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1. Introduction  

Ultra-wideband (UWB) technology has developed rapidly over the past several years. This 
technology is especially attractive in high-data-rate and short-range wireless 
communications. These applications make UWB technology suitable for indoor mobile 
communication applications, such as wireless personal-area networks (WPAN). This interest 
has motivated the study of the propagation of the UWB signals in indoor environments as 
an important task for the implementation of WPANs.  
In the last decades, significant effort has been focused on the characterization of the indoor 
channel for narrowband systems. Statistical (Motley & Keenan, 1990; Saleh & Valenzuela, 
1987; Seidel & Rappaport, 1992; Tornevik et al., 1993) and deterministic (Lauer et al., 1984; 
Saez de Adana et al., 2000; Tarng et al., 1997; Whitman et al., 1995) models have been used 
most frequently in these studies. The statistical models are based on the obtention of closed 
formulas to characterize the propagation channel. These formulas are derived from the data 
obtained from measurement campaigns in different environments. Alternatively, the 
deterministic models are based mostly on the use of ray-tracing techniques (Saez de Adana 
et al., 2000; Tarng et al., 1997; Whitman et al., 1995) to predict the multipath phenomena and 
the Uniform Theory of Diffraction (UTD) technique (Kouyoumjian & Pathak, 1974) to 
calculate the received power or the propagation losses. However, the features of the UWB 
systems (with bandwidth in the range of GHz) render the conventional narrowband 
propagation models, both statistical and deterministic, inapplicable. These models are based 
primarily on frequency-domain analysis, while UWB requires a time-domain analysis due to 
its wide bandwidth. Therefore, special models must be used to predict the signal 
propagation in UWB systems. Although the number of statistical models developed for 
UWB systems is not as extensive as that for narrowband systems, some recent examples can 
be found in the literature (Cassioli et al., 2001, 2002, Dabin et al., 2006; Molisch et al., 2006). 
These models have been obtained, as in the case of narrowband systems, by obtaining 
closed expressions that fit the behavior of the received signal measured in several locations 
in a measurement campaign. 
Regarding the deterministic models, frequency-domain UTD can be applied, performing an 
analysis at several frequencies and obtaining the time response using an Inverse Fourier 
Transform. However, this procedure is computationally inefficient in comparison to direct 
analysis in the time domain. Instead, the Time-Domain Uniform Theory of Diffraction (TD-
UTD) was developed to obtain a solution in the time domain for the reflection and the 
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diffraction of a transient electromagnetic wave. The inclusion of the multipath phenomena 
in this theory and the analysis in the TD makes this technique suitable for UWB 
applications. TD-UTD was first developed by Veruttipong and Kouyoumjian (Veruttipong 
& Kouyoumjian, 1979), who applied the inverse Laplace transform to the frequency-domain 
UTD formulation. Later, Rousseau and Pathak (Rousseau & Pathak, 1995) presented closed-
form solutions for the diffraction by an edge by modifying the formulation presented in 
(Veruttipong & Kouyoumjian, 1979). The results obtained in (Rousseau & Pathak, 1995) can 
be directly applied to develop a method for the calculation of the indoor propagation in 
UWB systems. 
In this chapter, the formulation of both a statistical approach and a deterministic approach 
are presented. The statistical approach has been selected from the available literature 
because it seems very suitable for the case of UWB systems. The deterministic formulation 
was developed by the author of this chapter and consists of modifying the formulation 
presented in (Rousseau & Pathak, 1995) to introduce the contribution of lossy materials 
present in the indoor environment to reflection, transmission and diffraction. The goal is to 
obtain the reflection, transmission or diffraction coefficients using an Analytical Time 
Transform (ATT) from their expressions in the frequency domain. In addition, multiple 
interactions are also considered in this approach. These interactions include multiple 
reflections and transmissions and the interactions between reflected and diffracted rays. 
Thus, both reflection-diffraction and diffraction-reflection interactions are included. These 
interactions, which are obtained in the frequency domain from the product of the 
coefficients involved in the propagation mechanisms, can also be computed in the time 
domain by convolving those coefficients instead. 
The deterministic approach is completed, including the analysis of a real site, which proves 
the validity of the model and its ability to analyze realistic environments. Some 
experimental measurements and comparisons with the predictions of the proposed model 
are presented in this chapter. 

2. Statistical approach 

The statistical models are obtained based on the statistical analysis of the experimental data. 
Some measurements are performed for a given scenario and a propagation model is 
obtained based on these results after the statistical analysis. In this chapter, one of these 
statistical models is presented. This model was obtained from measurements performed in a 
typical modern office building (Cassioli et al., 2002). 
This propagation model provides all the parameters and distributions necessaries to obtain 
the power delay profile. First, the attenuation of the received power satisfies the following 
expression, dependent on the distance: 

 
0

0

d
20.4log d 11 m

d
L(dB)

d
56 74log d 11 m

d

⎧ ⎛ ⎞
≤⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪− + >⎜ ⎟⎪
⎝ ⎠⎩

 (1) 

The small-scale average-power delay profile (SSA-PDP) accomplishes the following 
expression: 
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binsN

k k
k 1

g( ) G ( )
=

τ = δ τ − τ∑  (2) 

where g( )τ  is the average energy received with delay τ, normalized to the total energy at 

one meter, and Nbins is the number of bins selected in the observation window. The idea of 

quantizing the delay axis into bins comes from (Rappaport et al., 1991). In that way, the local 

PDP is obtained by integrating the received power within each bin. This local PDP is 

expressed in terms of the pairs { }k kG ,τ , where Gk is the ratio between the energy received 

at a distance d and the total energy received at one meter. This value is called the energy 

gain and is obtained over a bin with size Δτ  beginning with a delay k (k 1)τ = − Δτ . In the 

model proposed in (Cassioli et al., 2002), Δτ =2 ns. 
An exponential decay from the second bin can be assumed. Therefore, 

 
k 2bins

( )N

1 1 2 k
k 2

g( ) G ( ) G ( )e

− τ −τ
ε

=
τ = δ τ − τ + δ τ − τ∑  (3) 

where ε is the decay constant of the SSA-PDP. 
The total average energy received in the observation interval T is 
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=
= τ τ = + ∑∫  (4) 

Because the second term of expression (4) is a geometric series, 

 [ ]tot 1G G 1 rF( )= + ε  (5) 

where 2

1

G
r

G
=  is the power ratio and 
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−
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−

 (6) 

A lognormal distribution around the mean value of the path loss can be considered: 

 totG LN( L;4.3)= −  (7) 

The average energy gains are obtained by inverting (5) 
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 (8) 

and therefore 
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∑  (9) 
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This model characterizes the local PDP by the pairs { }k kG ,τ , as mentioned above, with 

k (k 1)τ = − Δτ  and Gk generated by a superposition of large- and small-scale statistics. 

The first step is to obtain Gtot from (12). Next, the power ratio r and the decay factor ε are 
generated. These two values are treated as stochastic variables, modeled as lognormal 
variables according to the experience for narrowband systems shown in (Hashemi, 1979). 
The shape of the distribution is obtained from the measured data. Therefore, 

 LN(16.1;1.27)ε =  (10) 

 LN(16.1;1.27)ε =  (11) 

and the width of the observation window is T=5. 

With these parameters, SSA-PDP is completely specified by (9) and the local PDP can be 

obtained by obtaining the normalized energy gains (i)
kG  of every bin k and every location i. 

(i)
kG  are considered to be gamma-distributed independent variables with an average given 

by (8) and values mk generated as independent truncated Gaussian variables 

 2
k m k m km TN( ( ); ( ))= μ τ σ τ  (12) 

with 

 k
m k( ) 3.5

73

τ
μ τ = −  (13) 

 2 k
m k( ) 1.84

160

τ
σ τ = −  (14) 

3. Deterministic approach 

The classical UTD in the frequency domain obtains the field at an observation point inside 

an indoor environment as the sum of the contribution of different rays. These rays that 

started from the source reached that observation point either directly or after one or several 

reflections, diffractions, transmissions or combinations of these effects. Accordingly, the TD-

UTD analytical impulse response in that environment can be obtained from an ATT, which 

consists of a one-sided Inverse Fourier Transform (IFT) of the frequency response, as can be 

seen in (Rousseau & Pathak, 1995; Veruttipong & Kouyoumjian, 1979), and can be written as 

 
i r t d mr mt rd dr

I I I I I I I I If (t) f (t) f (t) f (t) f (t) f (t) f (t) f (t) f (t)
+ + + + + + + ++

= + + + + + + +  (15) 

where i
If (t)
+

, r
If (t)
+

, t
If (t)
+

, d
If (t)
+

, mr
If (t)
+

, mt
If (t)
+

, rd
If (t)
+

 and dr
If (t)
+

 are the analytical signal 

representations for the direct field i
If (t)
+

, reflected field r
If (t)
+

, transmitted field t
If (t)
+

, 

diffracted field d
If (t)
+

, multiply reflected field mr
If (t)
+

, multiply transmitted mt
If (t)
+

, reflected-

diffracted-field rd
If (t)
+

 and diffracted-reflected field dr
If (t)
+

, respectively. Therefore, the  

impulse response shown in equation (15) includes all multipath phenomena, as mentioned 
previously. Each term in equation (15) will be described in the following sections. 
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3.1 Direct field 

The contribution of the direct field to the impulse response is obtained as the ATT of the 
usual Geometrical Optics (GO) incident field and can be expressed by the following 
equation (Rousseau & Pathak, 1995): 

 i i
I 0 i i if (t) E A (s ) (t s / c)
+ +

= δ −  (16) 

where i
0E  is the initial field value, which is constant with time and frequency, i iA (s )  is the 

spreading (or spatial divergence) factor for the direct ray, and is  is the distance between the 

source and the observation point. The spreading factor for the direct ray is given by 

(Rousseau & Pathak, 1995): 

 
i

i i
1 2

i i i i
1 2 i

A (s )
( s )( s )

ρ ρ
=

ρ + ρ +
 (17) 

where i
1ρ  and i

2ρ  are the principal radii of curvature of the incident wavefront at the 

observation point (see Figure 1). 

 

 
Fig. 1. Incident-ray wavefront 

3.2 Reflected field 

Similar to the case of the direct field, the contribution of the reflected field to the impulse 
response is obtained from the ATT of the classical GO expression in the frequency domain 
by the following equation: 

 r i
I 0 i r i i r rf (t) E R(t s / c s / c) A (s )A (s )
+ +

= − −  (18) 
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where is  is, in this case, the distance between the source and the reflection point and rs  is 

the distance between the reflection point and the observation point. r rA (s )  is the spreading 

(or spatial divergence) factor for the reflected ray, which is expressed as (Rousseau & 

Pathak, 1995)  

 
r r
1 2

r r r r
1 r 2 r

A (s )
( s )( s )

ρ ρ
=

ρ + ρ +
 (19) 

where r
1ρ  and r

2ρ  are the principal radii of curvature of the reflected wavefront at the 

observation point. 

In equation (18), R(t)
+

 is the TD dyadic reflection coefficient, which must be expressed in 

terms of its vertical and parallel components. These coefficients are obtained as the ATT of 

the classical Fresnel reflection coefficients (Yao et al., 2003) for a reflected surface composed 

of a lossy material. By performing this ATT, the parallel component can be expressed as 

 
at

n 1 n
n2

n 1

4 e
R (t) K (t) ( 1) nK I (at)

t1

− ∞+ +
+

=

κ
= δ + −

− κ
∑  (20) 

where In is the modified Bessel function of order n and 

1
K

1

− κ
=

+ κ
 

2
r

r

cos

sin

ε − φ
κ =

ε φ
  

r

120 c
a

2

πσ
=

ε
 

The perpendicular component is as follows: 

 
at

n 1 n
n2

n 1

4 e
R (t) K (t) ( 1) nK I (at)

t1

− ∞+ +
+

⊥
=

⎡ ⎤κ
= − δ + −⎢ ⎥

− κ⎢ ⎥⎣ ⎦
∑  (21) 

where, in this case, 

2
r

sin

cos

φ
κ =

ε − φ
  

2

r
r

120 c
a

cos
2 1

πσ
=

⎛ ⎞φ
ε −⎜ ⎟⎜ ⎟ε⎝ ⎠

 

and the rest of parameters are the same. 

3.3 Transmitted field 
The impulse response for the transmitted field is analogous to that response for the reflected 
field and can be written as 

 r i
I 0 i t i i t tf (t) E T(t s / c s / c) A (s )A (s )
+ +

= − −  (22) 

where is  is, in this case, the distance between the source and the transmission point, ts  is the 

distance between the transmission point and the observation point, t tA (s )  is the spreading (or 

spatial divergence) factor for the transmitted ray, which can be obtained using expression (19) 

by replacing the radii of curvature of the reflected wavefront by those of the transmitted 

wavefront, and T(t)
+

 is the TD dyadic transmission coefficient, which must also be expressed 
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in terms of its vertical and parallel components. The transmission coefficient can be obtained 

easily by considering that the relationship between the reflection and the transmission 

coefficients are the same in the time domain as in the frequency domain and is given by 

 T(t) I R(t)
+ +

= +  (23) 

where I is the identity matrix. 

3.4 Diffracted field 

In the case of diffraction, its contribution to the impulse response is given by the ATT of the 
UTD expression for the frequency domain as follows: 

 d i
I 0 i d i i d df (t) E D(t s / c s / c) A (s )A (s )
+ +

= − −  (24) 

where is  is, in this case, the distance between the source and the diffraction point, ds  is the 

distance between the diffraction point and the observation point, d
dA (s )  is the spreading 

(or spatial divergence) factor for the reflected ray given by (Rousseau & Pathak, 1995) 

 
d

s

d d s
d

A (s )
( s ) s

ρ
=

ρ + ⋅
 (25) 

where sρ  is the principal radius of curvature of the diffracted wavefront at the observation 

point. 

On the other hand, D(t)
+

 is the TD dyadic diffraction coefficient, which must be expressed in 

terms of its components with respect to the edge-fixed system. The diffraction coefficients 

for a PEC wedge are obtained as the sum of four terms, as in (Rousseau & Pathak, 1995). If 

the lossy materials are included in the formulation, the last two terms corresponding to the 

contribution of the reflected shadow boundary must include the effect of the lossy reflection 

coefficient. In the frequency domain, this inclusion is performed by a product. Therefore, the 

convolution between the reflection coefficient and these two terms of the diffraction 

coefficient must instead be performed in the time domain. Performing this convolution 

results in the following expression for the diffraction coefficients: 

 , 1 2 , 3 4D (t) D (t) D (t) R * D (t) D (t)β ϕ

+ ++ + + +
⊥

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
 (26) 

The expressions for 1D (t)
+

, 2D (t)
+

, 3D (t)
+

 and 4D (t)
+

 are given as follows (Rousseau & 

Pathak, 1995): 

 i
1 0

( ')
D (t) A cot F L a ( ')

2n

+ +
+π + φ − φ⎡ ⎤ ⎡ ⎤= φ − φ⎢ ⎥ ⎣ ⎦⎣ ⎦

 (27) 

 i
2 0

( ')
D (t) A cot F L a ( ')

2n

+ +
−π − φ − φ⎡ ⎤ ⎡ ⎤= φ − φ⎢ ⎥ ⎣ ⎦⎣ ⎦

 (28) 
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 rn
3 0

( ')
D (t) A cot F L a ( ')

2n

+ +
+π + φ + φ⎡ ⎤ ⎡ ⎤= φ + φ⎢ ⎥ ⎣ ⎦⎣ ⎦

 (29) 

 ro
4 0

( ')
D (t) A cot F L a ( ')

2n

+ +
−π − φ + φ⎡ ⎤ ⎡ ⎤= φ + φ⎢ ⎥ ⎣ ⎦⎣ ⎦

 (30) 

with 0 i
0

1
A

2n 2 sin

−
=

π β
, where i

0β  is the angle between the direction of incidence and the 

vector of the edge and 
( )
( )

x / j t x / c)
F(x, t)

t t x / c

+ π +
=

+
. 

The Li are distance parameters associated with the incident shadow boundaries and are the 
same as in the frequency domain. These parameters are given by 

 
i i i

id de 1 2 2i
0i i i

d de 1 2

s  (  + s )  
=    sinL

 (  + s ) (  + s )

ρ ρ ρ
β

ρ ρ ρ
 (31) 

 
ro,n ro,n ro,n

id dro,n e 1 2 2
0ro,n ro,n ro,n

d de 1 2

s  ( + s )  
=       sinL

 ( + s ) ( + s )

ρ ρ ρ
β

ρ ρ ρ
 (32) 

where i
1ρ  is the radius of curvature 1 of the incident wavefront at the edge, i

2ρ  is the radius of 

curvature 2 of the incident wavefront at the edge, i
eρ  is the radius of curvature of the incident 

wavefront at edge-fixed plane of incidence, ro,rn
1ρ  is the radius of curvature 1 of the reflected 

wavefront from the o and n faces, respectively, ro,rn
2ρ  is the radius of curvature 2 of the 

reflected wavefront from the o and n faces, respectively, and ro,rn
eρ  is the radius of curvature 

of the reflected wavefront from the plane containing the reflected ray and the edge. 

The function a± in the expressions (27)-(30) is given by 

 

2

d i

d i+

d i-

2n  - N
( ) = 2     a cos

2

 =   

2 n  - (   ) =  N

2 n  - (    ) = -N

±±
±±

±

⎛ ⎞π β
β ⎜ ⎟⎜ ⎟

⎝ ⎠
φ ± φβ

π φ ± φ π

π φ ± φ π

 (33) 

The geometrical parameters involved in the calculation of the diffraction coefficients are the 
same as in the frequency domain as shown in Figure 2 and are explained in (Kouyoumjian & 
Pathak, 1974). 

3.5 Multiple reflected and multiple transmitted fields 

The expressions for the m-order reflections and transmissions are easily derived recursively 
from the first-order effects. For instance, the second-order reflection is a single reflection 
where the source is set as the first reflection point and the incident field is the simple 
reflected field. Using this recursion, an m-order reflection that reaches the observation point 
would contribute the following term to the impulse response: 
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 mr i
MI 0 t tf (t) E R A (s )

+ +
=  (34) 

where 

m
j

t i r
j 1

s s s
=

= +∑  

m
j

t t i i r r
j 1

A (s ) A (s ) A (s )
=

= ∏  

m
j1

M 1 mi r i r
i 1

R R (t s / c s / c) * ..... * R (t s / c s / c)
+ + +

=
= − − − −∑  

j
rs  is the distance between the jth the (j+1)th reflection points (or between the mth reflection 

point and the observation point in the case of the last reflection). 
 

 

Fig. 2. Geometrical parameters and an edge-fixed system for the diffracted ray. In the figure, 

ê  is the vector of the edge, Qd is the diffraction point, iŝ  and dŝ  are the incident and 

diffraction directions, respectively, i
0β , d

0β , iφ  and dφ  ( i d
0 0 0β = β = β ) are the diffraction 

angles, and i i
0

ˆ ˆ,β φ  and d d
0

ˆ ˆ,β φ  are the vectors of the edge-fixed system necessary to apply the 

diffraction coefficients. All parameters are explained in (Kouyoumjian & Pathak, 1974) 

because they are identical to those in the frequency domain case 
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Analogously, the m-order transmitted field is 

 mt i
MI 0 t tf (t) E T A (s )

+ +
=  (35) 

where M MT (t) I R (t)
+ +

= + . 

3.6 Reflected-diffracted and diffracted-reflected fields 
Following the same procedure as for multiple reflections, the contribution of the interaction 
between an edge and a reflecting surface to the impulse response can be written as  

 rd i
I 0 i r i r d i i r r d df (t) E R(t s / c s / c) * D(t s / c s / c s / c) · A (s )A (s )A (s )
+ + +⎡ ⎤

= − − − − −⎢ ⎥
⎣ ⎦

 (36) 

for the case of reflection-diffraction interactions and 

 dr i
I 0 i d i r d i i d d r rf (t) E D(t s / c s / c) * R(t s / c s / c s / c) · A (s )A (s )A (s )
+ + +⎡ ⎤

= − − − − −⎢ ⎥
⎣ ⎦

 (37) 

for the case of diffraction-reflection interaction. 
The meaning of these parameters is analogous to the previous effects. 

3. Deterministic analysis of a realistic environment 

The results of the deterministic approach presented in this chapter compared with 
measurements are shown in this section. The measurements were performed in a complex 
realistic site to investigate the validity of the approach. The measurements were done in the 
corridor of the second floor of the Polytechnic Building of the University of Alcala. Figure 3 
shows the plan schematic of the measurement site. The dimensions of the scenario are 
7.9x20.7 m. A 3D plane-facets model has been designed to represent the realistic 
environment composed of 77 facets. The material composition of the elements of the site was 
concrete for the walls, wood for the doors and glass for the windows. Table I lists the 
electrical properties of these three materials considered in our model. 
 

Material εr σ (S/m) 

Concrete 4.5 0.01 

Wood 2 10-5 

Glass 6.5 10-12 

Table 1. Electrical characteristics of the materials for the measurement scenario  

Several measurements were performed on the site. Examples of one Line-of-Sight (LOS) and 
one Non-Line-of-Sight (NLOS) case will be shown in this section. Figure 3 illustrates the 
position of the transmitter and the receiver in both cases. The coordinates of the transmitter 
were (1.60, 5.55, 1.10). The coordinates of the receivers were (5.0, 1.78, 1.10) for the LOS case 
and (9.55, 1.3, 1.10) for the NLOS case. All the coordinates are given in meters. 
Measurements were conducted in the frequency domain using the network analyzer (VNA) 
Agilent E8362B. A linearly polarized double-ridged waveguide antenna was used as the 
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Fig. 3. Plan of the Polytechnic Building corridor of Alcala University and TX and RX 
placements for the measurement antennas 

transmitter (TX) and as the receiver (RX). The frequency range of these antennas was 1 to 18 
GHz. In this range, the average VSWR ratio was lower than 1.5.  
Figure 4 shows an overview of the measurement setup. The VNA was set to transmit 3201 
tones uniformly distributed over the 1-18 GHz frequency range. This transmission gave an 
excess delay of 188 ns and a maximum distance of 56.4 m. The temporal resolution for the 17 
GHz frequency was 59 ps. 
 

 

Fig. 4. Overview of the measurement setup 
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The input signal is expressed as a sum of a small number of simple expansion functions for 
a more efficient convolution with the TD-UTD impulse response. In this approach, the input 
signal is represented as the sum of waveforms with analytical signal representations that are 
simple poles in the complex time plane. This representation allows the convolution to be 
expressed in a closed form, thus speeding up computation. Moreover, the antenna transfer 
function is included in this representation. Equations (38) and (39) show the representation 
of the input signal and the closed form for the convolution, respectively. 

 
n

n

nn 1

j A
i(t)

t j

+

=
=
π + τ∑  (38) 

 
N

n n
n 1

1
o(t) i(t) f(t) A f(t j )

2

+ + + +

=
= ∗ = + τ∑  (39) 

The comparisons between the measurements and our approach for the normalized PDP in 
the LOS and the NLOS cases are shown in Figures 5 and 6, respectively. As can be seen, a 
good agreement between calculation and measurement is obtained in both cases. The mean 
errors were 3.5 dB for the LOS case and 4.6 dB for the NLOS case, which are very good for 
UWB applications. 
 
 

 
 

Fig. 5. Comparison between measurements and simulation for the LOS case 
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Fig. 6. Comparison between measurements and simulation for the NLOS case. 
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