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1. Introduction 

The function of visual attention is to identify interesting areas in the visual scene so that 
limited computational resources of a human or an artificial machine can be dedicated to the 
processing of regions with potentially interesting objects. Already early computational 
models of visual attention (Koch and Ullmann, 1985) suggested that attention consists of 
two functionally independent stages: 
• in the preattentive stage features are processed rapidly and in parallel over the entire 

visual field until the focus of attention has been identified, which triggers the eye 
movement towards the target area; 

• in the second phase, the computational resources are dedicated towards the processing 
of information in the identified area while ignoring the irrelevant or distracting 
percepts.

Visual attention selectivity can be either overt to drive and guide eye movements or covert, 
internally shifting the focus of attention from one image region to another without eye 
movements (Sun and Fisher, 2003). Here we are interested in visual attention that involves 
eye movements and how to implement it on a humanoid robot. Overt shifts of attention 
from one selected area to another were demonstrated for example in face recognition 
experiments  (Yarbus, 1967). Although the subjects perceived faces as a whole in these 
experiments, their eye movements showed that their attention was shifted from one point to 
another while processing a face. The analysis of fixation points revealed that the subjects 
performed saccadic eye movements, which are very fast ballistic movements, to acquire data 
from the most informative areas of the image. Since high velocities disrupt vision and also 
because the signal that the target had been reached would arrive long after the movement 
had overshot, saccadic eye movements are not visually guided. The input to the motor 
system is the desired eye position, which is continuously compared to an efference copy of 
the internal representation of the eye position. 
Many computational models of preattentive processing have been influenced by the feature 
integration theory (Treisman and Gelade, 1980), which resulted in several technical 
implementations, e. g. (Itti et al., 1998), including some implementations on humanoid 
robots (Driscoll et al., 1998; Breazeal and Scasselatti, 1999; Stasse et al., 2000; Vijayakumar et 
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al., 2001). With the exception of (Driscoll et al., 1998), these implementations are mainly 
concerned with bottom-up, data-driven processing directed towards the generation of 
saliency maps. However, many theories of visual search, e. g. guided search, suggests that 
there are several ways for preattentive processing to guide the deployment of attention 
(Wolfe, 2003). Besides the bottom-up pointers towards salient regions, there is also a top-
down guidance based on the needs of the searcher. 

Figure 1. Humanoid head used in the experiments. It has a foveated vision system and 7 
degrees of freedom (two DOFs in each eye and three DOFs in the neck) 

Although bottom-up attention has been studied extensively in the past and is relatively well 
understood, it is still not easy to implement it in real-time on a technical system if many 
different feature maps are to be computed as suggested by the feature integration theory. 
One possible solution is to apply distributed processing to realize the extraction and 
analysis of feature maps in real-time. We have therefore developed a suitable computer 
architecture to support parallel, real-time implementation of visual attention on a humanoid 
robot. The guiding principle for the design of our distributed processing architecture was 
the existence of separate visual areas in the brain, each specialized for the processing of a 
particular aspect of a visual scene (Sekuler and Blake, 2002). It is evident from various visual 
disabilities that the ability of the brain to reassign the processing of visual information to 
new brain areas is rather limited and that it also takes time. Instead, visual information is 
transferred along a number of pathways, e. g. magnocellular pathway, parvocellular-blob 
pathway, and parvocellular-interblob pathway (Rolls and Deco, 2003), and visual processes 
are executed in well defined areas of the brain. Visual perception results from 
interconnections between these partly separate and functionally specialized systems. Thus 
our goal was to design a system that will allow us to transfer information from the source to 
a number of computers executing specialized vision processes, either sequentially or in 
parallel, and to provide means to integrate information from various streams coming at 
different frame rates and with different latencies. The transfer of information in the system 
can be both feed-forward (bottom-up processing) and feed-backward (top-down effects). 



Visual Attention and Distributed Processing 
of Visual Information for the Control of Humanoid Robots 425

Figure 2. Bottom-up visual attention architecture based on feature integration theory. 
Compared to the architecture proposed by (Itti et al., 1998), there are two additional streams: 
motion and disparity. They are both associated with the magnocellular processing pathway 
in the brain, whereas color, intensity, and orientation are transferred along the parvocellular 
pathway. Red circles indicate the distribution of visual processes across the computer 
cluster. Each circle encloses the processes executed by one computer. Our system also 
includes the control of eye movements 

Besides the distributed implementation to realize real-time behavior of the system for the 
control of a humanoid robot, we also studied the incorporation of top-down information 
into the bottom-up attention system. Top-down signals can bias the search process towards 
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objects with particular properties, thus enabling the system to find such objects more 
quickly.  

2. Bottom-up preattentive processing 

Figure 2 shows our distributed implementation of bottom-up visual attention, which is a 
modified proposal of (Itti et al., 1998). From the robot’s camera, images are distributed 
across a number of computers and a set of filters is applied to the original stream at each 
node in the first line of processors. Each of them corresponds to one type of retinal feature 
maps, which are calculated at different scales. Within each feature processor, maps at 
different scales are combined to generate a global conspicuity map that emphasizes 
locations that stand out from their surroundings. The conspicuity maps are combined into a 
global saliency map, which encodes the saliency of image locations over the entire feature 
set. The time-integrated global saliency map is supplied as an input to a winner-take-all 
neural network, which is used to compute the most salient area in the image stream.  

2.1 Generation of saliency maps 

We have implemented the following feature processors on our system: color, intensity, 
orientation, motion, and disparity (see also Figure 2). Especially the generation of disparity, 
motion, and orientation feature maps are time consuming processes and it would be 
impossible to implement and visualize all of them on one computer and in real-time. The 
most computationally expensive among them is the generation of orientation feature maps, 
which are calculated by Gabor filters. They are given by 

Φ x( )=
k

μ,ν

2

σ2
exp −

k
μ,ν

2

x
2

2σ2
exp ik

μ ,ν

T
x( )− exp −

σ2

2
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where kμ.ν = kν[cos(φμ), sin(φμ)]T. Gabor kernels were suggested to model the receptive fields 
of simple cells in primary visual cortex. In (Itti et al., 1998) a single scale kν and four 
orientations φμ = 0, 45, 90, 135, were used. It has been shown, however, that there exist 
simple cells sensitive not only to specific positions and orientations, but also to specific 
scales. We therefore applied Gabor kernels not only at four different orientations but also at 
four different scales. For the calculation of motion, we used a variant of Lucas-Kanade 
algorithm. A correlation-based technique was used to generate disparity maps at the 
available frame rate (30 Hz). 
At full resolution (320 x 240), the above feature processors generate 2 feature maps for color 
(based on double color opponents theory (Sekuler and Blake, 2002)), 1 for intensity, 16 for 
orientation, 1 for motion and 1 for disparity. Center-surround differences were suggested as 
a computational tool to detect local spatial discontinuities in feature maps that stand out 
from their surround. Center-surround differences can be computed by first creating 
Gaussian pyramids out of the initial feature maps. From the uppermost scale If(0), where f is 
the corresponding feature, maps at lower scales are calculated by filtering of the map at the 
previous scale with a Gaussian filter. The resolution of a map at lower scale is half the 
resolution of the map at the scale above it. Center-surround differences are calculated by 
subtracting pyramids at coarser scale from the pyramids at finer scale. For this calculation 
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the pyramid maps at coarser scales are up-sampled to finer scales. We calculated the center-
surround differences between the pyramids If(c), c = 2, 3, 4, and If(s), s = c + Δ, Δ = 2, 3. This 
results in 6 maps per feature. 
The combination of center-surround differences into conspicuity maps for color Jc(t),
intensity Jb(t), orientation Jo(t), motion Jm(t), and disparities Jd(t) at time t involves 
normalization to a fixed range and searching for global and local maxima to promote feature 
maps with strong global maxima. For each modality, center-surround differences are 
combined into conspicuity maps at the coarsest scale. This process is equivalent to what has 
been implemented by (Itti et al., 1998) and we omit the details here. The conspicuity maps 
are finally combined into a global saliency map S(t)

S(t) = w
c
J

c
(t) + w

b
J

b
(t) + w

o
J

o
(t) + w

m
J

m
(t) + w

d
J

d
(t) . (2) 

The weights wc, wb, wo, wm, and wd can be set based on top-down information about the 
importance of each modality. In the absence of top-down information, they can be set to a 
fixed value, e. g. 0.2, if all five features are to have the same influence. Finally, to deal with a 
continuous stream of images, the saliency maps need to be time-integrated 

S
int
t( )= γ δ

S
int
t − δ( )+G

σ
*S t( ),  0 < γ  < 1,  (3) 

where δ  1 is the difference in the frame index from the previous saliency map and Gσ * S(t)
is the convolution of the current saliency map with the Gaussian filter with standard 
deviation σ.

2.2 Winner-take-all network 

The aim of the preattentive processing is to compute the currently most salient area in the 
image so that the robot’s eye can saccade towards this area and place it into the center of the 
fovea, thus enabling the robot to dedicate its computational resources to the processing of 
the foveal image area in the next processing step. Winner-take-all network has been 
suggested as means to calculate the focus of attention from the saliency map  (Koch and 
Ullmann, 1987). We use the leaky integrate-and-fire model to build a two layer 2-D neural 
network of first order integrators to integrate the contents of the saliency map and choose a 
focus of attention over time. It is based on the integration of the following system of 
differential equations: 
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where ui(x, t) is the membrane potential of the neuron of the i-th layer located at x at time t,
τi is the time constant of the i-th layer,  wi is the weighting function of the lateral connections 
of the i-th layer between locations x and y and wco(x,y) is the weighting function of 
connections between the first and the second layer. Functions wi(x,y) are given by: 
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Function wco(x,y) models the coupling effects between the neurons of the network including 
long-range inhibition and short-range excitation to produce the winning neuron. It is 
defined as: 
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We used Euler's method to integrate Equations (4). The integration frequency was set to 100 
Hz and is higher than the timing of the vision signal (30 Hz). Hence before updating the 
integrated saliency map Sint, Equations (4) are integrated a few times as temporal 
smoothing. When the potential of one of the neurons of the second layer u2(x, t) reaches the 
adaptive firing threshold, the robot eyes move so that the most salient area is placed over 
the fovea. Vision processing is suppressed during the saccade. Since postattentive 
processing has not been integrated into the system yet, the robot just waits for 500 ms before 
moving its eyes back to the original position. At this point the neurons of the second layer 
are reset to their ground membrane voltage as global lateral inhibition and a local inhibitory 
signal is smoothly propagated from the first to the second layer at the attended location as 
inhibition of return. The strength of the inhibitory effect is gradually reduced as the time 
passes to allow for further exploration of the previously attended regions. 

Figure 3. The FeatureGate top-down biasing system added to the simplified architecture 
from Figure 2. The top-down feature vectors are fed to the FeatureGate system, which finds 
the inhibitory signals for the conspicuity maps (created in parallel by the bottom-up 
system). To the right, the resulting saliency map (upper right) and color opponency 
conspicuity map with inhibition from the FeatureGate subsystem 

3. Top-down guidance 

As already mentioned in Section 2, feature-wide top-down effects can be introduced into the 
system by selecting different weights when combining the conspicuity maps into a single 
saliency map by means of Eq. (2). A recent model by (Navalpakkam and Itti, 2006) computes 
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optimal weights based on the observer’s prior beliefs about the scene (target and distractors) 
to arrive at the linear combination of feature maps that best separates the sought for feature 
from its expected background. Boosting certain types of features over the others is, however, 
still a broad mechanism, best suited for biasing higher-level search towards certain kind of 
data, and not well suited for pinpointing specific features. 
Another approach is to introduce context-dependent spatial restrictions on the search, with 
inhibition on areas not likely to have features the system searches for. (Balkenius et al., 2004) 
present an adaptive contextual system where the conspicuity map content at the current 
fixation serves as the contextual cue as to where, in absolute or relative terms, the desired 
feature is likely or unlikely to be. The saliency map is boosted or inhibited accordingly. This 
kind of mechanism is more specific, in that it can explicitly focus on, or disregard, areas 
independently of its bottom-up saliency.  
If the goal is to introduce top-down influences looking for specific features, we need a 
different kind of mechanism. More precisely, we want to be able to give a particular feature 
vector and bias the saliency towards points that in some way or another match that feature 
vector. One way to accomplish this has been proposed in FeatureGate model of human 
visual attention (Cave, 1999). This model introduces top-down effects by lateral inhibition of 
activation in feature maps. At every given point, the inhibition is a function of this point’s 
nearness to the expected feature vector as compared to the nearness of neighboring points to 
the same feature vector. The measure of nearness must be defined by a suitable metrics ρ. A 
point receives inhibition when a neighboring area is closer to the target top-down feature tf
than the current location x. The model conversely boosts points proportionally to their 
distinctiveness at each level (defined as the sum of absolute differences to the neighboring 
points). Top-down inhibition and local distinctiveness are weighted and combined. The 
results are gated up from fine to coarse scales, effectively increasing the spatial extent of the 
inhibition within each level, finally resulting in a pyramid of inhibitory values for different 
spatial scales. 
Let Nc(x) be the neighborhood of location x at level c in the pyramid and let Sc(x) be all pixels 
in the neighborhood that are closer to the target than x:

S
c

x( )= y ∈N
c

x( );ρ I
tf

y;c( )( )< ρ I
tf

x;c( )( ){ }, (7) 

Let Itf(0) be the map generated by processing the image with the top-down target feature 
processor at full resolution. The top-down inhibition I

tf

d is calculated as the value 

proportional to the difference in the distance from the target feature  
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For each j, j = c, m, i, o, d, we (optionally) also calculate the distinctiveness I
j

d

I
j
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We obtain the signal for inhibition by weighting these two measures 
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I
j

inh x;c( )= αI
j

d x;c( )− βI
tf

d x;c( ). (10) 

The next, coarser pyramid level is constructed by comparing each point in a small 
neighborhood Nc-1(x’) (2x2 points by default) at the previous level and propagating only the 
least inhibited point to the point x at the next level: 
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j
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y;c − 1( ), y = arg max
y∈Nc−1 x '( )

I
j

inh y;c − 1( ){ }. (11) 

The process is repeated until we get - at the top-level of the pyramid - a single element 
representing the globally most salient point with respect to the bottom-up map and, 
optionally, the distinctiveness. The level below contains the most salient point in each of the 
four quadrants of the image and so forth. The actual values do not encode how good the 
matches are as they are relative to other points in the image. With α = 0 we get a pure top-
down system well adapted for use together with a separate bottom-up system. However, 
the proposed computational mechanism for the integration of both systems described below 
is robust enough so that the precise settings are not very important for the overall 
functionality. It is also possible to set α and β in such a way that the system behaves 
similarly to the one described by (Cave, 1999) and these were the parameters used in our 
experiments.
To integrate the result of the above algorithm into the saliency map that can be supplied to 
the winner-take-all network, we generate a second conspicuity map based on the position 
(at the appropriate pyramid level) of the most salient top-down point xj with respect to the 
feature map j and the given top-down feature vector. The following formula is used to 
generate this second map 

M
j
x;t( )=

1,  x = x
j

M
j
x;t −1( )*0.9,  x ≠ x

j

.  (12) 

Top-
down

influence 

Total
fixations

Target
fixations

Target
fixations

percentage
0% 62 23 37% 

10% 65 31 48% 
20% 53 30 57% 
30% 33 19 58% 
40% 20 14 70% 
50% 19 16 84% 
75% 14 13 93% 
100% 6 6 100% 

Table 1. Fixation data 
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Figure 4. Target fixations as a function of top-down influence. A 30 second image sequence 
was run through the system with different influence settings. The attended object is fairly 
salient by itself with 37% of fixations when using the bottom-up saliency system only. The 
top-down system is able to rapidly boost this ratio, with almost 85% of all fixations when λ
is at 0.5 

Finally, a new conspicuity map is computed by adding the weighted top-down and bottom-
up conspicuity maps Jj’(t) = λMj(t) + (1-λ)Jj(t). Thus the relative importance of bottom-up 
and top-down saliency processing is determined by the parameter λ. In Figure 3, λ = 0.5 was 
used and Mj were initially set to zero, i. e. Mj(0) = 0. 
We ran a series of tests to check the effects of top-down biasing. A short image sequence of 
about 30 seconds depicting an object (teddy bear) being moved around was used as input to 
the system. In these experiments the system used color opponency and intensity as low-
level features and did not generate saccades. The shifts in current region of interest were 
recorded; note that the saccades that would be performed are selected from a subset of these 
covert attentional shifts. The top-down system was primed with a vector roughly matching 
the brightness and color space position of the target object. Given proper weighting factors, 
the locations selected by FeatureGate are close to the intended target with high probability. 
On the other hand, by keeping the bottom-up cue in the system we ensure that very salient 
areas will be attended even if they don’t match the feature vector. 
Tests were run with all settings equal except for the parameter λ specifying the influence of 
the top-down system relative to the bottom-up saliency. The data generated is presented in 
Table 1. We tested the system from 0% influence (only the bottom-up system active) to 100% 
(only the top-down system used). Fewer saccades are generated overall if there exists a 
dominant target in the image matching the feature vector and the influence of the top-down 
cue is high. Since in such cases the behavior of the system changes little as we increase the 
top-down influences, we tested the system only at two high top-down settings (75% and 
100%). Figure 4 demonstrates that the system works much as expected. The target object is 
fairly salient but it is fixated on less than 40% of the time if only bottom-up saliency is used. 
With top-down biasing the proportion of fixations spent on the target increases rapidly and 
with equal influence the target is already fixated 84% of the time. At high levels of top-down 
influence the target becomes almost totally dominant and the object is fixated 100% of the 
time when λ = 1. The rapid dominance of the target as we increase the top-down influence is 
natural as it is a salient object already. Note that if the top-down selection mechanism has 
several areas to select from - as it will if there are several objects matching the top-down 
criteria or if the object has a significant spatial extent in the image - the effect of the top-
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down system will spread out and weaken somewhat. Also, with two or more similar objects 
the system will generate saccades that occasionally alternate between them as the inhibition 
of return makes the current object temporarily less salient overall. 
The above experiment was performed with a top-down system closely following the 
original FeatureGate model in design. Specifically, we still use the distinctiveness estimate at 
each level. Alternatively, we could apply only the top-down inhibitory mechanism and 
simply use the map I

tf

d (x;c) of Eq. (8) - calculated at the same pyramid level c as the 

conspicuity maps Jj(t) - to generate the inhibitory signal. In many practical cases, the 
behavior of such a system would be very similar to the approach described above, therefore 
we do not present separate experiments here. 

65911  65910  65907  65911  65912  61250  61249  61250  61250  61250    70656  70656  70656  70656  70656 
65912  65910  65910  65911  65913  61251  61251  61250  61251  61251  70675  70675  70675  70675  70675 

65912  65912  65910  65912  65914  61252  61251  61250  61251  61252  70678  70678  70678  70678  70678 
65913  65912  65910  65913  65915  61253  61253  61250  61253  61253  70695  70695  70695  70695  70695 

65914  65912  65910  65913  65916  61253  61253  61254  61254  61254  70711  70711  70711  70711  70711 

65915  65914  65913  65915  65917  61255  61253  61254  61254  61255  70715  70715  70715  70715  70715 
65917  65914  65913  65916  65918  61256  61256  61254  61256  61256  70724  70724  70724  70724  70724 

65918  65916  65913  65916  65919  61257  61256  61257  61257  61257  70757  70757  70757  70757  70757 

65918  65916  65916  65918  65920  61258  61258  61257  61257  61258  70758  70758  70758  70758  70758 

65919  65918  65916  65919  65921  61259  61258  61257  61259  61259  70777  70777  70777  70777  70777 

65920  65918  65916  65921  65922  61260  61260  61260  61260  61260  70790  70790  70790  70790  70790 
65921  65921  65919  65922  65923  61260  61260  61260  61261  61261  70799  70799  70799  70799  70799 

65923  65921  65919  65922  65924  61262  61262  61260  61261  61262  70802  70802  70802  70802  70802 
65924  65923  65919  65923  65925  61263  61262  61260  61263  61263  70815  70815  70815  70815  70815 

65925  65923  65922  65923  65926  61264  61264  61264  61264  61264  70837  70837  70837  70837  70837 

Table 2.. Frame indices of simultaneously processed images under different synchronization 
schemes. In each box, ordered from left to right clumn, the frame indices belong to the 
disparity, color, orientation, intensity, and motion conspicuity map. See text in Section 4.1 
for further explanations 

4. Synchronization of processing streams 

The distributed processing architecture presented in Figure 2 is essential to achieve real-time 
operation of the complete visual attention system. In our current implementation, all of the 
computers are connected to a single switch via a gigabit Ethernet. We use UDP protocol for 
data transfer. Data that needs to be transferred from the image capture PC includes the 
rectified color images captured by the left camera, which are broadcast from the frame 
grabber to all other computers on the network, and the disparity maps, which are sent 
directly to the PC that takes care of the disparity map processing. Full resolution (320 x 240 
to avoid interlacing effects) was used when transferring and processing these images. The 
five feature processors send the resulting conspicuity maps to the PC that deals with the 
calculation of the saliency maps, followed by the integration with the winner-take-all 
network. Finally, the position of the most salient area in the image stream is sent to the PC 
taking care of motor control. The current setup with all the computers connected to a single 
gigabit switch proved to be sufficient to transfer the data at full resolutions and frame rates. 
However, our implementation of the data transfer routines allows us to split the network 
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into a number of separate networks should the data load become too large. This is essential 
if the system is to scale to a more advanced vision processing such as shape analysis and 
object recognition. 
A heterogeneous cluster in which every computer solves a different problem necessarily 
results in visual streams progressing through the system at different frame rates and with 
different latencies. In the following we describe how to ensure smooth operation under such 
conditions. 

4.1 Synchronization 

The processor that needs to solve the most difficult synchronization task is the one that 
integrates the conspicuity maps into a single saliency map. It receives input from five 
different feature processors. The slowest among them is the orientation processor that could 
roughly take care of only every third frame. Conversely, the disparity processor works at 
full frame rate and with lower latency. While it is possible to further distribute the 
processing load of the orientation processor, we did not follow this approach because our 
computational resources are not unlimited. We were more interested in designing a general 
synchronization scheme that allows us to realize real-time processing under such 
conditions. 
The simplest approach to synchronization is to ignore the different frame rates and latencies 
and to process the data that was last received from each of the feature processors. Some of 
the resulting frame indices for conspicuity maps that are in this case combined into a single 
saliency map are shown in the leftmost box of Table 2. Looking at the boldfaced rows of this 
column, it becomes clear that under this synchronization scheme, the time difference (frame 
index) between simultaneously processed conspicuity maps is quite large, up to 6 frames (or 
200 milliseconds for visual streams at 30 Hz). It does not happen at all that conspicuity maps 
with the same frame index would be processed simultaneously. 
Ideally, we would always process only data captured at the same moment in time. This, 
however, proves to be impractical when integrating five conspicuity maps. To achieve full 
synchronization, we associated a buffer with each of the incoming data streams. The 
integrating process received the requested conspicuity maps only if data from all five 
streams was simultaneously available. The results are shown in the rightmost box of Table 2. 
Note that lots of data is lost when using this synchronization scheme (for example 23 frames 
between the two boldfaced rows) because images from all five processing streams are only 
rarely simultaneously available.  
We have therefore implemented a scheme that represents a compromise between the two 
approaches. Instead of full synchronization, we monitor the buffer and simultaneously 
process the data that is as close together in time as possible. This is accomplished by waiting 
that for each processing stream, there is data available with the time stamp before (or at) the 
requested time as well as data with the time stamp after the requested time. In this way we 
can optimally match the available data. The algorithm is given in Figure 5. For this 
synchronization scheme, the frame indices of simultaneously processed data are shown in 
the middle box of Table 2. It is evident that all of the available data is processed and that 
frames would be skipped only if the integrating process is slower than the incoming data 
streams. The time difference between the simultaneously processed data is cut to half 
(maximum 3 frames or 100 milliseconds for the boldfaced rows). However, the delayed 
synchronization scheme does not come for free; since we need to wait that at least two 
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frames from each of the data streams are available, the latency of the system is increased by 
the latency of the slowest stream. Nevertheless, the delayed synchronization scheme is the 
method of choice on our humanoid robot. 

Request for data with frame index n:

 get access to buffers and lock writing 

r = 0 

 for i = 1,…,m 

 find the smallest bi,j so that n <  bi,j

 if such bi,j does not exist 

 reply images with frame index n not yet available 

 unlock buffers and exit 

 if  bi,(j-1)%M ≤ n

ji =  bi,(j-1)%M

 else 

r = max(r, bi,j)

 if r > 0

 reply r is the smallest currently available frame index

 unlock buffers and exit 

 return { P
1, j

1

,…, P
m, j

m

}

 unlock buffers and exit 

Figure 5. Pseudo-code for the delayed synchronization  algorithm. m denotes the number of 
incoming data streams, or - in other words - the number of preceding nodes in the network 
of visual processes. To enable synchronization of data streams coming with variable 
latencies and frame rates, each data packet (image, disparity map, conspicuity map, joint 
angle configuration, etc.) is written in the buffer associated with the data stream, which has 
space for M latest packets.   bi,j  denotes the frame index of the j-th data packet in the buffer 
of the i-th processing stream. Pi,j are the data packets in the buffers and m is the number of 
data streams coming from previous processes 

We note here that one should be careful when selecting the proper synchronization scheme. 
For example, nothing less than full synchronization is acceptable if the task is to generate 
disparity maps from a stereo image pair with the goal of processing scenes that change in 
time. On the other hand, buffering is not desirable when the processor receives only one 
stream as input; it would have no effect if the processor is fast enough to process the data at 
full frame rate, but it would introduce an unnecessary latency in the system if the processor 
is too slow to interpret the data at full frame rate. The proper synchronization scheme 
should thus be carefully selected by the designer of the system. 
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5. Robot eye movements 

Directing the spotlight of attention towards interesting areas involves saccadic eye 
movements. The purpose of saccades is to move the eyes as quickly as possible so that the 
spotlight of attention will be centered on the fovea. As such they constitute a way to select 
task-relevant information. It is sufficient to use the eye degrees of freedom for this purpose. 
Our system is calibrated and we can easily calculate the pan and tilt angle for each eye that 
are necessary to direct the gaze towards the desired location. Human saccadic eye 
movements are very fast. The current version of our eye control system therefore simply 
moves the robot eyes towards the desired configuration as fast as possible. 
Note that saccades can be made not only towards visual targets, but also towards auditory 
or tactile stimuli. We currently work on the introduction of auditory signals into the 
proposed visual attention system. While it is clear that auditory signals can be used to 
localize some events in the scene, the degree of cross-modal interactions between auditory 
and visual stimuli remains an important research issue. 

6. Conclusions 

The goals of our work were twofold. On the one hand, we studied how to introduce top-
down effects into a bottom-up visual attention system. We have extended the classic system 
proposed by (Itti et al., 1998) with top-down inhibitory signals to drive attention towards the 
areas with the expected features while still considering other salient areas in the scene in a 
bottom-up manner. Our experimental results show that the system can select areas of 
interest using various features and that the selected areas are quite plausible and most of the 
time contain potential objects of interest. On the other hand, we studied distributed 
computer architectures, which are necessary to achieve real-time operation of complex 
processes such as visual attention. Although some of the previous works mention that 
parallel implementations would be useful and indeed parallel processing was used in at 
least one of them (Breazeal and Scasselatti, 1999), this is the first study that focuses on issues 
arising from such a distributed implementation. We developed a computer architecture that 
allows for proper distribution of visual processes involved in visual attention. We studied 
various synchronization schemes that enable the integration of different processes in order 
to compute the final result. The designed architecture can easily scale to accommodate more 
complex visual processes and we view it as a step towards a more brain-like processing of 
visual information on humanoid robots. 
Our future work will center on the use of visual attention to guide higher-level cognitive 
tasks. While the possibilities here are practically limitless, we intend to study especially how 
to guide the focus of attention when learning about various object affordances, such as for 
example the relationships between the objects and actions that can be applied to objects in 
different situations. 
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