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1. Introduction

Sepsis is the leading cause of death in most intensive care units (Angus et al., 2001; Martin et
al., 2003). Sepsis results from dysregulation of the normally protective anti-microbial host
defense mechanism and represents a systemic inflammatory response that is associated with
hypotension, insufficient tissue perfusion, uncontrolled bleeding, and multiple organ
failure/dysfunction (Bone et al., 1992; Natanson et al., 1994). Accordingly, a major focus of
sepsis research has been the development of anti-inflammatory strategies. In clinical trials,
however, most of the therapies that may modify systemic inflammation have largely failed
to reduce mortality in patients with severe sepsis (Zeni et al., 1997; Natanson et al., 1998;
Marshall, 2000). These failed trials include administration of high-dose glucocorticoids;
polyclonal and monoclonal antibodies against endotoxin and various inflammatory
mediators such as tumor necrosis factor (TNF)-o; anti-inflammatories; nitric oxide (NO)
inhibitors; anti-oxidants; and others. Hence, new understanding of the pathophysiological
mechanisms underlying this complex disorder is needed to develop novel therapeutic
strategies that will impact favorably on septic patient outcome.

Apoptosis is a second prominent feature of sepsis. This process is a mechanism of tightly
regulated disassembly of cells caused by activation of certain specialized proteases called
caspases. A number of laboratories have demonstrated that sepsis induces extensive
lymphocyte apoptosis, which can impairment of immunoresponses, thereby predisposing
patients to septic death (Ayala & Chaudry, 1996, Wesche et al., 2005; Hotchkiss et al., 2005;
Lang & Matute-Bello, 2009; Matsuda et al., 2010a). Parenchymal cells, including intestinal
and lung epithelial cells, also have increased apoptotic cell death in animal models of sepsis
(Coopersmith et al., 2002a, 2002b; Perl et al., 2007). An autopsy study comparing samples
from multiple organ systems in 20 patients who died of sepsis with those from 16 critically
ill, non-septic patients has shown that gut epithelial apoptosis is increased in septic patients
(Hotchkiss et al., 1999a). Moreover, it has been suggested that vascular endothelial cells may
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be undergoing apoptosis in sepsis (Hotchkiss et al., 2002). In sepsis, endothelial cell
apoptosis may be associated with microvascular dysfunction with reduced perfusion and
oxygen, which could result in tissue hypoxia and, ultimately, in the development of organ
failure (Matsuda & Hattori, 2007). This could explain partly the disappointment in a large
number of sepsis trials conducted with interventions against individual steps in the
inflammatory cascade, leading investigators to the question of whether death in septic
patients stems from uncontrolled inflammation (Hattori ef al., 2010).

To reduce sepsis-induced apoptosis, caspase inhibitors have been examined in mice with
cecal ligation and puncture (CLP)-induced sepsis. It has been reported that the pan-caspase
inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (O-methyl) fluoromethyl ketone (z-VAD)
decreases lymphocyte apoptosis in the thymus and spleen, decreases blood bacterial counts,
and improves survival in sepsis (Hotchkiss et al., 1999b). In a similar study, the pan-caspase
inhibitor [-826,920 (M-920) and the selective caspase-3 inhibitor [-826,791 (M-791) have
shown a survival benefit being the result of the rescue of lymphocytes from apoptosis
(Hotchkiss et al., 2000). Furthermore, Kawasaki et al. (2000) have demonstrated that z-VAD
decreases apoptosis on pulmonary endothelial cells and epithelial cells and prolongs the
survival rate in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model.
However, successful anti-apoptotic therapy in sepsis with caspase inhibitors may be
challenging, because caspase inhibitors themselves can have detrimental effects within the
cell when large amounts of them must reach the cell cytosol to inhibit apoptosis that is
initiated only by small amounts of caspases. In fact, survival in z-VAD high-dose group after
CLP returns toward the level of the control (Hotchkiss et al., 1999b), indicating that there
appears to be close-limiting toxicity associated with the administration of z-VAD.

Small interfering RNA (siRNA) is another potential reversible inhibitor of the apoptotic
death pathways. siRNA therapy may offer a unique alternative sepsis treatment to shorten
the apoptotic arm of sepsis, revealing a number of targets within the apoptotic death
pathways, which may be useful in designing stand-alone and/or adjuvant therapies that
would have a significant impact on septic mortality. Although the causative agents of sepsis
vary widely as do their traditional anti-microbial treatments, siRNA therapy targeted
toward salvaging immune effector cells, vascular endothelial cells, and parenchymal cells
from apoptosis has the potential to be beneficial in sepsis regardless of the source. We have
generated synthetic double-stranded siRNA targeting Fas-associated death domain (FADD)
and examined the therapeutic effect of systemic administration of the siRNA in the CLP
mouse model, regarded as a highly clinically relevant animal model of polymicrobial sepsis.
As described below, FADD is an essential component of the death-inducing signaling
complex (DISC) for all death receptors (Thorburn, 2004; Lavrik et al., 2005). Here we present
that this RNA interference-mediated gene silencing in vivo is effective as gene therapy of the
septic syndrome.

2. Apoptotic cell death pathways

Two major pathways are involved in the initiation of apoptotic cell death (Figure 1) (Roy &
Nicholson, 2000). The first apoptotic pathway is mediated by specific ligands and surface
receptors, which are capable of delivering a death signal from the microenvironment and
can activate the execution of apoptosis in the cell cytoplasm and organelles (Herr & Debatin,
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The extrinsic, death receptor-mediated apoptotic pathway involves the binding of TNF-a or FasL to its
cell surface receptor, resulting in the activation of caspase-8 and, subsequently, caspase-3. FADD serves
as a docking protein for caspase-8, tethering the enzyme to activated death receptor. The intrinsic,
mitochondria-mediated apoptotic pathway results in the release of cytochrome ¢, which binds to APAF-
1 and caspase-9, thus forming the apoptosome. This complex activates caspase-3, which is involved in
the final common pathway of the cell death program. The interaction of these two cell death pathways
via tBID are presented.

Fig. 1. Two major pathways involved in initiation of apoptosis.

2001). This pathway is termed the extrinsic pathway. The second apoptotic pathway called
the intrinsic pathway is activated by mitochondrial injury (Korsmeyer, 1999). The two
apoptotic signaling pathways ultimately converge into a common pathway causing the
activation of effector enzymes termed caspases.

The extrinsic pathway involves activation of members of the TNF receptor (TNF-R) family
with an intracellular death domain (DD), including TNF-R1, Fas, DR3, DR4, DR5, and DRe.
These death receptors transmit apoptotic signals initiated by specific ligands such as TNF-a,
Fas ligand (FasL), and TRAIL. Thus, once activated, death receptors recruit the adaptor
molecule FADD (plus others in some cases) through the homophilic interaction of their own
DD to the DD of the adaptor molecule. FADD can then recruit the apoptosis initiator
enzyme procaspase-8 into the DISC as a consequence of the death effector domain-mediated
homophilic interaction. Subsequently, procaspase-8 is activated proteolytically into caspase-
8 and further activates the apoptosis effector enzymes caspase-3 and other execuitioner
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caspases (caspase-6 and caspase-7) (Thorburn, 2004; Lavrik et al., 2005; Green & Kroemer,
2005).

The intrinsic pathway is initiated by stress signals through the release of apoptogenic factors
such as cytochrome ¢ from the mitochondrial intermembrane space. Upon release into the
cell cytoplasm, cytochrome ¢ promotes the formation of a complex between the caspase
adaptor molecule APAF-1 and the apoptosis initiator enzyme termed procaspase-9 in a
caspase-activating structure known as the apoptosome, and consequently triggers the
apoptotic cascade by activating procaspase-9. Thus, the apoptosome, through newly
activated caspase-9, activates the effector caspases along the common pathway of apoptosis
(Korsmeyer, 1999).

In certain types of cells, there is extensive cross-talk that occurs between the extrinsic and
intrinsic apoptotic pathways (Roy & Nicholson, 2000). Thus, the extrinsic and intrinsic
apoptotic pathways are intimately connected. This appears to occur via the proteolysis of
BID, which normally serves an anti-apoptotic role within the intrinsic mitochondrial-
mediated pathway. BID is truncated to receptor pathway, whereupon tBID promotes
activation of Bax and Bak and thereby induces cytochrome c release, leading to formation of
the apoptosome (Esposti, 2002).

3. Impact of the FADD gene silencing with siRNA in sepsis therapy

3.1 Sepsis-induced up-regulation of death receptors

We initially verified the hypothesis that tissue expression of death receptors is up-regulated
in sepsis. Polymicrobial sepsis was induced by CLP in BALB/c mice (Matsuda et al., 2005). A
middle abdominal incision was performed under anesthesia. The cecum was mobilized,
ligated at 5 mm from its top, and then perforated in two locations with a 21-gauge needle,
allowing expression of feces. The bowel was repositioned, and the abdomen was closed.
Sham-operated animals underwent the same procedure except for ligation and puncture of
the cecum. This model has high clinical relevance to humans, because it reproduces many
hallmarks of sepsis that occur in patients (Hubbard et al., 2005).

Immunoblot analysis showed that surface expression of the two death receptors TNF-R1
and Fas were up-regulated in lung tissues with time after CLP induction of sepsis (Figure
2A). Immunohistochemical studies indicated more abundant TNF-R1 expression in the
inner wall of microvessels from septic mouse lungs (Figure 2B). Meanwhile, Fas was
detected mainly in alveolar epithelial Type II cells (Matsuda et al., 2009). Similar to these
death receptors, DR4 and DR5, both of which mediate TRAIL-induced cell death, were up-
regulated in septic mouse lungs (Matsuda et al., 2009). We also found time-dependent
increases in surface expression of TNF-R1 and Fas in mouse aortic tissues after CLP sepsis
(Figure 3A). These death receptors are likely to be up-regulated mainly on endothelial cells,
because the sepsis-induced up-regulation of TNF-R1 and Fas expression in aortic tissues
was abolished when the tissues were denuded mechanically. Previous works from other
laboratory have demonstrated that Fas expression is increased in hepatocytes and in
selected gastrointestinal-associated lymphoid tissues (Chung et al., 2001, 2003). Moreover,
splenocytes harvested 24 hours after CLP and stimulated with the T cell mitogen concavalin
A showed an increase in CD4+ T-cell apoptosis as compared to sham controls, which was
associated with an increase in Fas expression (Ayala et al., 1999). Based on the findings of
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(A) Western blots of TNF-R1 and Fas in the membrane fractions of lung tissues from mice that were
subjected to sham operation (control) and sepsis (10 and 24 hours after CLP). Adaptin-o served as
loading control. (B) Immunohistochemical finding for TNF-R1 in the lung section from the mouse
subjected to sepsis (24 hours after CLP). Positive staining is indicated by arrows.

Fig. 2. Increased death receptor expression in lung tissues of septic mice.

increased death receptor expression in tissues of septic mice, we suggest the importance of
the extrinsic death receptor pathway in apoptotic cell death in sepsis, although a preeminent
role for the intrinsic mitochondrial pathway has often been noted (Exline & Crouser, 2008).
As presented in Figure 1, death receptors, after ligand binding, recruit the adaptor protein
FADD through hemophilic interaction of their DD with the DD of FADD, and then FADD
can recruit procaspase-8 to the DISC, thereby causing its activation (Thorburn, 2004; Lavrik
et al., 2005). When FADD protein levels were assessed by Western blotting, induction of
sepsis by CLP led to a time-dependent increase in FADD protein expression in aortic
tissues (Figure 3B). This increase occurred on endothelial cells since FADD protein
expression was not increased in endothelium-denuded aortic tissues from septic animals.
For silencing of gene expression of FADD, siRNA oligonucleotides with the following
sense and antisense sequences were designed: 5'-GCA GUC UUA UUC CUA Att-3’ and
5-UUA GGA AUA AGA GGA GUA Ctt-3° (Matsuda et al.,, 2009, 2010b). In vivo
transfection of synthetic siRNAs via tail vein was performed at 10 hours after CLP with
Lipofectamine RNAIMAX (Invitrogen). We used Opti-MEM I Reduced Serum Medium
(Invitrogen) to dilute siRNAs and Lipofectamine RNAiMAX before complexing, by which
50 ng of FADD siRNA sequence was usually delivered. Systemic delivery of FADD siRNA
nearly completely eliminated aortic protein expression of FADD (Figure 3B). We also
confirmed that the increased levels of FADD mRNA and protein in lungs after CLP
induction of sepsis were strongly suppressed by systemic application of FADD siRNA but
not of scrambled siRNA (Matsuda et al., 2009). These findings suggested the successful
efficacy of systemically administered siRNA for silencing tissue expression of FADD in
septic mice.
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Western blots of TNF-R1 and Fas in the membrane fractions (A) and FADD in the total fractions (B) of
aortic vessels from mice that were subjected to sham-operation (control) and sepsis (10 and 24 hours
after CLP). B-Actin and adaptin-o served as loading control. In B, sepsis-induced up-regulation of
FADD protein expression was eliminated by systemic delivery of FADD siRNA. Note that no increase
in death receptors and FADD was observed when the endothelium was removed by gently rubbing the
intimal surface.

Fig. 3. Endothelium-dependent increases in expression of death receptors and FADD in
aortic vessels of septic mice.

3.2 Effect of FADD siRNA on cell apoptosis in sepsis

To assess whether FADD siRNA treatment has a beneficial effect on sepsis-induced
apoptotic cell death in lungs, the tissue sections were labeled with an in situ TUNEL assay
(Figure 4A). Apparently, no TUNEL-positive cells were observed in sham control mice.
Induction of sepsis by CLP resulted in a striking appearance of TUNEL-positive cells.
Apoptotic cells were identical morphologically to endothelial cells of capillary vessels in the
alveolar septa and to epithelial type II cells (Matsuda et al., 2009). In agreement with this
finding, our recent immunofluorescence studies showed that the cleaved form of caspase-3
was present in cell types other than CD31-positive endothelial cells in lungs (Takano et al.,
2011). In lungs from CLP mice treated with FADD siRNA, but not with scrambled siRNA,
TUNEL-positive cells were decreased sharply, providing a protective effect of FADD siRNA
treatment on pulmonary cell apoptosis mediated by sepsis.
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Sections of the lung (A) and spleen (B) were prepared from mice that were underwent sham procedure,
CLP, CLP and FADD siRNA administration, or CLP and scrambled siRNA administration. Tissues
were harvested 24 hours after surgery. In A, TUNEL-positive apoptotic cells are indicated by arrows.
Scale bars = 20 pm (A) and 200 um (B).

Fig. 4. Mouse lung and spleen tissue sections showing apoptotic cells by an in situ TUNEL
assay.

Physiologic TUNEL-positive cells, morphologically identical to lymphocytes (Matsuda et al.,
2009, 2010a), were sporadically present in the spleen tissues from sham control mice (Figure
4B). In spleens 24 hours after septic insult, marked apoptosis of follicular lymphocytes were
observed. Most apoptotic lymphocytes were located in the white pulp of the spleen.
TUNEL-positive lymphocytes in spleen follicles were greatly reduced when FADD siRNA
was systemically given after CLP. Administration of scrambled siRNA to septic mice
showed more frequent TUNEL positivity than no treatment.

Light microscopic studies of aortic tissue sections from septic mice at 24 hours after CLP
showed partial detachment of endothelial cells from the basal membrane (Matsuda et al.,
2007, 2010b). When the tissue sections were labeled with an in situ TUNEL assay, a
significant number of apoptotic endothelial cells was found in aortas of septic mice
(Matsuda et al., 2007, 2010b). Furthermore, scanning electron microscopic analysis indicated
that the structure of aortic endothelium displayed a remarkable morphological abnormality:
most endothelial cells were badly swollen (Figure 5A). Such an endothelial histological
injury was strikingly prevented by systemic treatment with FADD siRNA but not with
scrambled siRNA.
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A Scanning Electron Microscopy
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Mice were underwent sham procedure, CLP, or CLP and FADD siRNA administration. Aortic
endothelial cells were evaluated by scanning electron microscopy (SEM, A) and by transmission
electron microscopy (TEM, B) 24 hours after surgry. Septic mice showed anomalous swelling of cells

(SEM) and autophagy-related vacuolation in the cytoplasm (TEM). These electron-microscopical
changes were prevented by systemic treatment with FADD siRNA. Scale bars = 2 um.

Sham 24-h CLP

Fig. 5. Electron microscopic analysis of mouse aortic endothelial cells.

3.3 Effect of FADD siRNA on sepsis-induced autophagy in endothelial cells

A non-apoptotic and non-oncotic type of cell death has been recognized (Clarke, 1990). This
type of cell death is characterized by the appearance of double- or multi-membrane
cytoplasmic vesicles engulfing bulk cytoplasm and cytoplasmic organelles, such as
mitochondria and endoplasmic reticulum, and their delivery to and subsequent degradation
by the lysosomal system of the same cell (Gozuacik & Kimchi, 2004). This type of cell death
is referred to as autophagic cell death, but it is still unsettled whether autophagy is the direct
primary cause of cell death or a compensatory mechanism that tries to rescue a cell from
dying. In starvation, autophagy provides an internal source of nutrients for energy
generation, promoting cell survival. Defects in autophagy have been implicated in the
pathophysiology of cancer and neurodegenerative diseases (Rabinowitz & White, 2010). On
the other hand, systemic inflammatory response syndrome and multiple organ dysfunction
syndrome are suggested to be accompanied by increased cell death, including autophagy, in
the affected organs (Yasuhara et al., 2007). A recent report has shown that LPS induces
autophagy in human umbilical vein endothelial cells (Meng et al., 2010). Moreover, LPS-
induced systemic inflammation has been demonstrated to exert autophagy of hepatocytes in
streptozotocin-induced diabetic rats (Hagiwara et al., 2010).
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Our ultrastructural analysis using transmission electron microscopy indicated the formation
of autophagy-like vesicles in aortic endothelial cells of CLP septic mice (Figure 5B).
Microtubule-associated protein 1A/1B-light chain 3 (LC3) is a soluble protein with a
molecular mass of ~17 kDa that is distributed ubiquitously in mammalian tissues. Cleavage
of LC3 at the carboxyterminus immediately following synthesis yields the cytosolic LC3-I
form. LC3-I form is converted to LC3-II during autophagy. Thus, LC3-II is widely used as an
indicator of autophagy (Kabeya et al., 2000). Western blot analysis revealed significantly
elevated aortic LC3-II levels in the CLP septic group (Figure 6). Very interestingly, these
autophagy-related changes were prevented by systemic application of FADD siRNA
(Figures 5B and 6).
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Immunoblotting of LC3 usually reveals two bands: the cytosolic form LC3-I and the membrane-bound
form LC3-II. Sepsis (24 hours after CLP) resulted in a significant conversion of LC3-I to LC3-II. Tracking
the conversion of LC3-I to LC3-II is indicative of autophagic activity. Systemic administration of FADD
siRNA prevented this conversion. Summarized data are presented as the mean + S.E. of five different
experiments. *P<0.05 vs. sham control. #P<0.05 vs. CLP alone.

Fig. 6. Inmunoblot analysis of LC3 in mouse aortic vessels.

There are several lines of experimental evidence that apoptosis and autophagy may be
interconnected in some settings, and in some cases even simultaneously regulated by the
same trigger resulting in different cellular outcomes (Gozuacik & Kimchi, 2004). Previous
data supporting the interconnection between the two types of cell death have come from
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gene expression profiles during steroid-triggered developmental cell death in the Drosophila
system where several apoptosis-related genes are up-regulated together with autophagy-
related genes (Gorski et al., 2003; Lee et al., 2003). In other cellular settings, autophagy may
antagonize apoptosis and inhibition of autophagy may increase the sensitivity of the cells to
apoptotic signals (Gozuacik & Kimchi, 2004). Moreover, apoptosis and autophagy may
manifest themselves in a mutually exclusive manner. Inhibition of autophasic activity in
cells may switch responses to death signals from autophagic to apoptotic cell death
(Gozuacik & Kimchi, 2004). In addition, there are numerous reports showing a direct
physical interaction between autophagy-inducing proteins and proteins involved in
apoptosis, especially anti-apoptotic Bcl-2 family members (Liang et al., 1998; Vande Velde et
al., 2000; Yanagisawa et al., 2003).
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Mortality was monitored 4 times daily, and survival time was recorded for 7 days. Systemic delivery of
FADD siRNA, but not scrambled siRNA, resulted in a significant survival benefit. Percentage survival
of mice after CLP is plotted. Ten mice for each group underwent CLP.

Fig. 7. Kaplan-Meier survival curves after CLP in mice given FADD siRNA.

3.4 Effect of FADD siRNA on animal survival after CLP
To evaluate the impact of FADD siRNA on survival benefit in sepsis, we examined mortality

in mice subjected to CLP (Figure 7). After CLP, mice exhibited signs of sepsis. Thus, they
showed lack of interest in their environment, displayed piloerection, and had crusty
exudates around their eyes. Finally, all animals subjected to CLP without treatment died
within 2 days. Treatment of CLP mice with scrambled siRNA was without effect on
survival. However, when FADD siRNA was administered to CLP mice, its survival
advantage was very striking (P<0.0001; Log rank test). Even at the end of 7 days, a greater
proportion of the animals given FADD siRNA survived CLP with 80%.

4. Conclusions

Despite recent advances in antibiotics and critical care therapy, sepsis treatment remains
clinical conundrum, and its prognosis is still poor, especially when septic shock and/or
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multiple organ failure develop. Although a host of promising candidates for therapeutic
intervention in sepsis have been propelled, almost all of these trials have failed to
demonstrate a mortality benefit for patients suffering from sepsis. Ongoing research into
this highly lethal disorder has shown that apoptosis is fully associated with an unfavorable
outcome of sepsis and its inhibition may provide useful therapies for treatment of sepsis.
Here we propose that FADD siRNA therapy may offer a unique alternative sepsis treatment
to shorten the apoptotic arm of sepsis. This therapy salvaged immune effector cells, vascular
endothelial cells, and parenchyma cells from apoptosis, which would arrest the
development of complications arising from sepsis, including multiple organ failure, and
ultimately have a beneficial impact on septic mortality. While appreciating that additional
work is required to optimize preclinical and possibly clinical application, treatment with
FADD siRNA will hopefully provide novel potential usefulness for gene therapy that could
improve the survival of critically ill septic patients.
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