisomes are designed to consume excess cytosolic fatty acids. 

However, unlike mitochondria fatty acid ┚-oxidation, which is a catabolic, energy 

generating process [127], peroxisomal ┚-oxidation plays primarily an anabolic role where 
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imported fatty acid-CoA is partially ┚-oxidized to acetyl-CoA and medium-chain fatty acids 

[128]. Within the peroxisome, this acetyl-CoA is used for the synthesis of the fatty alcohol 

that ultimately becomes the sn-1 ether in plasmalogens [129-132]. In addition to the 

synthesis of the 1-O-alkyl bond of plasmalogens, the synthesis of docosahexaenoic acid 

(DHA) also involves a peroxisomal component. Following the synthesis of 24:6 

(tetracosahexaenoic acid) via fatty acid elongation and desaturation of 18:3 (┙-linolenic acid) 

in the endoplasmic reticulum, 24:6 is transported to the peroxisome where it is ┚-oxidized to 

22:6 (DHA) [133]. Peroxisomal acetyl-CoA is normally the major source of cytosolic acetyl-

CoA. Within the cytosol, this acetyl-CoA is used for cholesterol synthesis [126,132] and other 

lipogenic processes such as VLCFA synthesis [134]. Findings of elevated DHA [135], PlsEtn, 

 

 

Fig. 3. Metabolic Consequences of Impaired Mitochondrial Tricarboxylic Acid Cycle 
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and VLCFA levels [2] in autism plasma are consistent with a combined decrease in 
mitochondrial ┚-oxidation and an increase in peroxisomal ┚-oxidation. In vitro cell culture 
assays performed on hepatocytes, neurons and astrocytes revealed that glutamate exposure 
decreased 16:0 mitochondrial ┚-oxidation and increased peroxisomal processing of 16:0 and 
cytosolic fatty acid elongation/desaturation [2]. 
It is highly speculative but nonetheless tempting to associate some of the epigenetic findings in 
autism to the recently identified role of mitochondrial acetylcarnitine in nuclear histone 
acetylation [136]. The acetylcarnitine formed in mitochondria from acetyl-CoA is indeed 
translocated to cytosol as commonly known, but also to the nucleus where it is converted to 
acetyl-CoA, which is then used as a main source of acetyl groups for histone acetylation [136]. 
The situation of high cytosolic acetylcarnitine described above would therefore be expected to 
enhance histone acetylation, since the other putative source of nuclear acetyl groups, the ATP-
citrate lyase pathway, would similarly face high citrate. On the other hand, acetylation and 
methylation are altered in Rett syndrome, an autism spectrum disorder caused by mutations 
in MeCP2, a global transcriptional repressor of methylated promoters during postnatal brain 
development [137]. Brains from MeCP2308/y mutant mice exhibit elevated histone H3 
acetylation [138], similarly to brains from Rett syndrome patients with mutant MeCP2 or 
autistic brains with MeCP2 deficiency [139], which can be explained by the role of MeCP2 in 
HDAC’s recruitment [139]. Higher histone acetylation in Rett syndrome and autism with 
MeCP2 deficiency may therefore be correlated to the putative higher histone acetylation 
resulting from the mitochondrial dysfunction model described above. 

8. Mitochondrial dysfunction and microglial activation 

As exhaustively reviewed by Chauhan and Chauhan [10], the brain is highly vulnerable to 
oxidative stress, particularly during the early part of development. The reactive oxygen species 
(ROS) generated by oxidative stress is a cause of lipid peroxidation, which has been reported 
to be increased in serum and urine from autistic children [14,15]. Lipid peroxidation is a well 
established cause of reactive aldehyde generation, which plays a key role in apoptotic 
mechanisms leading to both neuronal and glial cell death [140]. Damaged cells further 
stimulate microglial activation, which also contributes to free radical production [141].  
VLCFA accumulation is also a cause of microgliosis, as evidenced by microglial 
inflammation in subcortical region in X-adrenoleukodystrophy [142]. The increase in 
plasmalogens is expected to aggravate the damage caused by VLCFA accumulation since, as 
recently reported, VLCFA-induced microgliosis seems to be dependent on plasmalogens 
[143]. The decrease in GSH and the increase in VLCFA and/or plasmalogens observed in 
autistic subjects are therefore expected to contribute to continuous microglial activation in a 
positive feedback [2].  
The decrease in GSH and the increase in VLCFA and/or plasmalogens observed in autistic 
subjects [2] are therefore expected to both contribute to continuous microglial activation in a 
positive feedback or “vicious cycle” [144]. Microglial activation and subsequent 
“immunoexcitotoxicity” by glutamate are growingly proposed as a central causative model 
in autism [145].  

9. Mitochondrial dysfunction and the observed gender bias in autism 

There is no escaping the irrefutable epidemiological fact that autism exhibits a marked 
gender bias with approximately four times more males diagnosed as females [146-148]. 
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Prepubertal boys and girls are different, not just genetically, but biochemically as well. 
Prepubertal boys and girls have similar testosterone levels (3.9 vs. 4.7 ng/dL in [149] and 
0.41 vs. 0.45 nM in [150] for 17 ß-testosterone), but prepubertal girls have 4-fold higher 
levels of estrogen than prepubertal boys on average (5.9 +/- 9.7 pmol /L vs. 1.5 +/- 4.1) 
[151] or at least 3 times higher (9.6 pmol/L vs. <3.7 ) [150] for ß-estradiol; this difference 
masks a very high heterogeneity in the level distribution, with undetectable levels for some 
girls and elevated levels for some boys [150,151,161]. Estrogen is a well known 
neuroprotectant, especially in glutamate induced neurotoxicity [152-160]. Interestingly, the 
serum distribution levels in the Courant et al. study [150] reveal that if 5 pmol/L were 
arbitrarily selected as the minimal protective cut-off value, less than 1/3 of girls would be at 
risk versus 3/4 of boys, a gender bias identical to that observed in autism. 
Multiple mechanisms for ß-estradiol neuroprotection have been demonstrated and most 
involve the mitochondria [162,163]. The chemical structure of estrogens, with the presence 
of a phenolic A-ring, directly participates in neuroprotection as the “chemical shield” 
scavenges reactive oxygen species [164]. Another interesting mechanism seems to be 
structural as estradiol intercalates within cell membranes, preserving mitochondrial 
integrity [162].  
But the most powerful support for estrogen protection as the cause of the gender bias in 
autism comes from the work of Djouadi and colleagues [165]. The authors studied the 
simultaneous inhibition of mitochondrial 16:0 processing via an irreversible 
pharmacological CPT-I inhibitor (Etomoxir) and peroxisome proliferation via PPAR┙ 
double knockout (-/-). They observed an unexpected gender effect. 100% of the male mice 
died but only 25% of the female mice died. 100% protection of the male mice was afforded 
by pretreatment of the mice with ┚-estradiol. Clearly, ┚-estradiol is protective against 
complications arising from impaired extra mitochondrial processing of 16:0. In addition, it 
was observed that blood glucose levels of female PPAR┙ (-/-) mice recovered relatively 
quickly to Etomoxir-induced hypoglycemia but that male PPAR┙ (-/-) did not. ┚-Estradiol 
pretreated male PPAR┙ (-/-) exhibited a similar result as female PPAR┙ (-/-) mice. These 
data are consistent with the data of [166] in that recovery from insulin-induced 
hypoglycemia was significantly slower in autistic children versus non-autistic children. This 
hypoglycemic response is relevant in that glutamate toxicity creates localized hypoglycemia 
presumably due to increased glucose uptake [156]. In addition, ┚-estradiol increases lactate 
dehydrogenase activity and synthesis [167] as well as lactate export [156], which increases 
glycolysis flux capacity. ┚-estradiol also increases cytosolic acetyl-CoA utilization by 
increasing fatty acid synthase and acetyl-CoA carboxylase activity [168], which would 
irreversibly remove acetyl-CoA from the cytosolic pool and free up cytosolic carnitine, 
which would enhance mitochondrial processing of 16:0. 

10. Mitochondrial dysfunction and abnormal brain growth in autism 

Abnormal brain growth, particularly in cerebellar white matter [169-171], has been observed 
in autism. No direct link between mitochondrial dysfunction and abnormal brain growth 
has been proposed. However, the pro-osmotic effect of glutamate import in astrocytes [2], 
has been proposed as a putative mechanism. As mentioned earlier, the import of a 
glutamate molecule results in a net import of one positive charge, which in astrocytes results 
in significant swelling (up to 9% increase in volume) [172]; the swelling ceases as 
extracellular glutamate levels decrease [172]. It is therefore possible that the increased 
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circumference observed in autism is the result of continuously high extracellular 
concentrations of glutamate.  

11. Mitochondrial dysfunction and seizures in autism 

Epilepsy is a common clinical feature associated to autism; it is conservatively estimated 

that 20-25% children with ASD present with seizures, the most frequent type being complex 

partial seizures [173]. Oxidative stress [174] and subsequent mitochondrial dysfunction [175] 

are growingly recognized as being linked to seizure susceptibility, and very interestingly, 

may actually be contributing factors to epileptic susceptibility, at least in the case of 

acquired epilepsy, as after brain injury [175]. In their excellent review of the association 

between mitochondrial dysfunction and temporal lobe epilepsy, Waldbaum and Patel 

remind that the first suggestion of mitochondrial dysfunction in epilepsy arose from the 

observation that epilepsy is frequent in inherited mitochondrial disorders such as those 

associated with childhood encephalopathies [175]. Suggested causative mechanisms 

underlying a mitochondrial role in epilepsy are imbalances in glutamate and/or calcium 

signalling [176,177], or respiratory chain complex I dysfunction [178].  

12. Mitochondrial dysfunction and visual acuity 

There is still a debate as to whether children with ASD display a higher visual acuity than 
normally developing children, but numerous reports, even anecdotic, seem to support this 
common observation from parents [179,180]. The importance of dietary long chain 
polyunsaturated fatty acids, and of DHA particularly, for visual development has been 
demonstrated by several clinical trials in infants, showing benefits for DHA-rich formulas 
fed on longer periods [181]. It is therefore tempting to associate the “eagle-eyed” visual 
acuity detected in children with ASD [179] to the higher content of docosahexaenoic acid 
detected in plasma [2,135] and presumably present in retina. This assumption must however 
be nuanced by the fact that benefits on visual acuity were reported for DHA fed and 
monitored through the diet, with few studies monitoring the omega-3 body burden 
[181,182]; the umbilical cord DHA content has however been found to be positively 
correlated with visual system function [182]. Another nuance is the limit of the benefits to 
visual acuity contributed by DHA: in the DIAMOND study, which monitored the dose 
effect of DHA supplementation in infant formulas, DHA supplementation improved visual 
acuity but this improvement did not show a dose response as visual acuity did not improve 
further with higher DHA content, even if this higher dietary DHA concentration was 
reflected in higher DHA concentration in red blood cells [181]. Overall, it seems that DHA 
concentration is positively correlated with future visual function during gestation and 
infancy, with the effect of dose and endogenous/dietary balance requiring further 
investigation. 

13. Conclusive remarks 

In summary, there is a significant amount of direct and indirect evidence of mitochondrial 
dysfunction in autism. The metabolic cascade observed in autism due to mitochondrial 
dysfunction can be reproduced with glutamate. Glutamate is the most obvious perpetrator 
due to its role in microgliosis and the selective glutamergic architecture of Purkinje neurons 
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and Bergmann glia. The data and research performed to date regarding autism and 
mitochondrial dysfunction however, are unable to ascertain whether subjects who suffer 
from autism have a yet undetermined mitochondrial weakness that leads to mitochondrial 
dysfunction under circumstances that would be tolerated by non-autistic subjects, or 
whether subjects with autism have some other abnormality that results in chronic microglial 
activation and subsequent “immunoexcitotoxicity” by glutamate [145], but with otherwise 
normal mitochondrial function. Regardless of the cause of the mitochondrial dysfunction 
and related consequences, the female gender protection from autism appears to be due to 
circulating ┚-estradiol levels and its buffering effects on glucose metabolism. Accordingly, 
dietary and pharmacological therapies directed at the treatment of autism should thus focus 
on reducing intracellular mitochondrial demand by either reducing cellular uptake (or 
extracellular production) of mitochondrial demanding substrates (i.e. glutamate or glucose) 
or increasing cellular export of mitochondrial or glycolysis products (i.e. aspartate, pyruvate 
or lactate).  
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