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1. Introduction

During the analysis of real biomedical signals it can almost always be seen noise that distorts
the image. The presence of interference is associated with the specific acquisition of these
signals. For example in the case of bioelectric signals, disturbances may come from the
hardware retrieves those signals, the powerline or the bioelectric activity of body cells. The
bioelectric signals, which are widely used in most fields of biomedicine, are generated by
nerve cells or muscle cells. The electric field propagates through the tissue and can be acquired
from the body surface, eliminating the potential need to invade the biosystem. However,
using surface electrodes results in high amplitude of noise and the noise should be suppressed
to extract a priori desired information (Bruce, 2001).
There are many approaches to the noise reduction problem while preserving the variability
of the desired signal morphology. One of the possible methods of noise attenuation is
low-pass filtering such as arithmetic mean. The classical band-pass filtering is very simple
method but also very ineffective because the frequency characteristics of signal and noise
significantly overlap. Therefore there are developed other methods of noise attenuation
based on transforming the input space of signal and creating a new space with the help
of discrete cosine transform (Paul et al., 2000) or wavelets transform (Augustyniak, 2006),
based on fuzzy nonlinear regression (Momot et al., 2005), nonlinear projective filtering (Kotas,
2009), higher-order statistics at different wavelet bands (Sharma et al., 2010) or extreme points
determination by mean shift algorithm and dynamical model-based nonlinear filtering (Yan
et al., 2010).
In the case of repeatable biomedical signals, another possible method of noise attenuation is
the synchronized averaging (Jane et al., 1991). The method assumes that the biomedical signal
is quasi-cyclic and the noise is additive, independent and with zero mean. Averaging could
be performed by simple arithmetic mean or its generalization, namely weighted mean where
the weights are tuned by some adaptive algorithm.
Recently there have been published several works concerning different approaches to the
problem of determining the weights. The algorithm of adaptive estimation of the weights
is described in (Bataillou et al., 1995). In (Leski, 2002) there is described method of estimation
of the weights based on criterion function minimization. Application of Bayesian inference
to the weights estimation problem is presented in (Momot et al., 2007a) and (Momot,
2008b). Weighted averaging method based on partition of input data set in time domain is
described in (Momot et al, 2007b). The generalization of the method is presented in (Momot,
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2008a). In (Momot, 2009a), there is presented comparative study of performance of weighted
averaging methods using Bayesian inference and criterion function minimization. There were
also published works describing algorithms based on fuzzy approaches to the problem of
determining the weights. In (Momot, 2009b), there is presented the new weighted averaging
method incorporating Bayesian and empirical Bayesian inference and its extension using
fuzzy systems with fuzzy partitioning of the single repeatable input signal in the time domain.
In (Momot & Momot, 2009c), there is described the weighted averaging method, where the
weighting coefficients are fuzzy numbers instead of classical real numbers. Moreover in
(Momot, 2010), there is presented an application of Bayesian weighted averaging to digital
filtering 2D images.
Most of the mentioned above methods of weighted averaging were presented with application
to noise suppression in ECG signal, the typical biomedical signal with a quasi-cyclical
character. In the case of ECG signal the averaging in the time domain is only one of many
methods of noise attenuation, but in some medical applications the averaging is the only
method taken into account. For example in order to evaluate some clinical indexes based on
the ST depression, such as ST versus HR (ST/HR) diagram or ST/HR hysteresis, the averaged
ECG beats are necessary to compute (Bailon et al., 2002). Another example of biomedical
repeatable signal in which noise attenuation can be performed using averaging methods is the
high resolution electrocardiographic signal (HRECG). Methods of averaging help in detecting
very low amplitude waves (which are called late potentials) originating in the ventricles
of abnormal heart conditions patients (Laciar & Jane, 2001). Signal averaging methods
are also required in the case of evoked potentials (EP), the electrical potentials recorded
from the nervous system of patients, which are effects of a stimulation (in contrast to the
spontaneous potentials as in the case of electroencephalography (EEG) or electromyography
(EMG)) (Davila, 1992).
Traditional arithmetic averaging technique can be used when the noise is stationary (it is
constant level of power noise) throughout the averaging period. If this condition is violated,
increasing the input noise level during the averaging process results in increasing the residual
noise and deteriorating quality of the averaged signal. Unfortunately, the physiological noise
level often varies in tests, even if strict artifact rejection is applied (Elberling & Don, 2006).
Thus, using methods of weighted averaging is motivated by the reason that most types of
noise are not stationary and the variability of noise power can be observed.
The aim of this study is to reveal the fundamental differences among the mentioned versions
of the weighted averaging methods and to present how these differences affect the quality
of the averaged signal. In section 2, the necessary details of the compared methods are
reminded. The differences among them and their applications are studied based on numerical
experiments in section 3. The final conclusions are formulated in section 4.

2. Fundamental of weighted averaging

The biomedical signal with repetitive patterns can be (after segmentation and
synchronization) represented by:

xi(j) = s(j) + ni(j), i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , L} (1)

where N is the number of cycles to be averaged, and L is the length of the single cycle.
Typical assumption states that each signal cycle xi(j) is the sum of the signal s(j), which is
deterministic and invariant from cycle to cycle, and the random noise ni(j) with zero mean
and variance cycle σ2

i (the noise remains stationary within each evolution, but its variance
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Methods of Weighted Averaging with Application to Biomedical Signals 3

may vary from one cycle to the other). The assumptions and symbols are based on (Laciar &
Jane, 2001).
The weighted averaged cycle can be expressed as:

x(j) =
N

∑
i=1

wixi(j) j ∈ {1, 2, . . . , L}, (2)

where wi is the weight for ith signal cycle. Usually, there is taken the assumption that the
weights sum up to one (∑N

i=1 wi = 1), which leads to the unbiased estimation.
Depending on the choice of the weights, different types of the signal averaging methods can be
defined. The simplest method is arithmetical averaging, where all weights are the same, equal
to M−1. The classical procedure assumes that the weights are proportional to the inverses of
corresponding variances Johnson & Bhattacharyya (2009):

wi = σ−2
i

(

N

∑
k=1

σ−2
k

)−1

i ∈ {1, 2, . . . , N}, (3)

which leads to obtaining the arithmetical averaging weights if the noise power is the same in
all cycles. However, in practice the variability of noise power is observed and it is impossible
to measure the variances directly. Thus there are employed different methods to estimate
the noise variances or to compute the optimal weights without direct estimation of the noise
variance. These two approaches will be presented below. The Bayesian methods incorporate
estimation of the noise variations and methods using criterion function minimization usually
lead to direct computation of the weights.

2.1 Methods based on criterion function minimization

The noise variance, which appears in formula (3), can be estimated according to the formula
(Laciar & Jane, 2001):

σ̂i =
1

L

L

∑
j=1

(n̂i(j)− ni)
2 with ni =

1

N

L

∑
j=1

n̂i(j), (4)

where L is a length of the averaging window and ni is the mean value of the estimated noise
component of ith cycle in the averaging window.
Assuming that the signal is deterministic and invariant from cycle to cycle and the noise has
zero mean, the estimated noise component can be described by:

n̂i(j) = xi(j)− x(j) j ∈ {1, 2, . . . , L} (5)

and the formula (4) may be written in simplified form:

σ̂2
i =

1

L

L

∑
j=1

(xi(j)− x(j))2 , (6)

where x(j) is the averaged cycle in the analysis window.
It is worth noting that formula (6) contains x(j) defined by (2) and (3), thus the use
an iterative determination of these values could improve the estimation. Generalization
of this approach may lead to presented below Weighted Averaging method based on
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Criterion Function Minimization (WACFM) (Leski, 2002). Another method described below
is Weighted Averaging method based on Partition of input data set in time domain and
using criterion function Minimization (WAPM) (Momot et al, 2007b) and generalization of
the method (Momot, 2008a).

2.1.1 Weighted averaging method based on criterion function minimization

The main idea of the Weighted Averaging method based on Criterion Function Minimization
(WACFM) (Leski, 2002) is minimization the following scalar criterion function:

Im(w, x) =
N

∑
i=1

wm
i ρ(xi − x), (7)

where m ∈ (1, ∞) is a weighting exponent parameter and ρ(·) is a measure of dissimilarity
for vector arguments, i.e. xi = [xi(1), xi(2), . . . , xi(L)]T , and x = [x(1), x(2), . . . , x(L)]T . The
measure of dissimilarity could be for example the quadratic function ρ(t) = ‖t‖2 = tTt and
then the formula (7) can be expressed as:

Im(w, x) =
N

∑
i=1

⎛

⎝wm
i

L

∑
j=1

(xi(j)− x(j))2

⎞

⎠. (8)

Minimization the criterion function with respect to the weights vector w = [w1, w2, . . . , wN ]T

yields:

wi =
ρ(xi − x)1/(1−m)

N

∑
k=1

ρ(xk − x)1/(1−m)

i ∈ {1, 2, . . . , N}, (9)

and for the quadratic function ρ it can be expressed as:

wi =

⎛

⎝

L

∑
j=1

(xi(j)− x(j))2

⎞

⎠

1/(1−m)

N

∑
k=1

⎛

⎝

L

∑
j=1

(xk(j)− x(j))2

⎞

⎠

1/(1−m)
. (10)

It is worth noting that for the parameter m = 2 this formula is equivalent to the formula (3)
with variance estimated by the formula (6). However, the obtained for the quadratic function
ρ averaged signal is given by:

x =

N

∑
i=1

(wi)
mxi

N

∑
i=1

(wi)
m

, (11)

which is not exactly equivalent to the formula (2).
The optimal solution for minimization (7) with respect to w and x is a fixed point of (10)
and (11) and it could be obtained from the Picard iteration. Therefore the algorithm can be
described as follows, where ε is a preset parameter.
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Methods of Weighted Averaging with Application to Biomedical Signals 5

1. Fix m ∈ (0, ∞). Initialize x
(0) as the arithmetically averaged signal. Set the iteration index

k = 1.

2. Calculate w(k) for the kth iteration using the formula (10).

3. Update the averaged signal for the kth iteration x
(k) using the formula (11) and w(k).

4. If ‖w(k−1) −w(k)‖ > ε then i ← i + 1 and go to 2.

It is suggested to set parameter m = 2, because if parameter m tends to one, then the trivial
solution is obtained where only one weight is equal to one and for large m the weights are
similar to each other, like in arithmetic averaging (Leski, 2002).

2.1.2 Weighted averaging method based on partition of input data set

Below it is described the Weighted Averaging method based on Partition of input data set in
time domain and using criterion function Minimization (WAPM) (Momot et al, 2007b) and
generalization of the method (Momot, 2008a). The main idea of the WAPM is minimization
the following scalar criterion function:

I(w1,w2) =
∥

∥

∥x
1w1 − x2w2

∥

∥

∥

2
= (x1w1 − x2w2)

T(x1w1 − x2w2), (12)

where the input set x = [x1,x2, . . . ,xN ] (xi = [xi(1), xi(2), . . . , xi(L)]T) is divided into two
disjoint subsets x1 and x2 and w1 and w2 are the weights vectors, respectively.
Taking into account the constraints wT

1 1 = 1 and wT
2 1 = 1, which mean that sum of weights

for each vector is equal to one, minimization (12) with respect to the weights vectors yields:

w1 =
(

(x1)Tx1
)−1

(x1)Tx2w2 +
1 − 1

T
(

(x1)Tx1
)−1

(x1)Tx2w2

1
T
(

(x1)Tx1
)−1

1

(

(x1)Tx1
)−1

1 (13)

and

w2 =
(

(x2)Tx2
)−1

(x2)Tx1w1 +
1 − 1

T
(

(x2)Tx2
)−1

(x2)Tx1w1

1
T
(

(x2)Tx2
)−1

1

(

(x2)Tx2
)−1

1. (14)

The optimal solution for minimization (12) with respect to w1 and w2 is a fixed point of (13)
and (14) and it could be obtained from the Picard iteration, which leads to the averaged signal
given by:

x =
N1x

1w1 + N2x
2w2

N
, (15)

where N1 and N2 are the cardinalities of the two disjoint subsets x1 and x2, i.e. N1 + N2 = N.
Although described above method involves partitioning of input set into two disjoint subsets,
it can be generalized by increasing the number of disjoint subsets (Momot, 2008a). The
generalized WAPM algorithm can be described as follows, where ε is a preset parameter.

1. Determine partition of input set x into disjoint subsets xc with cardinalities Nc, where
c ∈ {1, 2, . . . , C}, N1 + N2 + . . . + NC = N and C ≥ 2. Calculate the following values,
which remain constant during the whole iteration procedure:
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X−1
1,1 =

(

(x1)Tx1
)−1

,

X−1
2,2 =

(

(x2)Tx2
)−1

,

. . .

X−1
C,C =

(

(xC)TxC
)−1

,

X1,C = (x1)TxC,

X2,1 = (x2)Tx1,
. . .

XC,C−1 = (xC)TxC−1.

(16)

Initialize weights w
(0)
C as in the case of arithmetical averaging (all the same and equal to

N−1
C ). Set the iteration index k = 1.

2. Calculate w
(k)
1 for the kth iteration using

w
(k)
1 = X−1

1,1 X1,Cw
(k−1)
C +

1 − 1
T X−1

1,1 X1,Cw
(k−1)
C

1T X−1
1,11

X−1
1,11. (17)

3. Calculate w
(k)
c for the kth iteration using

w
(k)
c = X−1

c,c Xc,c−1w
(k)
c−1 +

1 − 1
T X−1

c,c Xc,c−1w
(k)
c−1

1T X−1
c,c 1

X−1
c,c 1, (18)

for c ∈ {2, . . . , C}.

4. If ∑
C
c=1 ‖w

(k−1)
c −w

(k)
c ‖ > ε then k ← k + 1 and go to 2.

5. Calculate averaged signal

x =
1

N

C

∑
c=1

Ncx
cwc. (19)

It is suggested to use this method with equal in number of elements subsets and interlaced
partitioning, i.e. to divide the input set into subsets with cardinalities equal N/C, where each
of the subset indexes was equal to one plus remainder in division cycle index by C (xc =
{xc,xc+C,xc+2C, . . . ,xc+N−C} for c = 1, 2, . . . , C), to obtain the best performance (Momot,
2008a).

2.2 Methods based on statistical inference

Below there are presented weighted averaging methods, which incorporate Bayesian
inference and the expectation-maximization technique: the Empirical Bayesian Weighted
Averaging algorithm (EBWA) (Momot et al., 2007a) and the Empirical Bayesian Weighted
Averaging using Cauchy distribution algorithm (EBWA.C) (Momot, 2008b). There is also
presented the Simplified Empirical Bayesian Weighted Averaging algorithm (SEBWA) using
method of moments to estimate the unknown parameters of signal and noise distributions
(Momot, 2009b).
All the Bayesian methods are based on the assumption that the random noise ni(j), which
appears in signal cycle xi(j) (see formula (1)), is zero-mean Gaussian with variance for

366 Applied Biomedical Engineering
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Methods of Weighted Averaging with Application to Biomedical Signals 7

the ith cycle σ2
i and the second component of the sum, i.e. the useful signal s =

[s(1), s(2), . . . , s(L)], has also Gaussian distribution with zero mean and covariance matrix
B = diag(η2

1 , η2
2 , . . . , η2

N). The zero-mean assumption for the useful signal expresses no prior
knowledge about the real distance from the signal to the baseline.
From the Bayes rule it could be calculated the posterior distribution over the useful signal and
the noise variance, which is proportional to

p(s,α|x,β) ∝
N

∏
i=1

α
L
2

i exp

⎛

⎝−1

2

N

∑
i=1

L

∑
j=1

(xi(j)− s(j))2 αi

⎞

⎠

L

∏
j=1

β
1
2

j exp

⎛

⎝−1

2

L

∑
j=1

(s(j))2 β j

⎞

⎠ ,

(20)

where αi = σ−2
i and β j = η−2

j .

The main idea of the Bayesian method is to maximize this posterior distribution. The values
s and α, which maximize it, can be calculated by setting the derivative of the logarithm of
the posterior distribution to zero with respect to αi and with respect to s(j) respectively. The
values can be expressed as:

αi =
L

L

∑
j=1

(xi(j)− s(j))2

, i ∈ {1, 2, . . . , N}, (21)

and

s(j) =

N

∑
i=1

αixi(j)

β j +
N

∑
i=1

αi

, j ∈ {1, 2, . . . , L}. (22)

Unfortunately it is impossible to measure β j directly and the following methods estimate these
values in different ways.

2.2.1 Empirical Bayesian weighted averaging algorithm

The Empirical Bayesian Weighted Averaging algorithm (EBWA) assumes the gamma prior
for β j with scale parameter λ and shape parameter p for all j ∈ {1, 2, . . . , L} and exploits
the iterative expectation-maximization technique (Momot et al., 2007a). Conditional expected
value of β j is given by:

E(β j|s(j)) =
2p + 1

(s(j))2 + 2λ
, j ∈ {1, 2, . . . , L}. (23)

Assuming that p is a positive integer, the estimate λ̂ of hyperparameter λ can be calculated
based on first absolute sample moment:

λ̂ =

⎛

⎜

⎜

⎜

⎜

⎝

Γ(p)(2p − 1)

(2p − 1)!!
2p− 3

2

L

∑
j=1

|s(j)|

L

⎞

⎟

⎟

⎟

⎟

⎠

2

, (24)

367Methods of Weighted Averaging with Application to Biomedical Signals
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where (2p − 1)!! = 1 · 3 · . . . · (2p − 1), or based on third absolute sample moment:

λ̂ =

⎛

⎜

⎜

⎜

⎜

⎝

Γ(p)(2p − 3)

(2p − 3)!!
2p− 7

2

N

∑
j=1

|x(j)|3

N

⎞

⎟

⎟

⎟

⎟

⎠

2
3

, (25)

however in this case assumption that p is greater than 1 is required.
Summarizing, the Empirical Bayesian Weighted Averaging (EBWA) algorithm can be
described as follows, where ε and p are preset parameters.

1. Initialize s(0) ∈ RL as in the case of arithmetical averaging (all the same and equal to N−1)
and set iteration index k = 1.

2. Calculate the hyperparameter λ(k) using (24) in the case of EBWA.1 (or using (25) in the

case of EBWA.3, but only for p > 1), next β
(k)
j using (23) for j ∈ {1, 2, . . . , L} and α

(k)
i using

(21) for i ∈ {1, 2, . . . , N}.

3. Update the signal s(k) using (22), β
(k)
j and α

(k)
i .

4. If ‖s(k) − s(k−1)‖ > ε then k ← k + 1 and go to 2, else set the averaged signal x = s(k) and
stop.

It is suggested to use this method with parameter p = 1 (hence EBWA.1), because
performed numerical experiments indicate that increasing values of p usually did not improve
performance of the method (Momot, 2009a).

2.2.2 Empirical Bayesian weighted averaging using Cauchy distribution algorithm

The presented above EBWA method requires assumption that certain parameter p is a positive
integer. The observation that increasing values of p usually did not improve performance
of the method has become the motivation to extension of the algorithm for some values of
p < 1. It can be observed that for p = 1

2 , function p(s(j)|λ) is Cauchy probability distribution
function:

p(s(j)|λ) =
√

2λ

π (s(j)2 + 2λ)
(26)

with the scale parameter equal to
√

2λ and the location parameter equal to 0. All absolute
moments of the Cauchy distribution are infinite, but the first and third quartiles are the linear
functions of scale parameter:

Q1 = −
√

2λ, Q3 =
√

2λ. (27)

Thus the hyperparameter λ can be estimated based on sample interquartile range:

λ̂ =
(Q̂3 − Q̂1)2

8
. (28)

Therefore the Empirical Bayesian Weighted Averaging using Cauchy distribution algorithm
(EBWA.C) can be described as follows, where ε is a preset parameter (Momot, 2008b).
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Methods of Weighted Averaging with Application to Biomedical Signals 9

1. Initialize s(0) ∈ RL as in the case of arithmetical averaging (all the same and equal to N−1)
and set iteration index k = 1.

2. Calculate the hyperparameter λ(k) using (28), next β
(k)
j using (23) for j ∈ {1, 2, . . . , L} and

α
(k)
i using (21) for i ∈ {1, 2, . . . , N}.

3. Update the signal s(k) using (22), β
(k)
j and α

(k)
i .

4. If ‖s(k) − s(k−1)‖ > ε then k ← k + 1 and go to 2, else set the averaged signal x = s(k) and
stop.

2.2.3 Simplified empirical Bayesian weighted averaging algorithm

Below there is presented the Simplified Empirical Bayesian Weighted Averaging algorithm
(SEBWA) which does not use hierarchical probabilistic model and does not require the
determination of parameter p. In this method the unknown parameters of signal and noise
distributions are estimated using method of moments (Momot, 2009b).

Giving assumption as described previously, but β = η−2
1 = η−2

2 = . . . = η−2
N , the posterior

distribution of signal (see formula 20) can be calculated from the Bayes rule explicitly as
Gaussian distribution with mean vector m:

∀j ∈ {1, 2, . . . , L} m(j) =

N

∑
i=1

αixi(j)

β +
N

∑
i=1

αi

(29)

and covariance matrix equal to γ−1 multiplied by the identity matrix of dimension L, where

γ = β +
N

∑
i=1

αi. (30)

Therefore the original signal s can be estimated as m̂ using (29) and the unknown parameters
αi for i ∈ {1, 2, . . . , M} and β can be estimated using method of moments (the estimated
parameters of random distribution are expressed in terms of its moments which are

substituted by the corresponding sample moments). Values α−1
i are noise variations in each

cycle and taking into account the mean equals zero

α̂i =
L

L

∑
j=1

(xi(j)− s(j))2

, i ∈ {1, 2, . . . , N}. (31)

Value β−1 is variation of the original signal and taking into account the zero-mean assumption

β̂ =
L

L

∑
j=1

(s(j))2

. (32)

Therefore the Simplified Empirical Bayesian Weighted Averaging algorithm (SEBWA) can be
described as follows, where ε is a preset parameter.
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10 Will-be-set-by-IN-TECH

1. Initialize s(0) ∈ RL as in the case of arithmetical averaging (all the same and equal to N−1)
and set iteration index k = 1.

2. Calculate β(k) using (32) and α
(k)
i using (31) for i ∈ {1, 2, . . . , M}.

3. Update the signal s(k) using (29), β(k) and α
(k)
i , assuming s(k) = m.

4. If ‖s(k) − s(k−1)‖ > ε then k ← k + 1 and go to 2, else set the averaged signal x = s(k) and
stop.

It is suggested to use this method with fuzzy partition of signal cycle (this extension is
presented in the next subsection), because the numerical experiments indicate that the
simplified Bayesian method gives worse results with compare to the EBWA method, however
using this method with fuzzy partition gives much better results with compare to the EBWA
method (even EBWA with fuzzy partition) (Momot, 2009b).

2.3 Fuzzy extensions to weighted averaging methods

This subsection presents two aspects of possible fuzzy extensions applied to weighted
averaging methods: fuzzy partition of signal cycle proposed in (Momot, 2009b) and using
the fuzzy numbers as coefficients of weight vector instead of classical real numbers (applied
to described above WACFM method in (Momot & Momot, 2009c)).

2.3.1 Fuzzy partition of signal cycle

The algorithms of weighted averaging can be extended by partition each signal cycle of the
length L. The new idea of signal partition differs from previously presented in subsection
2.1.2 that earlier the set of N cycles was divided into disjoined subsets with cardinalities Nc

and now the partition concerns each cycle separately, i.e. the length of averaging window
changes.
The partition may be performed by using traditional (sharp) or fuzzy membership function.
When the input signal is divided into K parts:

xk
i (j) =

{

xi(j), j ∈ {(k − 1)L/K + 1, . . . , kL/K}
0, j ∈ {1, . . . , L} − {(k − 1)L/K + 1, . . . , kL/K} (33)

for k ∈ {1, 2, . . . , K}, this partition will be called sharp. Taking into account Gaussian
membership function with location parameter equal ak = (k − 0.5)L/K (for k ∈ {1, 2, . . . , K})
and scale parameter b = 0.25L/K, defined by:

μ(ak ,b)(j) = exp

⎧

⎨

⎩

−
(

j − ak

b

)2
⎫

⎬

⎭

, k ∈ {1, 2, . . . , K}, (34)

it is possible to divide the input signal into K fuzzy parts:

xk
i (j) =

xi(j) · μ(ak ,b)(j)

K

∑
k=1

μ(ak ,b)(j)

, k ∈ {1, 2, . . . , K}. (35)

In both cases i is the cycle index i ∈ {1, 2, . . . , N} and j is the sample index in the single cycle
j ∈ {1, 2, . . . , L} (all cycles have the same length L). The idea of this extension is to perform K
times the averaging for k ∈ {1, 2, . . . , K} input data and then sum the weighted averages.
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Although the partition may be performed by using traditional (sharp) or fuzzy membership
function, the numerical experiments presented in (Momot, 2011) indicate that in the case of
sharp partition incorrectly chosen number of parts may result in even worse results than the
one obtained for the arithmetic averaging. Therefore it is suggested to use the fuzzy partition
rather than the sharp partition (especially for the signals with unknown characteristics).

2.3.2 Using fuzzy numbers as coefficients of weight vector

Another aspect of possible fuzzy extensions applied to weighted averaging methods is using
the fuzzy numbers as coefficients of weight vector instead of classical real numbers. This
idea was presented for described above WACFM method in (Momot & Momot, 2009c), where
the coefficients were replaced with symmetrical triangular fuzzy numbers. Consequently, the
weighted average was a vector containing triangular fuzzy numbers and as the necessary to
compute distance, between the input signal (vector of real numbers) and the averaged signal,
was taken the distance between the real number and the α-cut of the corresponding fuzzy
number.
The fuzzy membership function of a symmetrical triangular fuzzy number A can be
expressed as:

μA(x) = max

{

1 − |x − mA|
rA

, 0

}

, (36)

where mA is the center point of the fuzzy number and rA is its radius. Thus, the α-cut of the
fuzzy number A (α ∈ [0, 1]), defined as the ordinary subset {x ∈ R : μA(x) ≥ α}, is given by:

(A)α = [mA − rA(1 − α), mA + rA(1 − α)]. (37)

The distance between a real number x and the α-cut of the symmetrical triangular fuzzy
number A can be written explicitly as:

ρα(x, A) = max {|x − mA| − rA, 0} (38)

and when the arguments of distance function ρα(·, ·) are N-dimensional vectors, the formula
can be expressed as:

ρα(x,A) =
N

∑
i=1

(ρα(xi, Ai))
2 . (39)

Therefore, the Fuzzy Weighted Averaging algorithm based on Criterion Function
Minimization (FWACFM) can be described as follows, where ε is a preset parameter (Momot
& Momot, 2009c). It is assumed that values of parameters r (the radius of all symmetrical
triangular fuzzy numbers) and α (the cutting level) remain constant during all iterations.

1. Determine parameters r and α. Initialize centers of fuzzy weights w(0) setting all the same
values equal to N−1. Set the iteration index k = 1.

2. Calculate vector of centers of fuzzy weights w(k) as:

w
(k)
i =

(

ρα(xi, x)
1

1−m

)/

(

N

∑
k=1

ρα(xk, x)
1

1−m

)

, (40)

for i ∈ {1, 2, . . . , N}.
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3. Calculate the averaged signal as:

x
(k) =

(

N

∑
i=1

(W
(k)
i )mxi

)

/

(

N

∑
i=1

(W
(k)
i )m

)

, (41)

where W
(k)
i is a symmetrical triangular fuzzy number with center given by (40) and radius

r.

4. If ‖w(k−1) −w(k)‖ > ε then k ← k + 1 and go to 2.

5. Calculate the final averaged signal as:

x =

(

N

∑
i=1

(w
(k)
i )mxi

)

/

(

N

∑
i=1

(w
(k)
i )m

)

. (42)

It is worth noting that during the iteration process both vectors: the averaged signal and
the weights are treated as vectors of fuzzy numbers. At the end of the procedure the fuzzy
averaged signal is defuzzified.
This algorithm is generalization of the original WACFM method because for radius equal
zero both methods are equivalent. The numeric experiments presented in (Momot & Momot,
2009c) indicate that for some positive values of radius parameter such generalization of
WACFM method can outperforms the original method. However, further research for method
of automatic determinating this parameter is needed because even small increasing its value
could rapidly increase the root mean square error.
Summarizing, taking into account higher computational complexity the Fuzzy WACFM
algorithm than the original algorithm and difficulties in proper choosing the parameters r
and α, usefulness of this method is rather limited. Therefore, the Fuzzy WACFM algorithm
can be treated as an interesting theoretical study of the problem of using the fuzzy numbers
as coefficients of weight vector instead of classical real numbers.

2.4 Adaptation of weighted averaging methods to 2D images

In the case of linear spatial filtering the response of the filter is given by a sum of products
of the filter coefficients and the corresponding image pixels in the area spanned by the filter
mask. For arithmetic mean filtering all the coefficients are the same and sum up to one. Mean
filtering is often used to reduce noise in images due to its simplicity. It is an efficient method
for reducing the amount of intensity variation between one pixel and the next. Mean filtering
minimizes the influence of pixel values which are unrepresentative of their surroundings.
Like the mean filter, the median filter considers each pixel in the image, looking at its nearby
neighbors, to decide whether or not it is representative of its surroundings. It replaces the
pixel value with the median of neighboring pixel values instead of replacing it with the mean
of those values. Mean filtering is special case of weighted averaging filtering where the filter
mask coefficients are nonnegative and sum up to one (often the pixel at the center of the
mask is multiplied by a higher value than any other, thus giving this pixel more importance
in the calculation of the average). In this context, median filtering can be treated as an
adaptive weighted averaging filtering. For median filtering the mask coefficients are not
always constant, there is only one non-zero coefficient (equal one) and which coefficient is
non-zero depends on result of the sorting operation.
When the mask coefficients are not constant there is a need of procedure how to compute
the coefficients. Below there is presented a method for computing the values of the mask
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coefficient based on the described above weighted averaging method created originally for
noise reduction in biomedical signal. The technique of adaptation of weighted averaging
methods to digital filtering 2D images was introduced in (Momot, 2010) where the author
used the Simplified Empirical Bayesian Weighted Averaging algorithm (SEBWA), which is
described above in 2.2.3.
Given the radius R of the square mask and the input image f of X × Y dimension, the
output image g dimension is (X − 2R) × (Y − 2R). For each pixel f (x, y), i.e. x ∈ {R +
1, R + 2, . . . , X − R} and y ∈ {R + 1, R + 2, . . . , Y − R}, there is computed sum based on the
neighborhood of the pixel which determines the pixels g(x, y) of the output image:

g(x, y) =
R

∑
r=−R

R

∑
s=−R

wrs f (x + r, y + s). (43)

Each value g(x, y) could be calculated by one of the described above iterative algorithms. In
the case of SEBWA method the algorithm is given by following procedure:

1. Initialize g(x, y)(0) as the arithmetic average:

g(x, y)(0) =
1

(2R + 1)2

R

∑
r=−R

R

∑
s=−R

f (x + r, y + s). (44)

If the sample variance of the neighborhood of the pixel:

σ2(x, y) =
1

(2R + 1)2

R

∑
r=−R

R

∑
s=−R

(

f (x + r, y + s)− g(x, y)(0)
)2

(45)

is greater than zero, set the iteration index k = 1 else stop.

2. Calculate the hyperparameter α
(k)
rs as:

α
(k)
rs =

(

f (x + r, y + s)− g(x, y)(k−1)
)−2

, r, s ∈ {1, 2, . . . , R} (46)

and β(k) according to the formula:

β(k) =
(

g(x, y)(k−1)
)−2

. (47)

3. Update the average g(x, y)(k) for kth iteration as:

g(x, y)(k) =

R

∑
r=−R

R

∑
s=−R

α
(k)
rs f (x + r, y + s)

β(k) +
R

∑
r=−R

R

∑
s=−R

α
(k)
rs

. (48)

4. If
(

g(x, y)(k) − g(x, y)(k−1)
)2

> ǫ then k ← k + 1 and go to 2, else stop.
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The algorithm assumes that the values f (x, y) are in interval [0, 1]. Thus parameter β(k) is

always positive, although for some values r and s the parameter α
(k)
rs could be undefined

because of dividing by zero (the pixel represented by (x + r, y + s) is equal the average

g(x, y)(k−1) in kth iteration). In such case the parameter α
(k)
r′s′ should be set to a value

significantly greater than other parameters α
(k)
rs .

Numerical experiments presented in (Momot, 2010) evaluate this method with comparison
to traditional arithmetic average filtering (mean filtering) and median filtering for synthetic
and real images in presence of salt-and-pepper and Gaussian noise. Analyzing results of
these methods in the case of salt-and-pepper noise (appearing as white and black dots
superimposed on an image), it can be stated that using the new method gives results the
same or slightly worse than the median filter. The mean filter for such type of noise gives
poor results as expected, but the good results of the new method which originates from mean
filtering is worth emphasizing. In the case of Gaussian noise analysis of the results shows
that the best results are obtained for mean filtering as expected but the results for the new
method are only slightly worse (median filter for such type of noise gives the worst results as
expected).
Because in reality noise is often characterized by mixture of these two types, the hypothesis
that the new method will give the best results in such cases was suggested. Nevertheless
the conducted so far numerical experiments do not confirm such hypothesis and taking into
account high computational complexity of this method its usefulness seems to be rather
limited. Therefore, similarly as in the case of described above the Fuzzy WACFM algorithm
in subsection 2.3.2, this method could be treated as an interesting theoretical study of the
adaptation of weighted averaging methods to 2D images.

3. Numerical experiments

In this section there is presented performance of the described above methods. In all
experiments, using weighted averaging, calculations were initialized as the means of
disturbed signal cycles and the parameter ε was equal to 10−6. For the computed averaged
signal the performance of tested methods was evaluated by the root mean-square error
(RMSE) between the deterministic component and the averaged signal. The maximal absolute
difference between the deterministic component and the averaged signal (MAX) was also
computed.
The simulated signal cycles were obtained as the same deterministic component with added
independent realizations of random noise. As the deterministic component was taken ECG
signal ANE20000, analytical signal compliant with the European Standard EN 60601-2-51
(2003). It is the standardized analytical ECG signal from the CTS database (Zywietz et al.,
2001), designed to reproduce the typical ECG waveform with 60 bpm (beats per minute) heart
rate.
This section contains results of several numerical experiments, which show the differences
among the weighted averaging methods and the possibility of their applications. First
subsection presents the influence of the number of cycles to be averaged on the results of the
averaging procedure, next shows the impact of changes in the amplitude and type of noise on
the performance of the investigated methods and last subsection describes results obtained
when the fuzzy and sharp partition of the ECG signal is applied.
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3.1 Influence of the averaged cycles number on the results of the averaging procedure

A series N of ECG cycles was generated with the same deterministic component and
zero-mean white Gaussian noise with different standard deviations or real muscle noise with
different amplitude. The amplitude of noise was constant during each cycle. The parameter
N was equal 20, 40, 60, 80 or 100. For the first, second, third and fourth N/4 cycles, the
noise standard deviations were respectively 0.1s, 0.5s, 1s, 2s, where s is the sample standard
deviation of the deterministic component. Figure 1 presents the signal to be averaged for
N = 60. The amplitude of the signal is expressed in μV and the length of the deterministic
signal L is equal 1000.

Fig. 1. ANE20000 with added Gaussian noise.

Table 1 presents the results of averaging 20 cycles obtained as the root mean-square error
(RMSE) between the deterministic component and the averaged signal. The maximal absolute
difference between the deterministic component and the averaged signal (MAX) is also
shown in the table. The lower index G characterizes the results obtained for the Gaussian
noise and the M indicates the muscle noise.

Method RMSEG MAXG RMSEM MAXM

AA 36.58372 107.12475 29.13075 91.23949

WACFM 13.76586 43.15516 17.73509 66.74813

WAPM.2 6.215809 23.274264 8.224947 27.706856

WAPM.3 6.472495 24.816161 7.955619 23.171022

WAPM.4 6.399116 22.656614 8.112725 23.318876

SEBWA 6.138603 22.835092 7.672932 24.281101

EBWA.1 6.084599 23.163887 7.542227 24.861945

EBWA.C 5.933567 23.092718 7.167177 24.713475

Table 1. Results for averaging 20 cycles.

The evaluated methods are described by following abbreviations:

AA – the traditional Arithmetic Averaging;

WACFM – the Weighted Averaging method based on Criterion Function Minimization (the
required parameter m is set to 2, it is the value suggested by author of the method in (Leski,
2002));
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WAPM – the Weighted Averaging method based on Partition of input data set in time domain
and using criterion function Minimization (number after dot describes number of disjoint
subsets of input data set);

SEBWA – the Simplified Empirical Bayesian Weighted Averaging method;

EBWA.1 – the Empirical Bayesian Weighted Averaging method with hyperparameter λ
calculated based on first absolute sample moment (the required parameter p is set to 1,
it is the value suggested by author of the method in (Momot, 2009a));

EBWA.C – the Empirical Bayesian Weighted Averaging method using Cauchy distribution.

The results presented in table 1 show that all the weighted averaging methods give the similar
values of RMSE or MAX except the WACFM method which gives the more than twice as
worse results, although better than one obtained using traditional arithmetic averaging (AA).
The best method in this case seems to be the EBWA.C and this applies to both Gaussian and
muscle noise.

Method RMSEG MAXG RMSEM MAXM

AA 25.48282 90.57738 18.04031 53.39217

WACFM 4.459371 14.307712 12.65819 43.43847

WAPM.2 4.364517 14.906725 5.530065 18.993917

WAPM.3 4.347873 14.549218 4.775429 16.448935

WAPM.4 4.324780 14.256036 5.176974 16.936097

SEBWA 4.260886 14.473659 4.688686 14.488379

EBWA.1 4.228607 14.336413 4.646224 14.305369

EBWA.C 4.153096 13.956814 4.541089 13.865779

Table 2. Results for averaging 40 cycles.

The results of averaging 40 cycles contained in table 2 show that in the case of Gaussian noise
all the weighted averaging methods give the similar values of RMSE or MAX. Although in
the case of muscle noise the WACFM method once again gives the more than twice as worse
results, although still better than one obtained using traditional arithmetic averaging (AA).
The best method in this case seems to be the EBWA.C and this applies to both Gaussian and
muscle noise.

Method RMSEG MAXG RMSEM MAXM

AA 20.35780 71.61070 15.71738 48.69969

WACFM 3.825289 12.139730 12.44298 54.07430

WAPM.2 3.729522 12.222603 4.967362 14.089614

WAPM.3 3.684434 12.966805 4.198599 16.084199

WAPM.4 3.723764 12.982499 4.357827 15.039165

SEBWA 3.634302 12.292184 4.198425 16.198985

EBWA.1 3.61344 12.20644 4.168981 15.990323

EBWA.C 3.569731 11.982379 4.102664 15.675835

Table 3. Results for averaging 60 cycles.

The results of averaging 60 cycles contained in table 3 show that all the weighted averaging
methods give the similar values of RMSE or MAX both Gaussian and muscle noise (except
of the WACFM method). Although the best method in this case seems to be the EBWA.C. As
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expected the results indicate that increasing number of cycles to be averaged decreasing the
root mean square errors as well as the maximal absolute difference.

Method RMSEG MAXG RMSEM MAXM

AA 18.37609 77.90424 14.24187 47.40299

WACFM 3.281969 9.794294 4.030636 12.747331

WAPM.2 3.276318 10.421047 4.218003 12.839638

WAPM.3 3.232206 9.746258 3.691453 11.585205

WAPM.4 3.261982 9.962358 3.80167 10.47284

SEBWA 3.186362 9.657737 3.479337 11.553013

EBWA.1 3.177097 9.607379 3.460802 11.482392

EBWA.C 3.151826 9.463573 3.424195 11.293873

Table 4. Results for averaging 80 cycles.

The results of averaging 80 cycles contained in table 4 are similar to the ones in the table 3 (the
60 cycles averaging procedure). For Gaussian and muscle noise all the weighted averaging
methods give the similar values of RMSE or MAX and the slightly better method seems to be
the EBWA.C. The same pattern can be observed in table 5 contained the results of averaging
100 cycles.

Method RMSEG MAXG RMSEM MAXM

AA 16.38897 57.06793 13.50228 39.93048

WACFM 2.829289 8.738847 3.726777 11.334553

WAPM.2 2.892244 8.895864 4.02018 12.07286

WAPM.3 2.806800 9.118727 3.561343 10.197009

WAPM.4 2.775190 8.569817 3.638291 11.357989

SEBWA 2.729694 8.378217 3.207977 9.226357

EBWA.1 2.721339 8.511705 3.193742 9.175142

EBWA.C 2.700835 8.544868 3.164265 9.031031

Table 5. Results for averaging 100 cycles.

The obtained results (tables 1 - 5), which can be compared because of the same the noise
characteristics in all conducted experiments, indicate that increasing number of cycles to be
averaged N decreases the root mean square errors as well as the maximal absolute difference.
Thus it seems to be obvious that the better results will be obtained when the N is larger.
Although in real application this conclusion may not be held because of problem of time
alignment which is critical in the analysis of repetitive signals. Attempt of improvement
of signal quality by increasing number of cycles to be averaged increases also the risk of
misalignment caused by both noise and signal nonstationarity.

3.2 Influence of noise amplitude changes on the results of the averaging procedure

In the previous subsection the noise amplitude changes between the cycles (constant during
each cycle) were described by the following function, where N is the number of cycles to be
averaged:

A0(i) =

⎧





⎨





⎩

0.1, i ∈ {1, . . . , N/4}
0.5, i ∈ {N/4 + 1, . . . , N/2}
1, i ∈ {N/2 + 1, . . . , 3N/4}
2, i ∈ {3N/4 + 1, . . . , N}

(49)
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multiplied by s, the sample standard deviation of the deterministic component. Now by
changing the function A0, which determines the noise amplitude changes within each cycle,
the influence of noise level on the results of the averaging procedure is investigated. The
number of cycles to be averaged is constant in the next experiments and equal 60.
Figure 2 presents the cycles of the signal with added nonstationary Gaussian noise. The noise
amplitude is described by following function:

A1(i) =

⎧





⎨





⎩

0.1, i ∈ {1, . . . , 6}
0.1 + (i − 6)/18, i ∈ {7, . . . , 42}
2, i ∈ {43, . . . , 54}
(61 − i)/3, i ∈ {55, . . . , 60}.

(50)

Fig. 2. ECG signal to be averaged with the noise amplitude described by function A1(·).
Table 6 presents the results of averaging 60 cycles obtained as RMSE (the root mean-square
error between the deterministic component and the averaged signal) and MAX (the maximal
absolute difference between the deterministic component and the averaged signal). Used
abbreviations are the same as in the previous subsections. Comparing the results to the ones
presented in table 3, it can be seen that despite the same range of noise amplitude level (from
0.1 to 2), now the results are worse in both cases: Gaussian and muscle noise. All the weighted
averaging methods give the similar values of RMSE or MAX except the WACFM method
which gives the more than twice as worse results, although better than one obtained using
traditional arithmetic averaging (AA). It is worth noting that the WACFM method in the case
of rapidly changing the noise amplitude showed numerical instability.

Method RMSEG MAXG RMSEM MAXM

AA 26.64724 77.79896 19.75347 60.37421

WACFM 14.24589 49.80394 17.84805 80.87108

WAPM.2 5.443441 17.119353 8.052216 26.413713

WAPM.3 5.407122 16.690267 6.933108 20.198006

WAPM.4 5.391607 16.598576 7.314647 27.541761

SEBWA 5.338154 16.257010 6.849912 25.334237

EBWA.1 5.304617 16.036901 6.745417 25.654471

EBWA.C 5.190697 16.181674 6.506906 25.451207

Table 6. Results in the case of the noise amplitude described by function A1(·).
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All the presented above results show that all the weighted averaging methods give usually
the similar values of RMSE or MAX, the methods based on statistical inference are slightly
better than the methods based on criterion function minimization and the EBWA.C method
seems to be the best. The next experiment show that this conclusion may not be held. Figure
3 presents the cycles of the signal with added nonstationary Gaussian noise to be averaged
where the noise amplitude is described by following function:

A2(i) =

⎧

⎨

⎩

i/12, i ∈ {1, . . . , 24}
2, i ∈ {25, . . . , 36}
(61 − i)/12, i ∈ {37, . . . , 60}.

(51)

Fig. 3. ECG signal to be averaged with the noise amplitude described by function A2(·).
Table 7 presents the results of averaging procedure and it can be seen that in this case the
best seems to be the WAPM methods, especially WAPM.2 where the input set is divided into
two disjoint subsets. In the case of Gaussian noise this method gives the best results both for
RMSE and MAX. In the case of real muscle noise this method gives the best result only for
MAX and minimal RMSE is obtained for WAPM.3.

Method RMSEG MAXG RMSEM MAXM

AA 24.95884 86.02304 22.18302 63.14914

WACFM 12.12508 47.95216 8.338565 51.949784

WAPM.2 6.97295 23.53681 7.664572 24.181065

WAPM.3 7.129491 25.233519 7.443705 30.669492

WAPM.4 7.566451 26.480298 7.986691 26.380763

SEBWA 12.12508 47.95216 8.338565 51.949784

EBWA.1 12.12508 47.95216 8.338565 51.949784

EBWA.C 12.12508 47.95216 8.338565 51.949784

Table 7. Results in the case of the noise amplitude described by function A2(·).

Another interesting fact is equal results for WACFM and all the methods based on Bayesian
inference caused the possibility of only one non-zero weight. In this case the methods find
the least disturbed cycle and set the corresponding weight equal to 1. In the case of WAPM
method the least number of non-zero weights is equal to the number of disjoined subsets.
Here this property proved to be effective.
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In the next experiment the cycles of the signal are contaminated by added nonstationary
Gaussian noise with the amplitude described by following function:

A3(i) =

⎧

⎨

⎩

(25 − i)/12, i ∈ {1, . . . , 24}
1/12, i ∈ {25, . . . , 30}
(i − 30)/15, i ∈ {31, . . . , 60}.

(52)

Figure 4 presents the cycles of the signal and table 8 shows the results of averaging procedure
in this case. Like previously all the weighted averaging methods give the similar values of
RMSE or MAX (except the WACFM method), the methods based on statistical inference are
slightly better than the methods based on criterion function minimization and the EBWA.C
method seems to be the best.

Fig. 4. ECG signal to be averaged with the noise amplitude described by function A3(·).

Method RMSEG MAXG RMSEM MAXM

AA 22.18602 75.84577 20.08812 69.75064

WACFM 6.70973 21.06666 9.59511 30.20457

WAPM.2 3.530179 12.508598 3.84337 12.16353

WAPM.3 3.939755 12.860902 3.828325 12.001807

WAPM.4 3.393327 12.382687 3.773901 11.322390

SEBWA 3.048759 13.518930 3.747146 10.741282

EBWA.1 3.024732 13.315327 3.729486 10.967476

EBWA.C 2.993796 13.191613 3.686413 11.094574

Table 8. Results in the case of the noise amplitude described by function A3(·).

The last experiment study the results with presence of noise with amplitude characteristics
described by:

A4(i) = i/30, i ∈ {1, . . . , 60}. (53)

The signal to be averaged is presented in figure 5 and table 9 shows the results of averaging
procedure. In this case the best seems to be the WAPM.2 method. All the weighted averaging
methods give the similar values of RMSE or MAX and equals for WACFM and all the
methods based on Bayesian inference caused finding the least disturbed cycle and set the
corresponding weight equal to 1.
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Fig. 5. ECG signal to be averaged with the noise amplitude described by function A4(·).
Method RMSEG MAXG RMSEM MAXM

AA 22.19804 80.13893 16.19718 51.03785

WACFM 4.563198 15.679271 8.915569 28.417666

WAPM.2 4.220262 12.790181 6.802766 17.392957

WAPM.3 4.942776 17.736005 6.660585 23.792032

WAPM.4 5.453174 20.018136 7.315934 21.823084

SEBWA 4.563198 15.679271 8.915569 28.417666

EBWA.1 4.563198 15.679271 8.915569 28.417666

EBWA.C 4.563198 15.679271 8.915569 28.417666

Table 9. Results in the case of the noise amplitude described by function A4(·).

3.3 Influence of the partition of the signal on the results of the averaging procedure

Below there are presented results of numerical experiments which investigate how partition
of the input signal affects the results of the averaging procedure. In the experiments it is
studies both sharp and fuzzy partitions described in subsection 2.3.1 and because of numerical
instability of WACFM algorithm the method is omitted. The number of parts K is in {2, 3, 4, 5}
and for K = 1 the original method is used. Similarly to the previous subsection the number of
cycles to be averaged is constant in the next experiments and equal 60.
First experiment studies influence of the partition on the root mean square error in the case
presented in figure 1, where the signal is disturbed by zero-mean Gaussian noise with constant
amplitude of noise during each cycle. For the first, second, third and fourth 15 cycles, the
noise standard deviations were respectively 0.1, 0.5, 1, 2, multiplied by s, i.e. the sample
standard deviation of the deterministic component. Results presented in table 3 show the
RMSE equal 20.35780 in the case of the traditional arithmetic averaging method and the RMSE
of the weighted averaging methods range from 3.569731 (EBWA.C) to 3.825289 (WACFM).
This time the results are slightly different because of randomness of the noise and the RMSE
for the traditional arithmetic averaging method is equal 22.09798. Detailed results for the
weighted averaging methods are presented in table 10.
The root mean square errors presented in table 10 are computed in both type of partitions:
sharp and fuzzy, with taking into consideration varying number of parts K. Obviously for
K = 1 the results obtained for sharp and fuzzy partitions are equal (the signal in the single
cycle is not divided). Analyzing the results presented in table 10 it is easy to conclude
that without the partition all method gives similar RMSE although the methods based on
Bayesian inference (SEBWA, EBWA.1, EBWA.C) are slightly better. The partition in the case of
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methods based on criterion function minimization (WAPM.2, WAPM.3, WAPM.4) results in
deterioration of the RMSE (the same pattern may be seen for the WACFM method although
the numerical instability of the algorithm makes it difficult and it is the reason that the results
are not presented).

Method type K = 1 K = 2 K = 3 K = 4 K = 5

WAPM.2 sharp 3.671434 3.735696 3.830139 3.981567 4.08268
fuzzy 3.733926 3.808319 3.934622 4.046011

WAPM.3 sharp 3.588868 3.735696 3.830139 3.981567 4.08268
fuzzy 3.733926 3.808319 3.934622 4.046011

WAPM.4 sharp 3.603876 3.624834 3.67803 3.706631 3.766816
fuzzy 3.627341 3.665056 3.681049 3.757504

SEBWA sharp 3.563763 3.570995 2.943464 3.112997 2.762172
fuzzy 3.574001 2.884799 3.084993 2.777102

EBWA.1 sharp 3.547627 3.437116 3.022750 3.185023 3.024058
fuzzy 3.478558 2.967808 3.166432 3.039432

EBWA.C sharp 3.50404 2.823939 3.184680 3.562267 3.363044
fuzzy 2.955845 3.110675 3.242250 3.655863

Table 10. RMSE for zero-mean Gaussian noise with amplitude described by function A0(·).

Next experiment studies influence of the partition on the root mean square error in the case
presented in figure 3, where the cycles of the signal were disturbed by nonstationary Gaussian
noise with the noise amplitude described by function A2(·). It is interesting case because here
the best seems to be the WAPM method and using the Bayesian methods results in the same
value of RMSE. In this experiment the RMSE for the traditional arithmetic averaging method
is equal 25.25697 and detailed results for the weighted averaging methods are presented in
table 11.

Method type K = 1 K = 2 K = 3 K = 4 K = 5

WAPM.2 sharp 6.581978 6.878741 7.114349 7.615843 7.950328
fuzzy 6.842354 7.083266 7.499244 7.751919

WAPM.3 sharp 6.913927 6.878741 7.114349 7.615843 7.950328
fuzzy 6.842354 7.083266 7.499244 7.751919

WAPM.4 sharp 7.348039 7.425919 7.52601 7.751074 7.85626
fuzzy 7.411294 7.532835 7.740782 7.784718

SEBWA sharp 11.50770 11.66183 9.444625 10.08938 9.07164
fuzzy 11.31708 9.30354 9.51357 8.564705

EBWA.1 sharp 11.50770 11.66183 9.555289 10.20881 9.443687
fuzzy 11.31708 9.305964 9.642958 8.869182

EBWA.C sharp 11.50770 8.726462 5.347378 5.509787 5.98894
fuzzy 8.695319 5.481904 6.983782 6.328657

Table 11. RMSE for zero-mean Gaussian noise with amplitude described by function A2(·).

The results presented in table 11 show that the partition in the case of methods based on
statistical inference improves the results, even significantly for the EBWA.C method (the
RMSE decreases more than twice).
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The improvement or deterioration of results obtained using the partition are not expected in
the cases when the amplitude of noise is constant within each cycle. The difference can be
explained by randomness of the noise level in each part of the divided signal cycle despite
the same value of standard deviation of random variable with Gaussian distribution which
characterize the noise. Utility of the partition seems to be obvious in the cases when the
assumption of noise amplitude constancy within each cycle is not hold. Presented below
results of numerical experiments where the the amplitude of noise is not constant within each
cycle show improvement of the root mean square errors for all tested methods.
Figure 6 presents the ECG signal to be averaged in this experiment, which is disturbed by
Cauchy noise. The location parameter of Cauchy distribution is equal to 0 and the scale
parameter is set to 0.01s, where s is the standard deviation of the deterministic component,
i.e. the original ANE20000 signal.

Fig. 6. ECG signal disturbed by Cauchy noise with scale parameter 0.01s.

The RMSE for the traditional arithmetic averaging method is equal 38.25505 and detailed
results for the weighted averaging methods are presented in table 12.

Method type K = 1 K = 2 K = 3 K = 4 K = 5

WAPM.2 sharp 4.293157 3.590644 5.802226 4.875072 3.05765
fuzzy 3.782668 3.981781 3.457431 3.059209

WAPM.3 sharp 4.336904 3.590644 5.802226 4.875072 3.05765
fuzzy 3.782668 3.981781 3.457431 3.059209

WAPM.4 sharp 4.124156 3.46319 2.910611 2.551464 2.364648
fuzzy 3.560695 3.018473 2.807478 2.468142

SEBWA sharp 4.044945 3.195667 2.195166 1.917149 1.644676
fuzzy 3.396122 2.191550 2.215406 1.721535

EBWA.1 sharp 4.027516 3.093357 2.410249 2.033164 1.840781
fuzzy 3.328734 2.384026 2.307351 1.923214

EBWA.C sharp 3.970909 2.622315 2.405902 1.896787 1.818165
fuzzy 2.966283 2.475908 2.14492 1.918657

Table 12. RMSE in the case of Cauchy noise with scale parameter 0.01s.

Analyzing the results it can be observed the improvement of the root mean square errors for
all tested methods at least for some values of K. As was mentioned in the subsection 2.3.1 in
the case of sharp partition incorrectly chosen number of parts may cause the deterioration of
the results.
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Figure 7 presents the ECG signal to be averaged in the last experiment, which is disturbed
by Cauchy noise with the location parameter 0 and the scale parameter 0.05s, the standard
deviation of ANE20000 signal. As can be seen the input signal is very distorted, particularly
visible are many random impulse values. The RMSE for the traditional arithmetic averaging
method is equal 2143.182 and detailed results for the weighted averaging methods are
presented in table 13.

Fig. 7. ECG signal disturbed by Cauchy noise with scale parameter 0.05s.

Method type K = 1 K = 2 K = 3 K = 4 K = 5

WAPM.2 sharp 26.33396 23.59549 18.82174 16.77062 15.80005
fuzzy 22.58925 19.25907 17.36819 15.80776

WAPM.3 sharp 23.19694 23.59549 18.82174 16.77062 15.80005
fuzzy 22.58925 19.25907 17.36819 15.80776

WAPM.4 sharp 25.47250 20.02517 14.65732 13.77551 12.44631
fuzzy 20.07785 15.25705 14.32465 12.49090

SEBWA sharp 22.60814 17.82965 10.86278 10.33561 8.407054
fuzzy 17.94750 10.86471 10.68507 8.42861

EBWA.1 sharp 21.00193 15.65491 10.68224 9.928945 8.798122
fuzzy 16.40589 10.69901 10.31931 8.69519

EBWA.C sharp 30.63047 24.34970 16.48281 12.77003 10.85225
fuzzy 26.39931 16.21782 15.39638 11.52634

Table 13. RMSE in the case of Cauchy noise with scale parameter 0.05s.

Such great distortion of the signal in real cases obviously causes rejection of the disturbed
signal, however this example shows that having the a priori information about the number
of cycles and the length of the single cycle allows using some weighted averaging methods
which recover the data with the relatively small error (compare the RMSE 2143.182, for the
arithmetic averaging, and 8.407, for the SEBWA method with the sharp partition for K = 5).

4. Summary

This chapter presents several methods of weighted averaging: based on criterion function
minimization (WACFM, WAPM) and on statistical inference (EBWA.1, EBWA.3, EBWA.C,
SEBWA) together with fuzzy extensions, which use the fuzzy partition the signal cycle as well
as using fuzzy numbers as coefficients of weight vector. The adaptation of SEBWA method to
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filtering of 2D images is also presented. This study reveals the fundamental differences among
the weighted averaging methods and presents, through several numerical experiments, how
these differences affect the quality of the averaged signal.
The most frequently used method, due to its simplicity, is the arithmetical averaging. The
improvement of results obtained by the method can be reached rejecting the very noisy cycles.
Averaging with rejecting very noisy cycles can be treated as weighted averaging method
where the weights corresponding these cycles are set to zero. The crucial problem is how
to find these cycles. The presented weighted averaging methods implement the automatic
determining the weights, such that the most noisy cycles have the smallest weights (even
zero in particular) and the least noisy ones receive the greatest weights, which increase their
influence on the resulting averaged signal. Analyzing the presented results of performed
numerical experiments, it is difficult to determine the best method, because for various power
and type of noise accompanying the signal, different methods appear to give the best results.

This research was partially supported by Polish Ministry of Science and Higher Education as
Research Project N N518 406438.
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