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1. Introduction 

One of the most trying pathological conditions of the central nervous system is the 

malignant glial development of the brain. The major malignancy is the glioblastoma 

multiforme, GBM, which almost uniformly leads to the patient’s demise: mortality is still 

close to 100 %, and median survival 8 – 11 months. All currently used therapies - surgery, 

radiotherapy, chemotherapy and pharmacology – have not given satisfactory results; the 

median survival, using an immune- or chemotherapy is 15 months, rarely 18 months (Stupp 

et al., 2006). The search for new approaches based on gene molecular biology/immunology 

techniques, is therefore a necessary step. In the presented chapter we highlight to 

biomedical researchers and physicians not only the importance of the glioblastoma problem 

but the fact that we are currently successfully progressing in the studies and the treatment 

of this pathology. The most recent approaches for the treatment of malignant tumors and 

especially of gliomas are now focusing on the use of different types of inhibitors. More 

specifically gene therapy approach using anti - gene technology including antisense strategy 

is considered to target as well growth factors (IGF-I, EGF, VEGF, TGF) as their receptors and 

related downstream steps of signal transduction pathways (IRS-1, PI3K, AKT, PKC, Bcl-2, 

GSK3, glycogen synthase GS) (Helene, 1994; Beckner et al., 2005; Trojan et al., 2007a). Among 

growth factors, IGF-I plays a principal role during development of the brain reappearing in 

malignant glial differentiation (Pollak et al., 2004). This hypothesis has strongly underlined 

the usefulness of techniques permitting to target and stop the expression of growth factors 

present in tumoral development by anti – gene strategies, particularly antisense approach.  

The ”discovery” of the antisense approach, AS, was made in 1984/1985 (Rubenstein et al., 

1984; Weintraub et al., 1985). The AS approach, as a concept, was created to study basic 

problems of gene regulation, particularly useful in developmental biology investigations, 

bypassing inherent limitations of functional studies dependent upon natural mutant cells or 

artificially mutagenized cells (Izant & Weintraub, 1985). Antisense technique was 

particularly used to target tumor antigens, which arrest of expression was not efficiently 

stopped using antibodies or other inhibitors (Dias & Stein, 2002). The demonstration of AS 

technology as a efficient gene therapy tool, simultaneously suppressing the targeted protein 
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expression, changing a morphologic phenotype of cultured neoplastic cells, and stopping in 

vivo a growth of experimentally established tumors, was done for the first time using AS 

anti IGF-I approach for glioma treatment (Trojan et al., 1993). We can also consider the 

1992/3 years as the beginning of gene therapy of gliomas exploring either strategy of AS 

anti IGF-I using episomal vector (Trojan et al., 1992), or strategy of retroviral vector with 

gene encoding TK -HSV (Culver et al., 1992) (only the first approach – AS anti IGF-I - has 

shown valuable results in ulterior clinical trials). The first clinical cases of glioblastoma were 

treated with AS strategies - anti IGF-I and anti IGF-I receptor - in 2000/1 (Wongkojornsilp et 

al., 2001; Andrews et al., 2001). Since the past decade,  we observe a significant increase of AS 

approach for the treatment of tumors and especially of gliomas. Recently, other targets than 

IGF-I, as TGFbeta and their downstream signal transduction pathway elements as GS 

among others were proposed for treatment of malignant gliomas using AS technology 

(Schlingensiepen, R. et al., 2005; Ardourel et al., 2007). The approach of AS TGF-beta, 

similarly to that of AS IGF-I, has given satisfactory clinical results.  

2. Anti - genes 

Since twenty years different approaches of the treatment of tumours, including 
glioblastoma, were considered. For example, the treatment of liver cancer with antibodies to 
AFP was widely used. Unfortunately these techniques were not specific  for the treated 
tissues. Actually, the “anti-gene” strategies offer new possibilities for cancer therapy. The 
anti-genes can be classified into three categories, as follows: 1) the antisense molecules 
(Rubenstein et al., 1984; Weintraub et al., 1985; Galderisi et al., 1999; Stein, 2001; Dias & Stein, 
2002; Biroccio et al., 2003;  Kalota et al., 2004) targeted to the complementary sequence in 
mRNA, including antisense RNA, antisense oligodeoxynucleotides and ribozymes; 2) the 
triple helix-forming oligomers (Dervan, 1992; Helene, 1994; Shevelev et al., 1997) targeted to 
the double stranded DNA gene; and 3) the sense oligodeoxynucleotides designed to act as 
decoys to trap regulatory proteins (Morishita et al., 1998). The “antisense” and “triple helix” 
techniques seem very promising, stopping the protein synthesis at transcription level (Green 
et al., 1986), and translation level (Derwan, 1992), respectively.  
Other recently introduced technologies include those of triple helix, TH (Dervan, 1992; 
Helene, 1994), as well as potentially useful siRNA (Boado, 2005; Pai et al., 2006) and  miRNA 
(microRNA) (Berezikov et al., 2006). The role of 21-23 mer double-stranded RNA (si RNA) in 
the silencing of genes is strongly similar to that of the TH DNA mechanism, which also 
involves 23 mer RNA (Helene, 1994). As to miRNAs, they are noncoding RNA molecules of 
21 to 24 nucleotides that can regulate gene expression at the post-transcriptional level. 
Moreover, miRNA may play a fundamental role in tumorigenesis, controlling cell 
proliferation and apoptosis; in gliomas, the miRNA (microRNA-21) level has been reported 
to be elevated (Corsten et al., 2007). Whether or not siRNA technology or miRNA 
knockdown will supplant the AS oligodeoxynucleotide approaches remains in question at 
this time, because we do not yet have final clinical results (Dias & Stein, 2002; Pai et al., 2006; 
Corsten et al., 2007).  

2.1 Antisense approach 

The “discovery” of antisense approach was done by the groups of F. Jacob and R.M. 
Harland (Rubinstein et al., 1984; Weintraub et al., 1985). This event has been suggested to 
physiologically occur as the regulation mechanism of gene expression in cells. Some years 
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ago, regulating activities of untranscribed DNA strand (“antisense” strand) has been 
suggested (Ring & Roberts, 1994). It has also been widely proven that a lot of genes present 
an open reading frame on the antisense strand (Merino et al., 1994; Yomo & Urabe, 1994; 
Campbell et al., 1994). The role of this natural antisense RNA is not yet understood. More 
recently, it was found that mouse thymidine kinase (Tk) gene expression is regulated by 
antisense transcription: a putative promoter in intron 3 of the murine Tk will transcribe this 
antisense RNA. However, concerning natural antisense RNA in prokaryotes, it has been 
shown that they could play a regulatory role in replication, transcription or translation steps 
of some genes; it was demonstrated that the translation of the bacterial enzyme transposase 
was controlled by an antisense RNA (Weintraub et al., 1985). 
An antisense RNA, hybridized on its complementary sequence in a mRNA blocks the 
ribosome progression during the translation of the mRNA. This observation constitutes the 
“starting point” of the antisense or non-sense approach (Rubinstein et al., 1984) based on 
antisense RNA or antisense oligonucleotides to modulate artificially and specifically the 
expression of genes involved in important cellular processes. The mRNA complementary 
sequence is introduced in the cell either by a plasmid vector (dsDNA) coding for an 
antisense RNA or by a single stranded oligonucleotide form. The plasmid vector allows the 
intracellular transcription of antisense RNA which can strongly hybridize to the mRNA and 
stop the translation. Generally, an effective inhibition demands a high copy number of 
antisense RNA relative to mRNA . The antisense oligodeoxynucleotides, once in the cell, can 
stimulate the ribonuclease H after hybridization with target RNA. This enzyme, which is 
implicated in DNA replication, damages RNA moiety of the hybrids formed in the cell. On 
the other hand, the antisense oligonucleotide can remain as nondegraded, hybridizing to 
another messenger and inducing the degradation of this mRNA. In this way, in the presence 
of RNAse H, the antisense oligonucleotide acts in a catalytic marrow, with the enzyme 
potentiating the antisense effect (Hélène, 1990). 
The chemical stability of plasmid-derived antisense RNA seems much more efficient than 
that of antisense oligonucleotides delivered directly into cells. The antisense 
oligonucleotides are exposed to intra- and extracellular nuclease actvity. Antisense 
oligomers action can be reinforced by association with polycations like polyethyleneimin 
(PEI), polylysine or cationic lipids (DOTMA, DOTAP) facilitating endocytosis of oligomers 
(Galderisi et al., 1999). These positively charged molecules are also used for transfection of 
cells with plasmids encoding antisense RNA.  
The first antisense oligonucleotide used in clinical pharmacology was as anti-

cytomegalovirus therapy (VitraveneTM) (Vitravene Study Group, 2002). The antisense 

strategy was then largely used in order to analyze gene expression and intron splicing. The 

phosphorothioates are the most widely studied oligonucleotides, because of their nuclease 

stability are highly soluble and have excellent antisense activity. These data have led to the 

introduction of phosphorothioate oligonucleotides into clinical therapeutic trials (melanoma, 

chronic lymphocytic leukemia, lung cancer and other tumors) (Jansen et al., 2000; Geiger et 

al., 1998).  

A good example of a new generation oligonucleotide is the N3' P5’ PN. The PN exhibits 
highly selective and specific antisense activity in vitro and in vivo. An 11-mer PN, 
complementary to junction region of the bcr-abl mRNA (thought to be a determinant of the 
chronic myelogenous leukemia phenotype) efficiently inhibited the growth of treated BV173 
cells (Gryaznow et al., 1996). Another exemple of new generation oligonucleotides concerns 
antisense survivine oligonucleotides, ASODN, which were transfected into gastric cancer 
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cell line SGC 7901 (Yang et al., 2004). ASODN caused a statistically significant reduction of 
cell viability and the cell growth was significantly inhibited. A significant loss of survivin 
mRNA was also presented, and the protein level was significantly decreased. ASODN may 
provide a novel approach to therapy of gastric cancer. 
The antisense technology was used to study several protein actions: the alpha subunit of 
human chorionic gonadotrophin in choriocarcinoma cells (Cao et al., 1995); the regulating 
protein E2F-1, in S cellular cycle phase, and its action on genes linked to proliferation (Sala et 
al., 1994); nerve growth factor (NGF) in skin of transgenic mice, and its relationship with 
response to mechanical stimuli (Davis et al., 1993). Lately, the antisense strategy is 
“classically” used to analyze gene expression and intron splicing. The same technology was 
employed to study the function of the heat shock protein hsp70, overexpressed in mouse 
fibrosarcoma cells; a direct correlation was found between hsp70 overexpression and 
tumorigenicity of cells. Cells which express high rates of hsp70 are resistant in vitro to 
cytotoxic cells and macrophages (Jaattela, 1995). 
The action of IGF-I - BP-4, insulin-like growth factor I – binding protein 4, has also been 
studied using antisense strategy. The IGF-I – BP-4 was shown to inhibit the mitogenic effect 
of exogenous IGF on IIT29 tumor cells (Singh et al., 1994). The same antisense strategy was 
applied to study p27kipl protein. The quiescent state of cells needs the p27. The inhibition of 
p27 expression induces the progression of cell cycle and the cyclin D1 promoter activity. 
Hamster fibroblasts transformed in this way grow faster than non-treated cells, even in 
serum free medium (Rivard et al., 1996).  
In “antisense” anti-tumor experimental therapy different strategies were applied coming 
from 1992. Among them were strategies based on : 

 antisense oncogenes  (i.e. Okabe et al., 1993);  

 antisense of genes encoding enzymes (i.e. Ahmad et al., 1994); 

 antisense of protein related to MHC expression (i.e. Lichtenstein et al., 1992) and  

 antisense of genes encoding growth factors (i.e. Trojan et al, 1992); the last antisense 
strategy seems to constitute the most promoting approach in clinical trials. Some 
examples of gliomas experimental studies  are done in Table 1. 

 

microRNA 21 
(miR-21) 

Antisense  oligonucleotide 
 Experimental therapy 

Shi et al. Zhonghua Yi  2008;25(5):497 

TGF beta and 
specific. immun. 
activation 
 

Antisense  oligonucleotide  
(NPs) 
Experimental therapy 

Schneider et al. J Neuroimmun 2008; 
195(1-2): 21. 

TGF beta and 
immun. activation

Antisense  oligonucleotide  
Experimental therapy 

Vega et al. Future oncol 2008; 4(3): 433 

heat shock protein 
27 (Hsp27) 

Antisense  oligonucleotide 
Experimental therapy 

Aloy et al. Int J Radiat Oncol Biol Phys 
2008; 70(2): 543.  

VEGF 
Antisense (vector) 
Experimental therapy 

Lin et al. Cancer Sci 2008; 99(12): 2540 

TGF beta 2 
Antisense 
oligodeoxynucleotide 
Clinical trial 

Schlingensiepen  et al.  Rec Res Cancer 
Res 2008; 177: 137. 
 

IGF-I 
Antisense (vector) 
Clinical trial 

Trojan et al.  JAC  2008/09; 1: 1. 
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MiR221/222 
Antisense  oligonucleotide 
Experimental therapy 

Zhang et al. Zhonghua Zhong Liu Za 
Zhi.  2009; 31(10): 72 

TGF beta 2 
Antisense 
oligodeoxynucleotide 
Clinical trial 

Hau et al. Expert Rev Anticancer Ther 
2009; 9(11):1663.  

IGF BP2 
Antisense  (vector) 
Experimental therapy 

Moore et al. Proc Natl Acad Sci USA 
2009; 106(39): 16675  

CD133/prominin-
1 

Antisense  oligonucleotide 
Experimental therapy 

Yao et al. Oncol Rep 2009; 22(4): 781.  

EGFR 
Antisense  oligonucleotide 
Experimental therapy 

Loew et al. Anticancrer Agents Med 
Chem  2009; 9(6): 703.  

TGF beta  
Antisense 
oligodeoxynucleotide 
Clinical trial 

Vallieres  IDrugs 2009; 12(7): 445.  

microRNA-21 
Antisense  oligonucleotide 
Experimental therapy 

Li et al.  Brain Res  2009; 25(1286): 13.  

miR221/222 
Antisense  oligonucleotide 
Experimental therapy 

Zhang et al.  Int J Oncol 2009; 34(6): 
1653.  

VEGF 
Antisense  (vector) 
Experimental therapy 

Yang et al. J Neurooncol 2010; Aug 26 
Epub  

miR-21 
Antisense  oligonucleotide 
Experimental therapy 

Zhou et al. Oncol Rep 2010; 24(1):195.  

c-Met 
Antisense  oligonucleotide 
Experimental therapy 

Chu et al. Oncol Rep 2010; 24(1):189.  

AKT2 
Antisense  oligonucleotide 
Experimental therapy 

Zhang et al. Oncol Rep 2010; 24(1):65.  

EGFR 
Antisense  oligonucleotide 
Experimental therapy 

Li et al. Oncol Rep 2010; 23(6): 1585. 

PED/PEA-15 
(ERK1/2-
interacting 
protein)  

Antisense  oligonucleotide 
Experimental therapy 

Botta et al. Hum Gene Ther  2010; 
21(9): 1067.  

miR-21 & 5FU 
Antisense  oligonucleotide 
Experimental therapy 

Ren et al.  J Biomater Sci Polym Ed 
2010; 21(3): 303.  

miR-21 
Antisense  oligonucleotide 
Experimental therapy 

Zhou et al. Lab Invest. 2010; 90(2): 144. 

EGFR 
Antisense  oligonucleotide 
Experimental therapy 

Kang et al. J Biomed Mater Res A  2010; 

93(2): 585 

TGFbeta & T cell 
therapy 

Antisense 
oligodeoxynucleotide 
Clinical trial 

Dietrich et al. Curr Opin Oncol  2010; 
22(6):604  

IGF-I 
Antisense (vector) 
Clinical trial 

Trojan et al. Biomed & Pharmacother  

2010; 64(8): 576. 

Table 1. Examples of experimental and clinical gene therapies of gliomas using antisense 
technology (selection from the 2008s).  
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2.2 Triple helix approach 

Since the 1990's, in parallel with antisense strategy, another approach – triple helix strategy 

is starting to be successfully introduced in experimental and clinical gene therapy trials 

(Scaggiante et al., 1994; Postel et al., 1991; Thomas et al., 1995). The triple helix (TH) 

technology is the new approach, which belongs together with antisense approach to anti-

gene strategies sensu lato, i.e. the techniques targeting the expression of respective up-

regulated gene. The TH technology was “discovered” by groups of P.B. Derwan (Derwan, 

1992) and of C. Helene (Helene, 1994). Its action is well defined by gene inhibition at the 

translation level. In brief, the short specific oligonucleotides (so called triple-helix forming 

oligonucleotides, TFOs) are delivered to cells both by cell transfection with chemical carriers 

and via vector plasmid that can drive the synthesis of TFO RNA. TFOs link to genomic 

double-strand DNA, form triple-helix structure with target gene and strongly inhibit its 

expression at transcriptional level. A triple-helical structure on DNA is considered to block 

transit of RNA polymerase. TFOs are usually targeted against polypurine/polypyrimidine 

sequences located in control regions (promoters) of the genes of interest (Derwan, 1992).  

The examples of the inhibitory activity of triplex-forming oligonucleotides on target genes 
involved in tumorigenesis are now available (i.e.  Giovannangeli & Hélène, 1997; Vasquez & 
Wilson, 1998). Most of the TFOs are targeted to polypurine-polypyrimidine sequences 
located in control regions of the gene of interest and are cell delivered via transfection with 
various chemical carriers. An alternative way to introduce TFOs in cells is to use a plasmid 
vector that can drive the synthesis of an RNA triplex-forming oligonucleotide inside the 
cells. This TFO generated in situ is therefore protected from degradation by nucleases and 
could reach its DNA target without being trapped in lysosomal vesicles. Obviously, it could 
be transfected in cells via either standard cell transfection procedures or via ways similarly 
used in virus-based gene therapy. An application of this triplex-based approach has been 
used for the inhibition of the IGF-I which plays a major role in tumorigenesis (Shevelev et al., 
1997). 
Triple helix strategy was also applied to the ras oncogenes which are the most frequently 
activated oncogenes in human cancer. In vitro transcription of human Ha-ras was inhibited 
by triplex-forming oligonucleotides targeted to sequences recognized by the Sp I tran-
cription factor (Mayfield et al., 1994). Growth factors are known to play a role in 
tumorigenesis, and thereby represent relevant targets for antigene therapies. The synthesis 
of human tumor necrosis factor (TNF), which acts as an autocrine growth factor in various 
tumor cell lines including neuroblastoma and glioblastoma, has been blocked by 
triplex-forming oligonucleotide treatment (Aggarwal et al., 1996 

2.3 Biotechnological limitations 

Human gene therapy is defined as a medical intervention based on the administration of 
genetic material in order to modify or manipulate the expression of a gene product or to 
alter the biological properties of living cells. Cells may be modified ex vivo for subsequent 
administration or altered in vivo by gene therapy products given directly to the subject. 
Example that falls under this definition includes use of antisense oligonucleotides to block 
gene transcription or use of sequence-specific oligonucleotides to correct a genetic mutation 
(Miller & Simek, 2000). 
The specificity of antisense mechanism of action should be verified by: a proof of cellular 
uptake, the use of multiple control oligonucleotide sequences and direct measurement of 
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target mRNA or protein levels. Anyway, phosphorothioate oligonucleotides are in general 
able to produce a wide spectrum of nonspecific effects, especially at high concentration. 
Fortunatelly non-antisense effects can be therapeutically useful although their 
unpredictability can confound research applications of these biologically active 
molecules in human gene therapy (Lebedeva & Stein, 2002).  
Antisense oligonucleotides have been widely employed as a method to decrease tumor cell 
viability and chemoresistance and to induce apoptosis in vitro and in vivo. The “weakness” 
of oligonucleotides is not only their sensitivity to nuclease digestion, which affects 
their half-life in culture and in vivo, but also their inappropriate intracellular 
compartmentalization. It seems that the most reliable way to choose an antisense 
sequence is the "mRNA walking" method (i.e. in bcl-2 antisense) (Lebedeva & Stein, 
2002).  
Undesirable properties have been identified for phosphorothioate oligodeoxynucleotides. 
When dosed at high levels it is possible to identify toxicities in rodents and primates. 
However, at doses currently under evaluation in the clinic, phosphorothioate 
oligodeoxynucleotides have been well tolerated. Extensive medicinal chemistry efforts 
have been successfully focused on identifying improved antisense oligonucleotides. 
Oligonucleotide modifications have been identified that exhibit increased resistance to 
serum and cellular nucleases, enabling use of oligonucleotides that do not have phospho-
rothioate linkages (Benett et al., 2000). The tissue distribution of oligonucleotides may be 
altered with either chemical modifications or formulations. The modified oligonucleotides 
have been described that potentially exhibited less toxicity than first-generation 
phosphorothioate oligodeoxynucleotides. Because experience with these modified 
oligonucleotides is rather limited, it remains to be seen whether they will have a distinct 
toxicity profile. The data also suggest that oral delivery of antisense oligonucleotides 
may be feasible, which would increase the utility of the technology. Identification of second- 
and third-generation oligonucleotides should ameliorate therapies for patients (Benett et al., 
2000).   

3. IGF-I and tumorigenicity 

There is a convergence between ontogenesis and cancerogenesis and the same specific 
antigens (oncoproteins) are present in embryo/fetal tissues and in corresponding neoplastic 
developing tissues. The development of the brain is related to appearance of specific 
antigens. These disappear in mature brain and reappear in the development of neoplastic 
nervous tissue development. Gene expression during neoplastic brain development 
concerns oncoproteins (such as alpha-fetoptrotein, as well as serum albumin) (Trojan et al., 
1984), growth factors and their respective receptors (i.e. IGF-I, EGF, FGF, VEGF, TGF-alpha 
and -beta) (Baserga, 1994). Their down stream proteins and glycogen signalling elements 
including glycogen synthase (GS), are also involved (Patel et al., 2004; Trojan et al., 2007).  In 
1992 Trojan and his co-workers have demonstrated that an Insulin-like growth factor 1, IGF-
I, is present in glioma cells but absent in neuroblastoma cells (Trojan et al., 1992). Using 
teratocarcinoma model, Trojan and his co-workers have shown that neoplastic hepatocytes 
express IGF-I and IGF-II, and neuroblastic cells express IGF-II (Trojan et al., 1994). These 
observations permitted to study separetly, using IGF-I and IGF-II as the oncoprotein 
markers, different groups of diseases: of glial, neural and digestive tube and hepatocyte 
origin. 
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IGF-I is a 70-amino acid polypeptide involved in cell and tissue differentiation (Daughaday 
et al., 1972; Froesch et al., 1985; Baserga, 1994; Trojan et al., 1994) coded by IGF-I gene 
(Sussenbach et al., 1992). IGF-I plays an important role in growth as a mediator of growth 
hormone, GH, and a locally acting stimulator (Froesch et al., 1985; Le Roith et al., 2001). The 
action of IGF-I on cellular metabolism depends on binding proteins, IGFBP, which prolong 
the half life of this factor and modify its interaction with receptor (i.e. Rosen, 1999). IGF-I 
acts via specific IGF-I receptor and subsequent activation of a protein tyrosine phosphorylic 
signal transduction cascade, similar to that of insulin action (Werner and Le Roith, 2000). 
Through its binding to IGF-I-R, which activates a protein tyrosine phosphorylic signal 
transduction cascade, PI3K/AKT/GSK3, similar to that of insulin action (Adams et al., 
2000), IGF-I has been reported to block the apoptosis pathway (IRS/PI3K/AKT/Bcl or 
GSK3 or Ca++ or caspases). Such a blockade occurs at the cytoplasmic and nuclear 
levels in a variety of cell lines, including neuronal and glial cells ( D’Mello et al., 1993;  
Baserga, 1994;  Mason et al., 2000, Chrysis et al., 2001). The anti-inflammatory and anti-
apoptotic effects of IGF-I are established through an increase of phosphatidylinosotol 3’ 
kinase (PI3 kinase) activity and a maintain of Bcl-2 survival proteins. PI3 kinase is directly 
related to insulin receptor substrate (IRS-1), the latter following the tyrosine kinase (IGF-I 
receptor) (D’Ambrosio et al., 1996). IGF-I being known as a factor protecting cells from 
apoptosis, different researchers have tried to stop apoptotic effect using the approach of 
antisense IGF-I receptor (Resnicoff et al., 1994). The block of IGF-I synthesis, induces 
apoptotic and also immunogenic phenomenons (Upegui-Gonzalez et al., 1998). 
The human IGF-I gene is located within a region of over 85 kb on the chromosome 12 - 
12p22 (Daughaday and Rotwein, 1989; Sussenbach et al., 1992).  Deregulated expression of 
growth factors and/or their receptors, and especially of IGF-I, is associated as well with 
growth as with pathology of different diseases, including tumors (Trojan et al., 1993; 
Baserga, 1994; Rubin and Baserga, 1995). Since last Symposium “IGFs and Cancer”, held in 
Halle in Germany (15-17.09.2000), IGF-I is considered as a diagnostic marker and a 
biological modulator in different types of tumors, especially in brain tumors (Zumkeller & 
Westphal, 2001).  

4. Methodology 

Described methodology established for an experimental preclinical research was applied for 
clinical research.  

4.1 Plasmids 

The episome based plasmid pMT-Anti IGF-I was constructed as previously described 
(Trojan et al., 1992). The vector pMT-EP, under the control of the metallothionein, MT-I, 
inducible promotor was used as its base. The casette contains the Epstein-Barr Virus origin 
of replication and the gene encoding nuclear antigen I which together drive 
extrachromosomal replication. Down-stream of the insertion site is a poly A termination 
signal followed by the hygromycin B and ampilicin resistance genes. Comparatively, the 
same plasmid was prepared containing either CMV or HS (heat shock) promotors. The 
vector expressing IGF-I triple helix (pMT-AG triple helix) was constructed as previously 
described (Shevelev et al., 1997). This cassette consists of a 23 bp DNA fragment cloned into 
the vector pMT-EP which transcribes a third RNA strand forming a triple helix structure 
within the target region of the human IGF-I gene, between its transcription and translation 
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initiation sites. The vector pMT-EP with either the lac-Z reporter gene, or cDNA expressing 
IGF-II antisense RNA as insert was used in control experiments (Trojan et al., 1994).  
Vectors encoding MHC-I or B-7 antisense cDNA were constructed in the laboratory of J. Ilan 
(CWRU, Cleveland) using pMT-EP containing the neomycine (G418) resistance gene instead 
of the hygromycin B resistance gene, and the MHC-I or B7 insert in antisense orientation in 
place of the IGF-I gene sequence.  

4.2 Cell culture 

Human primary glioma cell lines (Anthony et al., 1998; Trojan et al., 2003),  were cultured in 
DMEM+F12 (v/v) (GIBCO-BRL) supplemented with 10 % FCS, 2mM glutamine, 100 U/ml 
penicillin and 100 µg/ml streptomycin, at 37° C and 5 % C02. Hygromycin B (Boehringer 
Mannheim) at a concentration of 0,005 mg/ml was added 48 hours after transfection to 
select for transfected cells. Then the concentration of hygromycin for cell culture was 
determined as previously described (Anthony et al., 1998). B-104 rat neuroblastoma cell line 
(obtained from ATCC) was used as a negative control (Trojan et al., 1992). 
Primary cell cultures of human glioma were derived from tumors of glioblastoma patients 
during surgical resection in the University Hospital of Cleveland, OH, Hopital Val-de-
Grace, Paris and the Medical University Hospital of Bydgoszcz (5 to 6 cases from every 
hospital). Surgical sections approximately 3x3 mm X 1-2 cm in length were placed in DMEM 
containing high glucose concentration, 100 U/ml penicillin and 100 U/ml streptomycin. 
Specimens were then transferred to phosphate buffered saline (PBS) containing no Ca2+ or 
Mg2+ and dissected into 1-2 mm fragments. The tissue was then centrifuged at 1500 rpm x 5 
min. The pellet was resuspended in DMEM containing 20 % FCS supplemented with 2mM 
glutamine, 100 U/ml penicillin, 100 microg/ml streptomycin and 10 ng/ml EGF. Cell 
suspensions were adjusted to a concentration of 2 million cells / well in 6-well plates and 
incubated at 37 C and 5 % C02 in culture medium containing 10 ng/ml EGF (Sigma) 
(GIBCO). After two days, dead cells were removed and incubation was continued in DMEM 
containing 10% FCS, and no EGF, for three additional days. The medium was then changed 
to DMEM minus FCS and incubation was continued x 48 hours. Following this first week, 
cells were maintained in 5% FCS / DMEM / 10% C02 / 37° C until stable transfection was 
established (approximately 4 weeks).  

4.3 Transfection 

Cultures of cells, 60-80 % confluent, were transfected in 6-well plates utilizing a ratio of 1 µg 

plasmid DNA per 400 000 cells. The FuGENE 6 Transfection Reagent (Boehringer 

Mannheim) was used according to the supplier's instructions. To determine the efficiency of 

transfection, the process was carried out using the pMT-EP construct containing lac-Z as a 

reporter gene. Cell cultures were washed in PBS and incubated at 37° C in the presence of 

the staining solution which contained 5mM K3Fe(CN)6, 2mM MgCl2, 0,8 mg/ml X-gal 

made in PBS. The selected IGF-I « antisense » or « triple helix » cell clones (expressing MHC-

I and B7) were co-transfected with vectors either encoding MHC-I or B7 antisense cDNA , in 

the presence of 0,4 mg/ml of G-418 .  

4.4 Northern blot 

Content of IGF-I antisense RNA was determined in 50 % confluent cell cultures. Cells were 
deprived of serum and cultured overnight in DMEM containing 0,1 % BSA ; 60 µM Zn S04 
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(Sigma) was then added x 5 hours to induce the MTI promoter. The cells were then prepared 
for Northern blot. Labeling of human IGF-I cDNA and chicken beta actin cDNA and 
hybridizations were done according to Maniatis and procedures previously 
described (Trojan et al, 1992, 2003); the 770 bp human IGF-I cDNA and 500 bp rat IGF-I 
cDNA used as probes were a gift from J. llan (CWRU, Cleveland). The Northern blot was 
used also to verify expression of IGF-I in solid glioblastomas.  

4.5 Histology 

The removed human samples of tumours were fixed in 4% para-formaldehyde, and paraffin 
embedded sections were stained for IGF-I by immunoperoxidase technique (Vectastain ABC 
kit, Vector Laboratories, Burlingame, CA, USA).  

4.6 Immunocytochemistry and flow cytometry analysis (FACS)  

Immunocytochemical localization of IGF-I protein was done by the immunoperoxidase 
technique (Vectastain ABC kit, Vector Laboratories, Burlingame, CA, USA). Cells were fixed 
in 4 % paraformaldehyde. Polyclonal antibodies against rat and mouse IGF-I and against 
human IGF-I were purchased from Valbiotech (Paris, France).  
For FACS, paraformaldehyde-fixed cells were treated as described earlier (Trojan et al., 
1996). Stained cells were analyzed for MHC-I, MHC-II and B7 antigens, as well as for CD 
antigens of PBL cells, in a FACSCAN flow cytometer (Becton Dickinson).  

4.7 Fluorescein cell - death detection 

Apoptosis was determined by dUTP-fluorescein terminal transferase-labeling of nicked 
DNA (TUNEL apoptosis assay). The « In situ Cell Death Detection Kit, fluorescein » 
(Boehringer Mannheim) was used according to supplier's instructions.  

4.8 Preparation of cell membranes 

Human glioma cells membranes were prepared according to the method of M.A. Matlib 
with modifications (Matlib et al., 1988). The Na+-Ca2+ exchange system in vascular smooth 
muscle cell membrane vesicles isolated from cultured cells and from tissue is similar. 
Homogenization of tissues was performed on ice by Polytron homogenizer in 20 mM 
MOPS, 250 mM sucrose, 0.05% BSA, 0.25 mM PMSF, pH 7.5. Homogenates were centrifuged 
for 10 min at 1000 x g, and the supernatant was recentrifuged for 15 min at 10000 x g. 
Microsome membranes were sedimented from the supernatant by centrifugation for 60 min 
at 100000 x g. The pellet was resuspended in 20 mM MOPS, pH 7.5, layered on top of 0.8 M 
sucrose in 20 mM MOPS and centrifuged in SW-27 bucket rotor (60 min x 24000 rpm). The 
pellet was collected from the interphase and recentrifuged under the same conditions. 
Finally, the membrane pellet was resuspended in 20 mM MOPS, pH 7.5, frozen in liquid 
nitrogen and stored at -70oC. For treatment of glioblastoma patients, the membrane pellet 
resuspended in MOPS, was, one hour befor vaccination, ressuspended in PBS (0.9% NaCl, 
pH 7.5) in ratio 1: 100.  

4.9 Vaccination of glioblastoma patients  

Human glioma cell lines were transfected with the “triple helix” pMT–AG TH plasmid 
vector. Clones of transfected cells (down-regulated for IGF-I and expressing MHC-I and B7 
molecules) were selected after two months - coming from a day of transfection. Before 
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injection the cells were irradiated. The first injection was done using the membranes only of 
so prepared 1 mln cells - injected subcutaneously into the left arm of operated glioblastoma 
patients (The next 3 weeks permitted to prepare a sufficient number of 5 million cells for the 
second injection, and then for the third injection). The blood was collected before the first 
vaccination, and then 3 weeks after the first and the second injection. Peripheral blood 
lymphocyte (PBL) typing was performed using mouse monoclonal antibodies directed 
against the superficial cell antigens.  
The samples of monoclonal antibodies were used for flow cytometer analysis as follows: 
conjugated to FITC - (a) CD45, (b) CD 4, (c) CD3, (d) CD25, (e) CD45RO, (f) CD19, (g) CD8, (h) 
CD8CD11b+, (i) control antibody IgG1, and those conjugated to PE – (a) CD14, (b) CD8, (c) 
CD16+CD6, (d) CD4(CD8), (e) CD4(CD8), (f)CD5, (g) CD8CD11b-, (h) CD8CD28, (i)  IgG2.   

5. Results 

The approval for the gene therapy clinical trial (based on NIH clinical study n°1602, 
Bethesda, Maryland, 24. 11. 1993) was administrated by the Bioethical Commission of the L. 
Rydygier Medical University, Bromberg (Bydgoszcz), Poland (n° KB/176/2001, 28. 06. 2002) 
and registered by international Wiley Gene Therapy Clinical Trial database n° 635 and 636 
(J. Gene Med., updated 2002), and by NATO Science program (LST 980517). 
Primary glioma cell cultures were established from biopsies of human GBM (Trojan et al., 
1996). The established cell lines were transfected with “antisense” or “triple helix” IGF-I 
vector. The cells were down regulated in IGF-I and presented both MHC-I and B7.1 
molecules. The IGF-I antisense cells or “vaccine” were irradiated before injection into status 
post-surgically resected glioblastoma patients. The significant changes observed were 
primarily after the first vaccination (Fig. 1). The phenotypic changes in peripheral blood 
lymphocytes were as follows. There was an increase in the percentage of CD8+T cells with a 
characteristic CD8+CD11b-  and CD8CD28+ phenotype after each of three vaccinations, the 
alteration that may reflect the enhanced activation of T cytotoxic cells in blood (Fig. 2). 
Additionally, an increased percentage of the lymphocytes positive for superficial 
interleukine-2 receptor (CD25) was observed. No changes in other CD molecules were 
demonstrated (Trojan et al., 2003, 2007). In our work in progress (new protocol) 4th and 5th 
injections of IGF-I TH cells in glioblastoma patients have been introduced. After the 4th 
injection the blood of treated patients showed a progressive increase in CD8 and NK cells, as 
compared with the 1st and 2nd injections, which underlines the in vivo immune effect of 
injected IGF-I TH cells. An increase in CD25 after the 2nd and 3rd injections was also 
observed. Then, after the 4th and 5th injections this progression slowed down. The only side 
effect observed was a post-vaccination fever of 38°C, corresponding probably to a cellular 
immune response (induction of T lymphocytes). These alterations may reflect the enhanced 
activation of cytotoxic T cells (Trojan et al., 2007a). 
The promising results were obtained in six Phase-I patients at University Hospitals of 
Cleveland, USA, in two patients in Bangkock Thailand and in four patients at the University 
Hospital of Bromberg (Bydgoszcz), Poland. In these Phase I trials, no unacceptable 
complications in patients were observed from the treatment. The only complicating finding 
was transit increase in temperature to 38-38.5 0C lasting 24-48 hours (confirming the 
presence of immune anti-tumour response). This usually occurred by 12 hours and in 8 of 
the 12 GBM patients that were treated. In the patients treated in the United States study, and 
in those investigated in Bromberg, Poland, tumour burden at time of treatment was 
advanced. One patient who was treated at University Hospitals of Cleveland, had lived 24 
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Fig. 1. Schema of IGF-I antisense therapy. The tumor cells are cloned in vitro to obtain a cell line 
positive for IGF-I. *After transfection of the cell line with a vector containing IGF-I cDNA in 
antisens orientation, the cells express IGF-I antisens RNA, and become negatively stained 
for IGF-I and positively for MHC-I and B7. Moreover they become apoptotic. Both 
phenomenons, immune and apoptotic, are related to signal transduction pathway (the 

presented pathway is common for different growth factors as EGF, VEGF, TGF-beta or PDGF).  The 
injected transfected cells including apoptotic cells, together with APC cells induced in vivo, 
activate T lymphocytes (CTL CD8+CD28+); activated CTL produce immune anti tumot 
response (Beckner et al., 2005; Fontenau et al., 2002; Ly et al., 2001; Trojan et al., 2007a, 2010). 
Abréviations : TAP 1,2 (transporter associated with antigen processing antigen); TK 
(tyrosine kinase); PI3K (phosphatidyinositol 3 kinase); PDK1 (phosphoinositide-dependent 
kinase 1); AKT (PKB, protein kinase B); Bcl 2 (key molecule of apoptose); GSK3 (glycogene 
synthetase kinase 3); GS (glycogene synthetase); MAPK (MAP kinase – mitogen activated 
protein kinase); PKC (protein kinase C). 
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Fig. 2. Flow cytometric peripheral blood lymphocyte CD marker patterns following cellular 
anti - gene anti IGF-I therapy in glioblastoma multiforme. CD molecules were labelled in 
peripheral blood lymphocytes (PBL) obtained from prevaccinated and “vaccinated “ cancer 
patients.  Each of the first column (blue) corresponds to data obtained before vaccinations; 
each second and third column corresponds to data obtained after two successive cellular 
vaccinations. Two cases of glioblastoma were examined (every column represents the 
median value of two cases). The successive vaccinations consited of injections of 1.5x106 to 
2.0x106 transfected cells.   Interval between successive injections was four weeks. PBL were 
analyzed by flow cytometry analysis using FACScan Becton Dickinson cytometer. Double 
direct immunotyping with pairs of monoclonal antibodies conjugated with FITC and PE 
were used. Lymphocyte gate was defined according to the CD45 back gating. Data are 
expressed as percent of positive cells when compared to the isotype control. Difference in 
percentage of CD8+ CD11b-  and  CD8+ CD28+ subpopulations before and after vaccination 
was strongly significant with a range of p from 0.001 to 0.02 according to the Student’s t test,  
and weakly significant  concerning the decreasing CD8+ CD11b+ subpopulation from the 
relevant patients. Difference in percentage of NK, CD3, CD4  sub-populations before and 
after vaccinations was not significant.  
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months from time of diagnosis. He had been treated with conventional courses of 
combination chemotherapy followed by stem cell transplantation, prior to treatment with 
vaccine. Among five other patients treated in USA (University Hospitals of Cleveland), two 
of the treated patients forming a group of maximum median OS have both survived 19 
months. The therapy done in USA has shown that the number of cell vaccinations (between 
one and four) was not related to to the median OS. Other group of three patients treated in 
USA, have not responded as positively to the therapy. The patient had advanced disease 
with cerebral oedema at the time of first treatment with vaccine, and also were receiving 
treatment with high dose of decadron or related steroids to reduce the effect of CNS 
oedema. This of course has caused further jeopardy to the immune system, and can explain 
the relatively negative results in three treated cases (not published data). In two of the four 
patients with GBM treated in Bromberg (NATO Science Programme – U.S./France/Poland), 
life from time of diagnosis to time of demise was 19 and 24 months.  In two control treated 
patients, life was an average of 9,5-10 months (Trojan et al., 2010). The significant clinical 
results were published in 2006/2007, when it was shown that using AS approach following 
radio- and chemotherapy, the median survival of patients reached 21 months (Trojan et al., 
2007a, 2007b). In 2010 we have communicated, that this relatively high median survival of 
glioblastoma patients could be explained by immune response related to the increase of 
CD28 molecules in PBL cells shown after every of two successive  “vaccinations”. Moreover 
this phenomenon was observed also in other studied tumours (four cases of liver, colon, 
ovary, uterus and prostate cancers (Trojan et al., 2010). Histopathologic examination of 
resected glioblastoma tumours showed that subjects had developed peritumour necrosis 
and tissue bordering the necrotic tumour showed infiltration by lymphocytes consisting of 
both CD8+ T and CD4+ T cells (Wongkajornsilp et al., 2011). There was no difference before 
or after the vaccination in the CD3, CD16+CD56, CD19, CD5, CD45 and CD14 levels. 

6. Discussion 

The immunosuppression phenomenon was largely described in cancer patients (Brooks et 
al., 1981; Roszman et al., 1991). TGF-beta was identified as factor suppressing T lymphocytes 
in tumors (Couldwell et al., 1991). Surgery seems to diminish the immunosuppressive effect 
(Sawamura & de Tribolet, 1990). Immune response could be increased by different 
approaches as the injections of interferon, IL-2, activated lymphocytes, monoclonal 
antibodies or irradiated cells (i.e. Apuzzo & Mitchell, 1981) or using approach of IGF-I 
antisense treatment (Trojan et al., 1993; Ly et al., 2001). 
Previous results have shown that tumor cells of glioma, transfected with IGF-I antisense 
expression vector had no longer induced tumor formation, when injected into host 
recipients as compared to unmanipulated cells (Trojan et al., 1993). The mechanisms leading 
to this tumor inhibition in host animals could be drawn:  
Tumor cells treated by IGF-I antisense become immunogenic to the isogenic recipients 
whose immune system was triggered via the novo expression of MHC-I presenting antigen 
as well as B7 costimulation molecule (Trojan et al., 1996). The effects of antisense IGF-I and 
targetting to IGF-I on tumor growth could also be discussed at the molecular basis in 
considering the balance between survival versus death signals. Thus the role of insulin-like 
growth factor must also be analyzed for its inhibitotry effects on prototypical 
proinflammatory cytokine tumor necrosis factor alpha (TNF alpha) (Upegui-Gonzalez et al., 
2001). TNF alpha is a pleiotropic cytokine that promotes inflammation and signals of death.  
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The IGF-I antisense transfected cells, when co-transfected with vectors encoding MHC-I 
and/or and B-7 antisense cDNA, however maintained their previous IGF-I « antisense » 
morphology, the number of apoptotic cells in the cultures of the double co-transfected IGF-I 
antisense glioma cells decreased from 60-70 to 20-30 % (Ly et al., 2001). The observation 
suggests that a relation could exist between immunogenicity and apoptosis in IGF-I 
transfected cells. They also indicate that both antigens, B-7 and MHC-I, are necessary to 
« render » the IGF-I antisense or triple-helix glioma cells immunogenic. The role of both B-7 
and MHC-I antigens in the induction of T cell immunity against tumors has been 
extensively investigated (Chen et al., 1992). As far as B-7 appeararance in IGF-I antisense 
transfected cells is considered, the absence of IGF-I synthesis would be expected to lead to a 
higher activation of the receptor of IGF-I (tyrosine kinase). This in turn could lead to 
induction in the expression of B7 antigen; enhancement in B7 co-stimulation through a 
cAMP mechanism linked to tyrosine kinase of the CD 28 receptor has been previously 
reported (Schwartz, 1992). As to the MHC-I expression, down-regulation of MHC-I due to 
action of IGF-I has been reported for experiments with rat thyroid cells (Saji et al, 1992). This 
would be in agreement with results reported here concerning the inverse correlation 
between IGF-I and MHC-I protein expression in glioma cells. 
In tumor cells, the absence of IGF-I, when induced by IGF-I antisense technology, is 
associated with massive apoptosis. A qualitative relationship between the level of IGF-I 
receptor and tumorigenesis in nude mice, which correlates to the extent of apoptosis has 
been shown (Resnicoff et al., 1996). When the function of IGF-I receptor is decreased, glioma 
cells undergo massive apoptosis. It was concluded for the IGF-I-R result, that this receptor 
activated by its ligand plays a protective role against programmed cell death. This 
protection was even more striking in vivo than in vitro (Resnicoff et al., 1996). Another 
possible interpretation could be that an immune response occurring in the animals inhibits 
tumorigenesis. This is probably because nude mice do have a residual immune system 
containing both natural killer cells and B lymphocyte. The observation that C6 glioma cells 
transfected with IGF-I-R anti-gene approach express MHC-I (Szpechcinski et al., 2004) seems 
to  confirm that both apoptosis and an immune mechanism occur in the inhibition of tumour 
genesis. These IGF-I-R antisense and triple helix transfected C6 cells also express protease 
nexin I, which may reduce the tumourigenic potential of the C6 glioma cells injected into 
nude mice (Rininsland et al., 1997, Shevelev et al., 1997). 
A further elucidation of the relationship between the immune process, related to MHC-I or 
HLA system (Blanchet et al., 1996), and the apoptotic process is under investigation. 
Recently it was demonstrated that dendritic cells which are involved in tumor-
immunogenicity mechanisms by activation of lymphocytes CD8 in the context of MHC-I, 
recognize apoptotic cells (Matthew et al, 1998). The last data could suggest the following 
mechanism of IGF-I anti - gene therapy : suppression of IGF-I – induction of MHC-I and B7 
– Induction of apoptosis – involving of APC cells – induction of CD8 T cells. The 
relationship between two phenomenons, immunogenicity and apoptosis is crucial for the 
discussion of mechanism of IGF-I antisense gene therapy. Moreover, this point is capital for 
the selection of cell clones used in gene therapy of glioblastoma in clinical trial.  
The first clinical results obtained with glioblastoma using anti – gene anti IGF-I therapy are 
very promising. Comparatively, the most recent chemotherapy, proposing temozolomid 
combined with radiotherapy, has shown in recurrent glioma patients the median 
progression-free survival as 10 weeks, and median overall survival as 30 weeks, respectively 
(Stupp et al., 2005). However, median survival is the most important consideration to be 
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taken into account (Stupp reported a 14.6 months median survival). In some cases of 
glioblastoma a strong association between methylation of the promoter region of the gene 
for 06-methylguanin-DNA methyltransferase (MGMT) and a benefit from temozolomid has 
been demonstrated (Hegi et al., 2005). Patients whose tumours had methylation of the 
MGMT gene, and who received chemo-radiation, had a 2-year survival rate of 46% 
compared with a 2-year survival rate of less than 2% in patients whose tumours had an 
actively unmethylated MGMT gene. On the contrary, other studies do not support the 
correlation of MGMT promoter methylation. Both temozolomide/MGMT and IGF-I anti-
gene approaches strongly support the strategy of individualized therapy. In the case of the 
IGF-I anti-gene approach the verification of MHC-I and B7 in the “vaccine” of every patient 
is the sine qua non condition for success in obtaining maximum survival. 
Obviously, IGF-I was not the only growth factor target as an anti-gene approach for 

glioblastoma treatment. The recently studied TGF-2 antisense compound (AP 12009) gave 
satisfactory results in preclinical investigations, and was introduced in a clinical phase I/II 
study in malignant tumours, including glioblastoma (Kaminska et al., 2005, Schlingensiepen 
et al., 2006).  The important data have been presented in international trial since 2004: in 
three phase I/II dose escalation studies of GBM patients, the median overall survival time 
(mOS) from start of the first chemotherapy after recurrence was 44 weeks. The mOS for a 
patient subgroup that received temozolomide as chemotherapy before AP-12009 was 46.1 
weeks. In 2007 the mOS group was 28.6 months  (and 75% were still alive), and in the 
control group, survival was 20.2 months (and 42% remained alive). In another clinical AS 
TGF-beta study, a phase I clinical trial of GBM was performed using autologous tumor cells 
modified by a AS TGF-beta2 vector (Fakhrai et al., 1996). Six patients with progressive GBM 
were enrolled in the trial. Patients received 2-7 subcutaneous injections of transfected tumor 
cells. There were indications of humoral and cellular immunity induced by the vaccine. Two 
patients had partial regressions and two had stable disease following therapy. The oMS was 
68 weeks. mOS of the responding patients was 78 weeks (Fakhrai et al., 1996).  
The in vitro and in vivo “antisense” results obtained with IGF-I and its receptor seem more 
significant than those obtained with other growth factors. That is probably due to a special 
role playing by IGF-I among other growth factors (Pollak et al., 2004; Trojan et al., 2007a) – 
thus IGF-I via IGF-I-R, not only increases cell proliferation but ”supervises” mitogenic 
action of other growth factors (EGF, PDGF etc.) by its autocrine-paracrine stimulation, 
becoming somewhat of growth factors director. As to a clinical trial of glioblastoma using 
the antisense IGF-I-R strategy (Andrews et al., 2001) 12 patients with recurrent glioblastoma 
and anaplastic astrocytoma were treated using an antisense oligonucleotide directed against 
IGF-I-R (implantation into the rectus sheath of irradiated autologous glioma cells 
encapsulated in diffusion chambers, after incubation with antisense IGF-I-R). Three patients 
were re-treated later using the same dose of oligodeoxynucleotides. Treatment was 
associated with incidences of vein thrombosis, but also with a rather high rate of clinical and 
radiological improvements. Two complete responses and four partial responses were 
achieved. Two patients were alive at 168 and 134 weeks after antisense therapy. Histological 
analysis of tumours resected from patients with disease progression revealed lymphocytic 
infiltration and necrosis (Andrews et al., 2001). It seems that this therapy could be more 
efficient if the cell ”vaccines” used were prepared after cloning of IGF-I-R antisense cells for 
MHC-I expression (Szpechcinski et al., 2004). Currently, regarding IGF-I, about 400 articles 
are published a year, and since 2001, more than 2000 publications deal with  a relationship 
existing  between growth factors and gliomas. In this context, the treatment of gliomas using 
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different technologies targeting growth factors and their down stream elements, has 
produced a burst in use of the antisense approach, presenting almost 100 publications a year 
since 2005. 

7. Conclusion 

The presented chapter on gene therapy of GBM draws attention to the latest studies in the 
area of antisense cancer therapy (in relation with apoptotic and immune phenomena as well 
as signal transduction pathway) being among the most promising strategy of treatment of 
this malignant brain tumour. Although the number of "antisense" clinical trials is much 
lower than that of experimental preclinical therapies (Table 1), we would like to underline 
that every experimental therapy is a potential clinical trial, the later often depending on 
hospital/administrative logistics. The current clinical strategies of glioma treatment are 
generally a combination of chemotherapy with therapies using different types of inhibitors 
(imatinib, gefitinb) including antibodies (i.e. avastin) targeting growth factors and their 
receptors (i.e. Stupp et al. 2005; Reardon et al. 2006;  Wen et al. 2006). The most recent 
therapies are now focusing on antisense technology used alone or combined also with 
pharmacological treatment  (Dietrich et al. 2010). A pharmacologic strategy – the use of 
temozolomide, introduced by Dr R. Stupp, has offered a new hope for the treatment of this 
tumour. However, even though the median survival has reached almost two years, we are 
still far from victory (Hegi et al., 2005; Gorlia et al., 2008). Among the new strategies in efforts 
to successfully treat GBM, the use of AS approach targeting IGF-I, TGF-beta or VEGF, their 
receptors and their down stream transduction signalling elements (Trojan et al., 2007a; Pan 
et al., 2007; Hau et al., 2009), appears to offer hope for a promising solution.  
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