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1. Introduction 

The evolution on the field of biotechnology and proteomics create a novel therapeutic field 
(Enzymo-therapy) for treatment of various types of disease, particularly in the last fifty 
years. Exploitation of enzymes as anticancer, anti-cardiovascular, anticoagulants, 
antimicrobials and antioxidants (Vellard, 2003) was absolutely approved by Food and Drug 
Administration (FDA). Practically, almost of tumor cells were reported to be auxotrophs for 
L-methionine, glutamine, asparagine and arginine, due to the absence of intrinsic enzymatic 
systems synthesizing these amino acids, thus it depends for their growth and proliferation 
on the exogenous supply of these amino acids, that usually from diets (Hoffman and Erbe, 
1976, Mecham et al., 1983, Pasut et al., 2007, El-Sayed, 2010). Consequently, L-methioninase, 
L-glutaminase, L-asparaginase and arginine deiminase were frequently used as common 
anticancer agents by sequestering their corresponding amino acids from the blood plasma 
(Hoffman, 1985, Klimberg and McClellan, 1996, Agrawal et al., 2003, Cheng et al., 2005).  
Additionally, hyperaccumulation of certain metabolic intermediates as homocysteine and 
cystathionine usually associated with various cardiovascular diseases and complex 
disorders (Zou and Banerjee, 2005, Wang and Hegele, 2003). Cystathionine ǃ-synthase and 
cystathionine Ǆ-lyase are potential for sequestering homocysteine and cystathionine via 
transsulfuration metabolic pathways for production of glutathione and other antioxidants, 
so, these enzymes were described as anti-cardiovascular agents (Stipanuk, 2004, Zhu et al., 
2008).  
Unlike traditional approaches, Enzymo-therapy seems to be the promising therapeutic 
technology for their great specificity and affinity towards a clue substrate on specific 
metabolic pathway. However, the structural and conformational complexity of these 
enzymes makes it more vulnerable to extrinsic parameters, modulators, immunogenicity 
and proteolysis (Tan et al., 1996, Sun et al., 2003, Pasut et al., 2007). In addition, purification 
and formulation of these therapeutic enzymes, due to the economic expenses may add 
further complications.      
Therefore, the various approaches for stabilization of these enzymes in situ and decreasing 
their immunogenicity were the objective of this context. The structural and catalytic identity 
of pyridoxal phosphate enzymes, molecular aspects to enhance their therapeutic 
potentiality, in addition to our prospectives will be exploited.      
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2. Pyridoxal 5'-phosphate dependent enzymes: classification and catalytic 
identities 

Pyridoxal 5'-Phosphate (PLP) dependent enzymes, a group of versatile enzymes including 
about 145 distinct enzyme, 4% of the total cellular enzymatic activities (www.brenda.com) 
(Thornton et al., 2000, Percudani and Peracchi, 2003) which mainly uses PLP as covalent co-
enzyme. PLP is an active phosphorylated derivative of vitamin B6 (pyridoxine) (Heyl et al., 
1951). According to the international biochemical, molecular classification of enzymes 
(Enzyme Commission) (www.chem.qmul.ac.uk/iubmb), PLP-dependent enzymes were 
distributed in to five groups; 1- Oxido-reductase (EC 1; one enzyme), 2-Transferase (EC 2; 
eighty enzymes), 3- Hydrolase (EC 3; two enzymes), 4-Lyase (EC 4; Forty nine enzyme), and 
5-Isomerase (EC 5; Thirteen enzyme) as totally 145 enzyme (Grishin et al., 1995, Percudani 
and Peracchi, 2003) as shown in Fig.1.     
Practically, all the PLP-dependent-enzymes are mainly involved in amino acids 
transformation as decarboxylation, transamination, racemization, ǃ, Ǆ-elimination and ǃ, Ǆ-
substitution (Percudani and Peracchi, 2003). The multiple functional catalytic modes of PLP-
enzymes according to the position of net reaction were summarized in Table 1. PLP 
coenzyme has a pivotal role in catalysis of various enzymatic reactions. Pyridoxal phosphate 
can be synthesized de novo from preexisting precursor in bacteria (Brewke and Leistner, 
2001), fungi (Bean et al., 2001, Ehrenshaft and Daub, 2001) and plants (Galperin and Koonin, 
1997) from erythrose 4-phosphate, pyruvate and D-glyceraldhyde 3-phosphate. However, in 
human PLP cannot be synthesized de novo, it must be supplemented from the diet as 
pyridoxine, pyridoxamine and/or pyridoxal. PLP can be formed from pyridoxal via 
phosphorylation by action of kinase (PdxK; EC. 2.7.1.35), from oxidation of pyridoxamine/ 
pyridoxine by oxidase (EC. 1.4.3.5) (Choi et al., 1983, Bahn et al., 2002). Structurally, 
aldehyde group of PLP are bound covalently as internal aldimine (Schiff base)/ imine 
linkage to the Ɛ-amino group of lysine residues, close to N-terminus (Lopez et al., 2010) as in 
Fig. (2).      
The role of PLP, during catalysis, is to reduce the energy for conversion of amino acids 
substrates to a zwitterionic carbonion (Richard and Amyes, 2004), substantially the 
apoenzyme catalyze the cleavage of substrate target bond yielding the product as reviewed 
by Richard et al. (2011). Regarding to the native internal aldimine of PLP-enzyme, the 
catalytic process started with formation of external aldimine linkage of amino group of 
substrate and pyridoxal phosphate coenzyme forming coenzyme-substrate Schiff base, 
replacing the Ɛ-amino group of lysine-enzyme (Schirch et al., 1993).This external aldimine of 
Co-enzyme-substrate Schiff base is the common intermediate for all PLP-dependent 
enzymes. Interestingly, pyridoxal phosphate without apo-enzyme, can slowly mediate 
many of reactions while the enzyme can ensure the substrate specificity and catalysis 
(Toney, 2005, Lopez et al., 2010), that justifies the lack of apoenzyme activity, with 
potentiality to recover its catalytic state upon supplementation by external PLP (El-Sayed, 
2011). Since the formation of external aldimine, the pyridoxal phosphate is bounded tightly 
to the apoenzyme via nine hydrogen bonds (Johnson et al., 1990, Palm et al., 1990). The PLP 
extremely withdraw electrons, stabilizing the negative charge at ǂ-carbon (carbanion) of the 
substrate as transition state that commonly referred as Quinonoid intermediates (Metha and 
Christen, 2000, Hult and Berglund, 2007). The catalytic promiscuity of PLP-dependent 
enzymes mainly depends on the mechanistic consequence of quinonoid intermediates 
(Alexander et al., 1994, Toney, 2005) as shown in Fig. (3).   
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Depending of crystallographic structures and topological studies, PLP-dependent enzymes 
were categorized in to five distinct folds (I-V) (Alexander et al., 1994, John, 1995, Jansonius, 
1998) as illustrated in Table 2. The five independent fold types of PLP-enzymes were: Fold 
type I; Aspartate Aminotransferase (AAT) family; the most functionally diverse type 
containing ǂ and Ǆ-families of PLP-enzymes in which the internal aldimine was formed at 
lysine of N-terminus of the short helix at ǃ-strand (Percudani and Peracchi, 2003). On AAT 
family, pyridine nitrogen is protonated and stabilized by interaction with enzyme aspartic 
and glutamic acid (Casanovas et al., 2009). Methionine Ǆ-lyase, cystathionine ǃ-synthase, 
cystathionine Ǆ-lyase were belongs to this family. Fold type II; Tryptophan Synthase ǃ-
family, this family represented tryptophan synthase (Hyde et al., 1988), threonine 
deaminase (Gallagher et al., 1998) and O-acetylserine sulfhydrylase (Burkhard et al., 1998). 
The internal aldimine was at lysine residues of ǂ-helix on the N-terminal domain. The 
apoenzyme was stabilized by interaction of its serine and threonine residues with pyridine 
ring of PLP (Percudani and peracchi, 2003). Fold type III; Alanine Racemase family; that 
represented by alanine racemase (Shaw et al., 2000), ornithine decarboxylase (Kern et al., 
1999). Physically, the pyridine ring PLP, coenzyme, was interacted with NH moiety of 
arginine residues of apo-enzyme (Le-Magueres et al., 2005). Fold type IV; D-Amino Acid 
Aminotransferase family, that involve D-amino acid aminotransferase (Sugio, 1995), 
branched chain amino acid amino transferase (Okada et al., 1997) and 4-amino-4-
deoxychorismate lyase (Nakai et al., 2000) as reviewed by Denesyuk et al. (2002). Like Type 
I, pyridine of PLP was interacted with glutamic acid of apoenzyme by hydrogen bonds 
(Sugio, 1995). Fold type V; Glycogen Phosphorylase Family; that contains glycogen 
phosphorylase (Sprang and Fletterick, 1979, Palm et al., 1990) and maltodextrin 
phosphorylase (Watson et al., 1999). 
 

 
PLP-dependent enzymes were within five classes according to enzyme classification system (Enzyme 
Commission (EC) 1-Oxidoreductases, one enzyme (Red), 2-Transferase, 80 enzyme (faint blue), 3-
Hydrolase, two enzymes (faint red), 4-Lyase, 49 enzyme (yellow) and 5-Isomearse, 13 enzyme (green). 
The catalytic diversity of PLP-dependent enzymes was described by Thornton et al. (2000) and 
Percudani and Peracchi (2003).    

Fig. 1. Pyridoxal Phosphate Dependent Enzymes.  
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Fig. 2. Internal and External aldimine linkage of Pyridoxal Phosphate with enzyme and 
substrate, respectively   

 
 
 
 

 
Fig. 3. Mechanism of PLP-enzyme catalysis via Quinonoid intermediates. 
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O
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Table 1. Functional catalytic modes of PLP-enzymes according to the position of net reaction  
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No. Fold Type I No.
1 Glycine dehydrogenase 50 Tyrosine decarboxylase  
2 Glycine hydroxymethyltransferase 51 Glutamate decarboxylase b
3 Threonine aldolase 52 Histidine decarboxylase b
4 Trptophanase 53 Ornithine decarboxylase 1
5 Tyrosine phenol lyase 54 Arginine decarboxylase 1
6 Selenocysteine lyase 55 Lysine decarboxylase 
7 Glyoxylate aminotransferase 56 Allinase 
8 Serine aminotransferase 
9 Phosphoserine aminotransferase 
10 Amino ketobutyrate CoA ligase Fold Type II
11 Aminolevulinate Synthase 1 Aminocyclopropane-carboxyl deaminase 
12 Amino oxononanoate synthase 2 Tryptophan synthase ǃ
13 Serine palmitoyltransferase 3 Cystathionine ǃ-synthase
14 Kvnureninase 4 O-Acetylserine sulfhydrylase 
15 Isopenicillin N-epimerase 5 D-Serine dehydratase
16 Cysteine desulfurase 6 L-serine dehydratase
17 Splicing protein SPL1 7 Threonine dehydratase
18 Cystathionine Ǆ-Synthase 8 Threonine synthase 1
19 O-Succinylhomoserine sulhydrase 9 Diaminopropionate lyase
20 Methionine Ǆ-Lyase 10 Threonine synthase 2
21 Cystathionine Ǆ-Lyase 11 D-Alanine aminotransferase 
22 Cystathionine ǃ-Lyase 12 Amino deoxychorismate lyase 
23 Aspartate aminotransferase a 13 Branched amino acid aminotransferase 
24 Aromatic amino acid 

aminotransferase 
25 Tyrosine aminotransferase 
26 Alanine aminotransferase Fold Type III
27 malY gene product 1 Ornithine decarboxylase 2
28 Phenylpuruvate aminotransferase 2 Diaminopimelate decarboxylase 
29 Aminocyclopropane carboxylate 

synthase 
3 Arginine decarboxylase

30 Rhizopine regulatory protein alanine racemase
31 Aspartate aminotransferase b
32 Aspartate aminotransferase c
33 Histidinol phosphate 

aminotransferase 
Fold Type IV

34 cobC gene product 1 D-amino acid aminotransferase 
35 Valine-Pyruvate aminotransferase 2 branched chain amino acid amino 

transferase
36 Acetylornithine aminotransferase 3 4-amino-4-deoxychorismate lyase 
37 Succinylornithine aminotransferase 
38 Ornithine aminotransferase 
39 Alanine glyoxylate 

aminotransferase 
40 Dialkylglycine decarboxylase Fold type V
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41 Alanine pyruvate aminotransferase 1 Glycogen phosphorylase
42 Aminooxononanoate 

aminotransferase 
2 Maltodextrin phosphorylase 

43 DNTP hexose aminotransferase
44 Glutamate semialdehyde 

aminomutase 
45 Aminobutyrate aminotransferase 
46 Lysine Ɛ-aminotransferase 
47 Diaminobutanoate 

aminotransferase 
48 Glutamate decarboxylase a
49 Histidine decarboxylase a

Table 2. Families of Pyridoxal Phosphate dependent enzymes 

No hydrogen bonds between pyridine nitrogen and apoenzyme (Percudani and Percacchi, 
2003). The systematic and catalytic promiscuity of the five fold types PLP-dependent 
enzymes as adopted by Metha and Christen (2000) and Percudani and Peracchi (2003), were 
illustrated in Table 2. 
Regarding to our previous work (Khalaf and El-Sayed, 2009, El-Sayed, 2009, 2010, 2011a, b), 
the subsequent section was focused on the metabolic interactions of sulfur containing amino 
acid by PLP-dependent enzymes of Aspartate Aminotransferase Family.  

3. Metabolic interactions of sulfur-containing amino acids by PLP-dependent 
enzymes: Biochemical identity of normal and tumor cells 

Sulfur-containing amino acids are pivotal compounds for almost of metabolic cellular 
process. In contrary to humans, plants and microorganisms can synthesize their sulfur 
containing amino acids from the inorganic precursor as sulfate, sulfite and sulfide via 
reduction or activation (Beinert, 2000, Kessler, 2006). In humans, methionine and cysteine 
were described as conditional essential amino acids for normal various biological aspects 
(Baylin et al., 1998, Davis and Uthus, 2004). The prominent sulfur containing amino acids on 
living cell are cysteine and methionine, that crucially incorporated on the synthesis of Co-
enzyme, vitamins, epigenetic DNA modulators, DNA stabilizers and antioxidants (El-Sayed, 
2010 and Cellarier et al., 2003). Additionally, cysteine is the essential source for H2S 
biogenesis that critically acts as neuro-modulators, cardio-protector, relaxing muscle 
regulators, and vasodiolator for vascular system (Wang, 2002, Kimura, 2010, Predmore and 
Lefer, 2010 and Gadalla and Snyder, 2010). The general metabolic interactions of sulfur 
containing amino acids and their derivative by PLP-enzymes were illustrated in Fig. (3). 
Methionine can be metabolized via different ways that collectively regulated by PLP-
dependent enzymes as methionine Ǆ-lyase, cystathionine ǃ, Ǆ-synthases and cystathionine ǃ, 
Ǆ-lyases. In plants and microbes, methionine can be undergoes oxidative deamination/ 
demethiolation forming methanethiol, ǂ-ketobutyrate and ammonia (Tanaka et al., 1977) via 
the action of L-methioninase. L-Methioninase was frequently reported as a substrate 
induced extracellular enzyme for various microbial cultures (Tanaka et al., 1977, Soda et al., 
1983; Nikulin et al., 2008, Khalaf and El-Sayed, 2009), while it is absent in mammalian cells 
(Cooper, 1983). Biochemically, methionine was activated by methionine adenosyltransferase 
forming S-adenosylmethionine as a key intermediate for the following metabolic pathways; 
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4. Transmethylation pathway and methionine synthesis  

S-Adenosylmethionine undergoes de-methylation by glycine-N-methyltransferase forming 
S-adenosyl homocysteine (Luka et al., 2006). This reaction is the source for more than 100 
biological methylation reactions including epigenetic DNA regulation and protein 
posttranslational modifications, in living cell (Choi and Mason, 2002) Moreover, in microbial 
cells, the methyl group from adenosylmethionine can switch the formation of Siroheme via 
methylation followed by oxidation of Uroporphyrinogen II (Thomas et al., 1997, Hansen et 
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Fig. 3. Metabolic Interactions of sulfur-containing amino acids, as supplied from the diet or 
intracellular, via different cellular pathways. Except human, L-methionine was undergoes 
oxidative deamination and demethiolation by L-methioninase (EC 4.4.1.11) in various 
microorganisms and plants. In all living cells, adenosyl methionine, activated form of L-
methionine, was implicated in various pathways: 1- Transmethylation, adenosylmethionine 
by glycine N-methyltransferase is demethylated to adenosyl-homocysteine that involved in 
methylation of DNA, RNA, and protein. 2- Transsulfuration pathway, forming glutathione 
and trypanothione as cellular antioxidants, cysteine was involved on formation of several S-
containing compounds. 3- Polyamine synthesis, S-adenosylmethionine was decarboxylated 
by decarboxylase forming adenosyl methylpropylamine that condensate with putrescine 
forming spermidine by spermidine synthase, then forming spermine by spermine synthase.    
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al., 1997). Physiologically, tumors are genetically abnormal cells with uncontrolled rapidly 
growth and proliferation, for mutation on some genes encoding amino acids metabolizing 
enzymes, comparing to the corresponding normal cells (Hoffman, 1985). Elevated 
requirements of methionine are the common biochemical criteria by tumor cells comparing 
to corresponding normal ones, to fulfill their high protein synthesis and regulation of DNA 
expression (Stern et al., 1984, Swisher et al., 2009). Practically, hypermethylation of DNA is 
usually correlates with transcriptional silencing of many of tumor suppressor genes, P53 
genes, thus disrupting DNA repairing systems and cell signaling modulators (Jones and 
Baylin, 2002, Santini et al., 2001) as reviewed by El-Sayed (2010). Also, methylation of tumor 
DNA change the identity of CpG islands, thus altering the expression of DNA repairing and 
apoptosis controlling genes (Sun et al., 1997, Matsukura et al, 2003) and changing of CpG 
islands (Swisher et al., 2009). On other hand, suppression of methionine synthase genes are a 
reliable cellular criteria in various cells as bladder, breast, kidney, lung and hematological 
tumors (Mecham et al., 1983, Hoffman, 1985, Kreis and Goodenow, 1978), thus it described 
as methionine dependent cells. In contrast, the normal cells have an active methionine 
synthase with the ability to form methionine from homocysteine in the presence of methyl 
tetrahydro folate and betaine as methyl group donors (Kenyon et al., 2002). Consequently, 
the tumor cells have no ability to grow on homocysteine, comparing to the normal growth 
of healthy cells. The different argumentations for methionine dependency of tumor cells and 
biochemical identity of L-methioninase as therapeutic agent were comprehensively 
interpreted by our previous studies (El-Sayed, 2010). 

5. Polyamines synthesis  

S-Adenosylmethionine was decarboxylated by adenosylmethionine decarboxylase forming 
S-adenosyl-methylpropylamine (Gilmour, 2007) that subsequently reacts with putrescine 
forming spermidine by spermidine synthase (Fig. 3). Subsequently, S-adenosyl-methyl 
propylamine react with spermidine forming spermine by action of spermine synthase 
(Martinez-Lopez et al., 2008). Putrescine residues are catabolically products of ornithine/ 
arginine as intermediates of urea cycle by action of decarboxylases. Polyamines are biogenic 
molecules that tightly bound to the poly-anionic macromolecules as DNA, RNA and 
phospholipids (Igarashi et al., 1982), regulating the gene expression and protein processing. 
Biochemically, it crucially involved in stabilization of DNA: Chromatin conformational 
structures (Davidson et al., 1999), reprogramming of some genes by translational frame-
shifting mechanism and expression of the targeted overlapped open reading frames (such as 
nuclear phospholipids P53) (Coffino, 2000). Also, it essentially interact with membrane 
phospholipids regulating the membrane linked enzyme transporters (Moruzzi et al., 1993), 
maintaining the proper membrane potentials. In contrast, high levels of polyamines usually 
associated with high carcinogenesis of skin, breast, liver, kidney (O'Brien, 1976, Pegg, 1988) 
and over apoptosis (Hoet and Nemery, 2000). Practically, elevated levels of ornithine 
decarboxylase a pyridoxal phosphate-dependent enzyme, is significantly correlates with 
high ratio of polyamines that usually used as relevant carcinogenesis marker (Persson et al., 
1998).  

6. Transsulfuration pathway 

Transsulfuration is the main metabolic pathway for transformation of homocysteine to 
glutathione, and trypanothione (Cellarier et al., 2003), involving two pyridoxal phosphate 
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dependent enzymes, cystathionine ǃ-synthase and Ǆ-lyase (Fig. 3). By cystathionine ǃ-
synthase, homocysteine condensates with serine moiety forming cystathionine, that 
subsequently oxidized to cysteine, ǂ-ketobutyrate and ammonia by cystathionine Ǆ-lyase 
(Zou and Baerjee, 2005). Biochemically, transsulfuration pathway contributes in maintaining 
the cellular balance of cysteine-homocysteine pool that participates in about 50% of total 
antioxidant formation (Zhu et al., 2008). Practically, inactivation of cystathionine ǃ-synthase 
causes hyperaccumulation of homocysteine that is a visual risk of cardiovascular diseases, 
damage to vascular endothelia (De Bree et al., 2002, Wald et al., 2002) and Alzheimer's 
disease (Morris, 2003). Moreover, the deficiency of cystathionine Ǆ-lyase results in 
accumulation of cystathionine, known as Cystathioninuria that usually accompanied with 
diabetes, Down's syndrome, neuroblastoma (Wang and Hegele, 2003, Zhu et al., 2008). 
Glutathione was synthesized by Ǆ-glutamylation (El-Sayed et al., 2010) of cysteine by Ǆ-
glutamyl cysteine synthetase, then complexation with glycine forming glutathione by 
glutathione synthetase (Cellarier et al., 2003) as reviewed by El-Sayed (2010). Trypanothione 
as dimmer of glutathione molecules joined by sperimidine linker, as powerful antioxidants 
against stress (Tover et al., 2003).  

7. Rationality of PLP dependent enzymes as antitumor and anti-
cardiovascular agents 

The absolute dependence of tumor cells on the exogenous supply of plasma L-methionine, 
not homocysteine, due to their lacks to active methionine synthase is the biochemical target 
for many therapeutic strategies (Cellarier et al., 2003). Unlike the inactivity of methionine 
synthase in tumor cells, this enzyme was very active in normal cells ensuring their ability 
for synthesizing required methionine from homocysteine (Anderson, 1998). The 
argumentation of biochemical dependence of tumors on methionine synthase or their 
coenzymes for various cell lines corresponding to the normal cells was comprehensively 
documented (Liteplo et al., 1991; Fiskerstrand et al., 1994, El-Sayed, 2010). Several 
approaches were designed for triggering the methionine dependency of tumor cells, for 
example, starvation of the tumor cells from methionine using methionine-free diets that 
displays a reliable efficacy against various types of tumor cells (Goseki et al. 1992). 
However, this strategy is practically inefficient for many technical, therapeutical and 
economical considerations (Hoffman, 1985, Tan et al., 1996, Hoshiya et al., 1997). 
Consequently, application of L-methioninase for removal of plasma L-methionine is the 
potent justifiable strategy towards various methionine dependent tumor cells (Anderson, 
1998 and Kokkinakis, 2006). Methionine depletions cause arresting of tumor cell growth on 
the late of S-G2 phase undergoing eventually apoptosis (Guo et al., 1993, Nagahama et al., 
1998). Biochemically, nutrients with depleted or enriched specific amino acid affect on the 
growth of normal/tumor cells, according to Harper's concept of amino acid balance. 
Malnutrition of patient is closely associated with severe amino acid metabolic disorders, 
uncorrectable nitrogen balance with low activity of immune system (Nitenberg and 
Raynard, 2000). Interestingly, methionine/ valine depleted, tyrosine lowered and arginine 
enriched was the most rationalized form for inhibition of tumor growth (Chen et al., 2001, 
He et al., 2003). L-Methioninase was extensively tested a potent anti-proliferative enzyme 
towards Lewis lung (Yoshioka et al., 1998), human colon (Tan et al., 1998), glioblastoma 
(Kokkinakis et al., 2001), neuroblastoma (Hu and Cheung, 2009) as reviewed by Sato and 
Nozaki (2009) and El-Sayed (2010). Recently, Parenteral nutrition is a common co-
supportive strategy for various aspects of tumor therapy (Buchman et al., 2006).      
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L-Methioninase was purified and characterized from different bacterial isolates (Hoffman 
and Erbe, 1976; Tanaka et al., 1977, Soda et al., 1983, Nikulin et al., 2008), particularly, 
Pseudomonas putida enzyme that extensively structurally studied via crystallographic studies 
(Ito et al., 1976, Tanaka et al., 1977, Nakayama et al., 1984, Lishko et al., 1993, Motoshima et 
al., 2000, Kudou et al., 2007). However, the therapeutic response of bacterial enzymes 
usually associated with high immunogenic reactions, rapid plasma clearance and 
proteolysis especially with multiple dosing (Tan et al., 1996; Sun et al., 2003), making the 
patient is more vulnerable to secondary immunogenic disorders by opportunistic 
pathogens. Also, as result of deaminating activity of this enzyme, extra amounts of 
ammonia (hyper-ammoniemia) was released during the course of tumor therapy, causing 
additional hazardous effects to the kidney and liver, as observed for many of anticancer 
deaminating enzymes (Balcao et al., 2001). Biochemically, hyperaccumulation of ammonia 
anticipates on formation of extra amounts of arginine and ornithine, via urea cycle, 
promoting the polyamines synthesis that indirectly induces tumorgenesis (Pegg, 1988, 
Gerner and Meyskens, 2004). The immunogenic reactions of bacterial enzyme could be 
attributed to their structural stereo-conformation during the enzyme posttranslational 
modifications, prokaryotic nature, making distinct epitopes immunogenic sites on the 
surface of the enzyme as assumed from the phylogenetic analysis of their amino acids (El-
Sayed, 2010). Depending on database, the structural amino acid identity of Arabidopsis 
thaliana L-methioninase was similar to that of Pseudomonas putida by less than 25 %, 
suggesting the differences on the surface amino acid constitution (El-Sayed, 2010). 
Accordingly, L-methioninase was classified structurally in two forms; First, Pseudomonas-
Trichomonas group that contain six subgroups namely; Pseudomonas, Bacillus, Brevibacterium, 
Trichomonas, Rhizobium and Aeromonas. Second; Arabidopsis group which represented by A. 
thaliana. Interestingly, the similarity of amino acid composition of L-methioninase is closely 
related to the systematic morphological and physiological position of the organism. 
Actually, the amino acid composition of the fungal L-methioninase open reading frame, nor 
crystallographic studies was not studied. Therefore, regarding to the therapeutic 
implications of currently applied L-methioninase, the searching for a novel enzyme with 
less immunogenic activity and high therapeutic potentiality or modifications of the 
currently used enzymes is a challenge for many biotechnologists. 

8. Different approaches to increase the therapeutic potentiality of l-
methioninase 

8.1 PEGylation of L-methioninase  

Immobilization of the therapeutic enzymes on polyethylene glycol (PEG), PEGylation, is one 
of the most successful strategies that originated in 1970 (Abuchowski et al., 1977). 
PEGylation of albumin and catalase was the milestone for the development and 
globalization of this technique, as efficient method for modification of the structural and 
immunogenic identities of proteins (Abuchowski et al., 1977). Polyethylene glycol is a 
neutral, water soluble, hydrophilic polyether with less immunogenicity that ensure various 
pharmacological properties as increasing half-life time, reducing the kidney clearance, 
protecting protein from proteolysis by via steric hindrance, reduce the immunogenicity of 
protein, increasing the solubility of target therapeutic agent (Reddy, 2000, Veronese and 
Pasut, 2005, Fee and Van Alsteine, 2004, Pasut and Veronese, 2009). The therapeutic 
behavior of PEGylated-enzyme was illustrated (Fig. 4). PEGylated-enzyme have a reduced 

www.intechopen.com



 
Targets in Gene Therapy 

 

130 

kidney excretion, with more plasma half-life time for the increasing of its molecular size 
(hydrodynamic radii), masking the sensitive amino to chemical modification, shielding the 
critical surface active sites from proteolysis, antibodies recognition and/or interaction with 
inhibitors (Harris, 1991; Zalipsky, 1995; Harris et al., 2001; Veronese and Harris, 2002), 
comparing to free enzyme. Also, PEGylation reduce the protein opsonization and adhesion 
to liposomes, microparticles (Fee and Van Alstine, 2004). Currently, PEGylation become a 
well developed technique for formulations of biopharmaceuticals for improving their 
solubility, bioavailability and decreasing their immunogenic properties as approved by FDA 
organization (Pasut et al., 2007). PEGylated forms of therapeutic enzymes as Escherichia coli 
asparaginase (Abuchowski et al., 1979), arginine deiminase (Izzo et al., 2007), Bacillus subtilis 
arginase (Cheng et al., 2005), Aspergillus flavus uricase (Bayol et al., 2002) displays affordable 
therapeutic potentialities comparing to corresponding free enzymes, as declared by FDA. 
PEGylation of Pseudomonas putida L-methioninase was extensively studied (Tan et al., 1998 
and Sun et al., 2003). The half-life time of PEG-L-methioninase was increased to 160 min, 
comparing to 80 min to the unmodified enzyme. However, the activity of L-methioninase 
was relatively not inhibited by PEGylation as appeared from the IC50 values against human 
lung and kidney tumors (Tan et al., 1998). In addition, PEGylation enhance the half-life 
times of the recombinant L-methioninase by about 20 fold and rate of serum methionine 
depletion by about 12 fold (Sun et al., 2003). Apparently, the degree of enzyme PEGylation 
usually correlate with the decreasing on enzyme immunogenicity and prolonged half-life 
time, in vivo. For example, the in vivo half-life times was increased from 12, 18 to 38 h upon 
degree of PEGylation of L-methioninase by 30/1, 60/1 and 120/1 molar ratios, respectively, 
comparing to the 2 h for the naked L-methioninase. PEGylation decreases the titer of IgG by 
about 10 and 10000 fold for PEG-rMETase 30/1 and 120/1 molar ratios, degree of 
PEGylation comparing to free enzyme (Sun et al., 2003).  Also, administration of external 
pyridoxal phosphate remarkably confers the half-life times and activity of PEG-rMETase. 
The significant decrease on the enzyme immunogenicity was appeared from the titer of anti-
PEG-METase as significantly reduced comparing to the native enzyme. As could be 
deduced, the more degree of PEGylation, the more masking of the superficial antigenic, 
epitopes, sites of the enzyme (Sun et al., 2003, Yang et al., 2004). The decrease on the 
activities of native of PEG-L-methioninase in vivo may attributed to dissociation of PLP Co-
enzyme (Yang et al., 2004), that being confirmed by our results in vitro (El-Sayed, 2011). 
However, L-methioninase and co-enzyme being easily re-associate upon external 
supplementation of pyridoxal phosphate as appeared by A420/280 ratio parallel to 
spectroscopic analysis for determination of the enzyme activity (El-Sayed, 2011). Thus, the 
combination of PEG-L-methioninase and pyridoxal phosphate infusion, or periodical 
supplementation of PLP by external osmotic pump, may exhibit a new strategy for 
prolonging the half-life time, for maximum enzyme therapeutic exploitation. L-
Methioninase displays two absorption maxima at 280 nm, as aromatic amino acids 
containing protein, and at 420 nm due to the internal aldimine linkage of the aldhyde group 
of pyridoxal phosphate and Ɛ-amino group of lysine N-terminal domain of PLP-enzyme. 
The absorption spectra of bacterial and fungal L-methioninase (Tanaka et al., 1977, Johnston 
et al., 1979, El-Sayed, 2011) are typically to other pyridoxal-dependent enzymes (Bertoldi et 
al., 2002; Saha et al., 2009). The pyridoxal phosphate co-enzyme was dissociate from the apo-
enzyme by incubation with 10 mM hydroxylamine, giving one peak at 280nm, with 
disappearance of the 420 nm peak due to the dissociation of the PLP and hydrolysis of the 
internal aldimine bond. To evaluate the structural reconstitution potentiality of fungal L-
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methioninase, different doses of PLP was supplemented to the apo-enzyme, the structural 
and catalytical efficiency was monitored. The ratio of A280/420 was decreased from 4.01 to 
1.7, upon addition of pyridoxal phosphate (0.2 mM) to the apo-enzyme, indicating the full 
reconstitution of the active holo-enzyme (El-Sayed, 2011) (Fig.5). Johnston et al. (1979) 
reported that upon freezing and thawing the ratio of A280/420 of Pseudomonas ovalis L-
methioninase was increased from 3.90 to 4.7, due to the dissociation of pyridoxal phosphate. 
P. ovalis L-methioninase lacks the ability to restore its original activity by dialysis against 
pyridoxal phosphate (Johnston et al., 1979), while that of Trichomonas vaginalis enzyme 
restore more than 90 % of its activity by 0.1mM PLP (Lockwood and Coombs, 1991). 
However, A. flavipes L-methioninase has the ability to reconstitute its fully structural 
catalytic state upon addition of pyridoxal phosphate (0.2mM), similarly to cystathionine Ǆ-
lyase (Zhu et al., 2008).   
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Fig. 5. Absorption spectra of holo and apo-methioninase from A. flavipes (El-Sayed, 2011). 
Apo-methioninase obtained by preincubation of the holo-enzyme (2.2 mg/ml) in potassium 
phosphate buffer (pH 7.8) with 10 mM hydroxylamine. Reconstruction of the holo-enzyme 
by incubation of the apo-methioninase with 0.04 mM PLP (1), 0.08 mM PLP (2), 0.1 mM PLP 
(3), 0.15 mM PLP (4) and 0.2 mM PLP (5).  

9. Combination between L-methioninase and chemotherapeutic agents  

Synergism between L-methioninase and chemotherapeutic agents present a new strategy 
against various types of tumors (Yoshioka et al., 1998). Biochemically, starvation of the 
tumor cells to L-methionine, by action of L-methioninase or L-methionine depleted diets 
usually make the tumor cells more vulnerable to any biochemical modulator as reviewed by 
El-Sayed (2010). Methionine starvation and simultaneous phase-specific chemotherapeutic 
agent is an overall concept for all therapeutic strategies. 5-Fluorouracil, common 
biochemical modulator, an analogue to thiamine, that competitively bind to thymidylate 
synthetase, causing prompted suppression to DNA synthesis of tumor cells (Poirson-Bichat 
et al., 1997). The sensitivity of Lewis lung carcinoma to L-methioninase was increased by 
about 4.5 fold by addition of 5-fluorouracil (Hoshiya et al., 1997, Tan et al., 1998, Yoshioka et 
al., 1998). Similarly, doxorubicin as intercalating agent blocks the cell cycle, greatly improves 
the activity of L-methioninase against human lung carcinoma H460 (Gupta et al., 2003). 
Ethionine, as methionine analogue, in combination with methionine starved diets display a 
potent activity against human colon and lung tumors, that attributed to inhibition of 
methyltransferase leading to DNA, RNA, protein hypomethylation (Razin and Riggs, 1980 
and Poirson-Bichat et al., 2000). Also, methionine free diets potentiality against human 
prostate and glioma was strongly augmented by supplementation of ethionine that 
attributed to reduction of ATP pool and glutathione synthesis (Guo et al., 1996, Poirson-
Bichat et al., 1997). Also, methionine deprivation induce the hypomethylation reactions that 
lowers the glutathione and alters folate metabolism causing selective arresting to the cell 
cycle in the late of S/G2 phase, strongly modulate the efficiency of Cisplatin against human 
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breast carcinoma (Hoshiya et al., 1996). However, continuous starvation of human serum to 
methionine may exert hazardous implications to liver (Kokkinakis, 2006). Biochemically, 
combination of methioninase with various therapeutic agents, for methionine starvation, as 
doxorubicin (Stern et al., 1984), 5-fluoruracil, mitomycin C (Goseki et al., 1992), nitrosoureas 
(Kokkinakis et al., 2001) and BCNU (Kokkinakis et al. 1997), display a new approach for 
treatment of methionine dependent tumor cells.         

10. L-Methioninase gene therapy and selenomethionine as prodrugs 

Introduction of the L-methioninase encoding genes to tumor cells with regulating their 
expression one of the recent challenges for treating of tumor cells as reviewed by El-Sayed 
(2010). Transduction of bacterial L-methioninase gene via developed adenoviral vector, with 
exogenous L-methioninase, display a powerful activity towards human ovarian cancer cells 
(Miki et al., 2000a). The potentiality of gene therapy for methionine dependent tumors based 
on deprivation of the tumor cells from the intrinsic L-methionine, so this technique 
significantly intensified by combination with external L-methioninase, to remove the serum 
L-methionine. A plausible anti-proliferative activity towards human lung cancer by 
transduction of P. putida L-methioninase gene via retroviral vectors, in combination with 
methioninase treatment, was observed (Miki et al., 2000b). Transduction of P. putida L-
methioninase gene to human lung carcinoma using retroviral victors and their therapeutic 
implications were extensively studied by Tan et al., 1997, Miki et al., 2000a,b, 2001). In 
contrary to hypomethylation by extrinsic starvation of L-methionine, introduction of p53 
genes using retroviral, adenoviral, lipid based delivery, displays an efficient strategy against 
various types of p53 regulated tumors (Miki et al., 2001). Unfortunately, different genetic 
therapeutical trials is rarely occurred without signs of biochemical implications as low 
clinical efficiency and lethal toxicity (Fox, 1999), due to the production of some anti-apoptic 
mitochondrial proteins that counteract the introduced methioninase gene (Yamamoto et al., 
2003). Mitochondrial protein (Bc1-2) is the common released anti-apoptotic proteins that 
hinder the release of mitochondrial cytochrome c to cytosol thus counteracting different 
gene therapeutic approaches (Hamel et al., 1996, Carsten et al., 2000). Additionally, the low 
transduction efficiency by retroviral L-methioninase gene hinders their therapeutic 
potentiality. Recently, a novel strategy for reduction the clinical hazardous and 
augmentation of the pharmacokinetic impact of this enzyme via combination of gene 
therapy and selenomethionine as prodrugs as reported by Miki et al. (2001) and Yamamoto 
et al. (2003). In addition to intracellular and extracellular depletion of L-methionine, 
introduction of selenomethionine, as non-toxic prodrug, plausibly maximize the therapeutic 
potentiality of this approach, against tumor cells. Selenomethionine, methionine analogue, is 
a prodrug that under Ǆ-elimination forming a powerful toxic methylselenol, ǂ-ketobutyrate 
and ammonia (El-Sayed, 2010). Subsequently methylselenol catalyzes thiols oxidation 
generating reactive oxygen species as superoxide causing mitochondrial swelling, releasing 
cytochrome c, activation of caspase inducing prompt cell apoptosis (Green and Reed, 1998, 
Miki et al., 2001, Yamamoto et al., 2003). Methylselenol released from L-methioninase gene 
transduced tumor cell can easily adsorbed by surrounding cells, bystander effect, generating 
the same toxicity on mitochondrial system (Miki et al., 2001) as reviewed by El-Sayed (2010). 
Unlike the sensitivity of tumor cells to methylselenol, the normal human cells were not 
being affected for their lack to L-methioninase (Hoffman, 1984). The sensitivity of tumor 
cells to transduction by adenovirus methioninase gene and selenomethionine as prodrug 
was increased by 1000 fold (Miki et al., 2000a) comparing to only gene transduced cells.  
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Currently, in a revolution of biotechnology in the fight against cancer, directing of the 
enzyme via antibodies to the target tumor cells for removal of extracellular methionine in 
addition to transduced enzyme gene and selenomethionine as prodrug is the promising 
strategy against various types of tumors (Napier et al., 2000, Zhao et al., 2006). This novel 
approach referred as Antibody Directed Enzyme Prodrug Therapy (ADEPT) that is reliable 
strategy to avoid the systemic clinical and therapeutical limitations of the traditional 
approaches (Sharma et al., 2005). However, several trials for construction of enzyme 
antibodies models (Bagshawe, 1987, Stener and Springer, 2001, Bagshawe et al., 2004) were 
experimented. However, the design of enzyme-antibody without interactions on the enzyme 
catalytic sites and specific to receptors on the surface of tumor cells is main challenge by 
biotechnologists, for approving this strategy. After transduction of L-methioninase gene to 
the target tumor cells, the enzyme-antibody was introduced to the human plasma followed 
by injection of selenomethionine as planned by several trials as reviewed by El-Sayed (2010).                          

11. Exploitation of L-methioninase as a target for antimicrobial drugs  

Uniqueness distribution of L-methioninase as intracellular enzyme among all microbial 
pathogens, but not humans makes this enzyme is a novel target for antibacterial, antifungal 
and anti-protozoal therapies (Ali and Nozaki, 2007, Sato and Nozaki, 2009). 
Trifluoromethionine (TFM), a fluorinated methionine that undergoes ǃ, Ǆ-elimination 
forming trifluoro-methanethiol (CF3SH) that converted to carbonothionic difluoride which 
subsequently interacted with primary amino groups of the enzymes lysine moieties, causing 
cellular toxicities (Alston and Bright, 1983, Sato et al., 2008). TFM was reported as a potent 
antibacterial agent towards the growth of Mycobacterium smegmatis, M. phlei and Candida 
lipolytica  (Zygmunt and Tavormina, 1966, Sato and Nozaki, 2009), P. gingivalis, F. nucleatum 
(Yoshimura et al., 2002) and antiprotozoal agent Entaemoba histolytica (Coombs and 
Mottram, 2001). Also, TFM is highly effective against many anaerobic bacteria as Clostridium 
botulinum (botulism), C. difficile (colitis), Porphyromonas sp (tooth decay) and Bacteroides sp 
(intra-abdominal infections) (Finegold and Wexler, 1996). Methionine and TFM was 
activated by methionine adenosyltransferase for further metabolic biochemical pathways. 
Mammalian cystathionine Ǆ-lyase doesn’t affected by the presence of TFM (Alston and 
Bright, 1983). Myrsinoic acid B and terpeno-benzoic acid extracted from Myrisine seguinii, 
were reported as potent anti-methioninase, anti-inflammatory and anti-edema agents 
(Hirota et al., 2002, Ito et al., 2008). Myrsinoic acid exhibits a significant activities against F. 
nucleatum (IC50 0.39 µm), T. denticoal (IC50 30.3 µM) and P. gingivalis (IC50 82.4 µM), it used as 
powerful anti-malodor and periodontal disease (Sato and Nozaki, 2009). Propargylglycine 
as cysteine analogues, was widely reported as suicide L-methioninase catalytic inhibitor, in 
vitro (El-Sayed, 2011), with relatively low deleterious effect on whole growth of amoebic 
trophozites, E. histolytica (Ali and Nozaki, 2007), suggesting alternative shunt for sulfur 
amino acid metabolism other than L-methioninase (Coombs and Mottram, 2001). Thus, for 
unique distribution of L-methioninase as intracellular enzyme among pathogenic microbes, 
the searching for various inhibitors with reliable specificity to this enzyme will be a 
justifiable new trend of antimicrobials agents.         

12. Pyridoxal phosphate-dependent enzymes deficiency and cardiovascular 
diseases  

Biochemically, transsulfuration and reverse-transsulfuration pathways are the pivotal 
mechanisms for proper accumulation of homocysteine and cystathionine. As shown in Fig. 
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(3), these pathways are controlled by four PLP-dependent enzymes namely; cystathionine ǃ, 
Ǆ-synthases and cystathionine Ǆ, ǃ-lyases. Inactivation of transsulfuration enzymes as 
cystathionine ǃ-synthase causes hyperaccumulation of homocysteine (homocysteinuria) that 
is a visual risk of cardiovascular diseases, damage to vascular endothelia, increases to the 
risk of abnormal blood clots and skeletal abnormalities (De Bree et al., 2002; Wald et al., 
2002) and Alzheimer's disease (Morris, 2003). Also, homocysteinuria usually associated with 
intellectual disability, seizures and megaloblastic anemia (Mudd et al., 1985). Practically, it 
commonly reported as genetic or metabolic disorders that affect on the metabolism of 
protein, generally one to 200,000 babies are born with genetic disorders. Homocysteinuria is 
a biochemically disorder due to the deficiency of cystathionine ǃ-synthase, owing to the 
genetically inborn error of the transsulfuration pathway that increases the homocysteine 
and methionine, with crucial decreasing to the cysteine pool (Mudd et al., 1985). The major 
clinical implication of homocysteinuria includes mental retardation, dislocation of the optic 
lenses, skeletal abnormalities (Schuh et al., 1984). Dietary therapy relying of deprivation of 
methionine and supplementation of cysteine display a reliable positive result in delaying the 
clinical manifestations (Pullon, 1980). However, supplementation of cystathionine ǃ-
synthase was the potent relevant therapy for dramatically conversion of homocysteine to 
cystathionine (Zhu et al., 2008). Since cystathionine ǃ-synthase is a PLP-dependent enzyme 
and the rapid dissociation of PLP as coenzyme from the apoenzyme is a common structural 
and catalytic criteria (El-Sayed, 2010, 2011), external supplementation of pyridoxal 
phosphate, vitamin B6 gave a plausible results for decreasing the amount of homocysteine, 
assuming the reassociation of apo-cystathionine ǃ-synthase forming the holo-enzyme 
(Barber and Spaeth, 1967). Moreover, the deficiency of cystathionine Ǆ-lyase results in 
accumulation of cystathionine (Cystathioninuria) that usually accompanied with diabetes, 
Down's syndrome, neuroblastoma (Wang and Hegele, 2003) as reviewed by Zhu et al. 
(2008).  

13. Industrial application of l-methioninase: methanethiol production 

Methanethiol has enormous biotechnological applications such as key gradient in gas 
odorants, jet fuel additives and coke formation in steel mill furnaces (Welirnan 1966). 
Recently, it is used for preparation of modified gold biosensors, manufacturing of plastics 
and pesticides (Jin et al. 2005, Nakamura et al. 2006). Also, it is the precursor for 
dimethyltrisulfide, S-methylthio-esters and 2,4-dithiapentane production (Chin and Lindsay 
1994, Amarita et al. 2004), as presulfiding, hydrocracking catalysts, extracting solvents, 
manufacturing of ion-exchange resins and as modifier of Nylon fibers (Herschler 1962; 
Stewart and Lasis 1965) (www.gaylardchemical.com).   
Chemically, methanethiol can be synthesized by reaction of methanol with hydrogen sulfide 
(Scott et al., 1955). The reaction was preceded at 380°C (716°F) in the presence of 
K2MoSO4/SiO2 as catalyst and 2MPa. By chemical methods usually methanethiol 
accompanied with formaldehyde, requiring more steps for purification, especially with 
higher solubility of methanethiol in water (Yang et al., 1998). Commercially, the price of 
methanethiol salt is about eighteen fold higher than L-methionine, also one gram of sodium 
methanethiolate is 3.6 folds more than one liter of methanol (Sigma-Aldrich Co 2010).  
Consequently, the enzymatic method, using L-methioninase seems to be a plausible process 
for large scale production of methanethiol from the technical and economical point of views. 
For the high expense of enzyme purification from the microbial cultures, immobilization is a 
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promising technique for enzyme stabilization and continuous production of methanethiol 
(El-Sayed and Shindia, 2011). Among the tested methods, polyacrylamide (42.2%), Ca-
alginate (40.9%) and chitin (40.8%) displaying the highest A. flavipes L-methioninase 
immobilization efficiency. Chitin-enzyme gave a plausible stability till 4th cycle for 
production of methanethiol under controlled system. Applying GC and HNMR analysis, 
methanethiol has identical chemical structure to the standard compound. A new method for 
continuous production of pure methanethiol using a simple low expense enzymatic method 
was developed (El-Sayed and Shindia, 2011).   

14. Prospectives for improving the therapeutic potentiality of PLP-dependent 
enzymes 

Regarding to publications describing the structural and catalytic identities of PLP-
dependent enzymes and their wide therapeutic and pharmaceutical applications, the 
immunogenicity and relative instability were the common limitations from pharmacokinetic 
point of view. Actually, all of these enzymes that receive considerable attention as 
therapeutic agent were of bacterial sources as reviewed by El-Sayed (2010). However, the 
crystallographic and biochemical studies for various therapeutic enzymes reveal a reliable 
distinction on the enzyme conformational structural of surface amino acids and 
immunogenic sites, from prokaryotes to eukaryotes (Kusakabe et al., 1979). Unlike the 
extensive studies of bacterial PLP-dependent enzymes, no more publications for 
biochemical characterization and crystal structures of these enzymes from eukaryotes, in 
spite of their distinct structural identity from eukaryotes as revealed from amino acid 
constitution (El-Sayed, 2010). Thus, further biochemical and crystallographic studies to 
elucidate the catalytic identity and tertiary structure of eukaryotic PLP-enzymes for the 
maximum therapeutic exploitation of these enzymes need to be resolved. The plausible re-
association of PLP coenzyme with the apo-L-methioninase with full activity, comparing to 
lower to inability to re-association of the corresponding enzymes from prokaryotes, is an 
obscure, and their authorization with greatly participates in explanation of their catalytic 
and immunogenic identities. In addition, immobilization and co-immobilization studies of 
these enzymes will significantly maximize their biotechnological and therapeutical 
applications. Regarding to gene therapy, PEGylation and directing of these enzymes to 
specific tumors via targeting by modified antibodies or nao-particles is the main challenge 
for our ongoing research.        
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