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1. Introduction

The most recent increase in demand within the wireless user community for short-range, very
high rate data and video transmission devices has motivated the growth of a new generation
of broadband wireless access communication systems, i.e. Ultra-Wideband (UWB) radio
(1)-(4). UWB technology has been employed for several decades in military and commercial
communications applications like high-speed mobile Local Area Networks (LAN), imaging
and surveillance systems, ground penetration radars, automotive sensors, medical monitors
and recently Wireless Personal Area Networks (WPAN) (5). Spread-spectrum communication
systems using ultra-short impulses have seen a renewed interest because of its fine resolution
in delay to the order of a tenth of nanosecond though at the cost of a ultra wide frequency
band. Low transmission power and large bandwidth together render the power spectral
density of the transmitted signal extremely low, which allows the frequency-underlay of a
UWB system with other existing radio systems. Hence, the short range radio UWB will
play a critical role in the local/home (pico-cell) level of the broadband networks due to its
unprecedented, broad bandwidth. Indoor wireless systems operate in the areas where usually
there is no Line-of-Sight (LOS) radio path between the terminals, the transmitter, and the
receiver, and where due to obstructions (furniture, partitions, walls, etc.), multi-diffraction,
multi-reflections, and multi-scattering effects occur. These lead to not only additional
losses (with regarding those obtained in LOS), but also multipath fading of the signal
strength observed at the receiver. Basically, one of the most important aspects of any
radio channel-modeling activity is the investigation of the distribution functions of channel
parameters. Typically, these distributions are obtained from measurements or simulations
based on almost exact or simplified descriptions of the environment. However, such methods
often only yield insights into the statistical behavior of the channel and are not able to give
a physical explanation of observed channel characteristics. Due to the extremely broad
bandwidth, the channel is highly dispersive, even for an individual path. Physics-based
models (2) are usually required to understand the multipath pulses waveforms that are
necessary for optimal reception.
There exist very good fundamental investigations on the UWB propagation channel
characterization and modeling in the literature (6)-(11). More particularly, the references
(9) and (11) give an excellent overview of the UWB channels and the authors in (10)
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present a very comprehensive tutorial on the UWB channel modeling. To understand the
fundamental limits and potential applications of UWB technology, in this paper we will
investigate the empirical measurements on the UWB propagations channels. Our focus
in this integrated survey lies on the indoor environments, including office, laboratory,
commercial and residential buildings. Moreover, we consider some special applications
of the UWB systems which have an indoor-like areas, e.g. inside a Magnetic Resonance
Imaging (MRI) system, underground mine and so on. A large number of references,
more than 100 and mostly recently published, are used in this investigation. The basic
channel characterization parameters are extracted and discussed. We review all the channel
characterization procedures in this regard. To characterize a UWB propagation indoor
channel, a common method is applying a Radio-Frequency (RF) signal to the channel and
making an empirical evaluation of the received signal. Through this type of channel
characterization, essential metrics are drawn which are: Path-Loss (PL), large-scale fading,
small-scale fading, multipath arrival rate, Power-Delay-Profile (PDP), Root-Mean-Squared (RMS)
delay spread, temporal correlation, Angle-of-Arrival (AOA), spatial correlation across the receiver’s
spatial aperture, Frequency-Selectivity (FSE) and Pulse-Distortion (PD).
The rest of this paper organized as follows: in Section II, a general formulation of the
UWB Channel Impulse Response (CIR) is presented. Section III provides the employed
channel characterization procedures and measurement settings. In section IV, we review
the channel fading’s power-Loss characteristics. A survey on the channel fading’s
temporal characterizations is presented in Section V. In section VI, the channel fading’s
spatial characteristics is being reviewed. We then investigate on the channel fading’s
frequency-dependent characteristics in Section VII. Finally, Section VIII concludes the paper.

2. Multipath Channel Impulse Response (CIR) and basic definitions

A common and convenient model for characterization of the multiptah channel is the
discrete-time impulse response model. In this model, the multipath delay axis τ is discretized
into equal time delay segments called bins (12), (13). Each bin has a time delay width equal to
∆τ = τi+1 − τi. Any number of multipath signals received within the ith bin are represented
by a single resolvable multipath component having delay τi (13). A reasonable bin size is
the specific measurement’s time resolution since two paths arriving within a bin cannot be
resolved as distinct path. The relative delay of the ith multipath component as compared to
the first arriving component is called excess delay and if the total number of possible multipath
components is N, the maximum excess delay of the propagation channel is given by N∆τ (13).
In a multipath propagation channel, since the received signal consists of a series of attenuated,
time delay, phase shifted replicas of the transmitted signal, the impulse response of multipath
channel can be expressed as (1) (13).

h (τ, t) =
N(t)−1

∑
i=0

ai (τ, t) ejϕi(τ,t)δ (τ − τi (t)) (1)

where ai (τ, t), ϕi (τ, t) and τi (t) are the real amplitude, the phase shift and excess delay,
respectively, of ith multipath component at time t. Generally, the parameters ai, ϕi and τi

are random time-variant functions because of the motion of people and equipment in and
around of buildings. However, since the rate of their variations is very slow as compared
with the measurement time interval, these parameters can be treated as time-invariant
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Ultra-Wideband (UWB) Communications Channel – Theory and Measurements 3

random variables within one snapshot (bin) of measurement. Moreover these parameters are
frequency-dependent since they are related to radio signal characteristics such as transmission
and reflections.
The time-invariant CIR (2), assuming a stationary environment, was first suggested in (14) to
describe multipath-fading channels. This model has been used successfully in mobile radio
applications (12) and can be applied to the UWB indoor propagation channels.

h (τ) =
N−1

∑
i=0

ai (τ) ejϕi(τ)δ (τ − τi) (2)

A discrete space-time separable CIR (3), which is originally proposed by (15) and developed
by (16), is employed in (17) to represent the UWB channel’s impulse response. In this model,
the impulse response for the multipath delay τ, so-called Time-of-Arrival (TOA), and AOA θ

is given by

h (τ, θ) =
∞

∑
l=0

∞

∑
k=0

βkle
jφkl δ (τ − Tl − τkl) δ (θ − Θl − ωkl) (3)

where βkl , φkl , τkl , and ωkl are respectively the amplitude, the phase shift, the arrival time and
the azimuth AOA of the kth arrival of the lth cluster. Tl and Θl represent the lth cluster’s first
arrival time and the azimuth AOA respectively. In other words, for a particular cluster l the
inner sum reveals the rays corresponding to the same cluster, i.e. intra-cluster representation.
Accordingly, the intra-cluster rays are said to be from different ls.

3. Measurement settings

3.1 Measurement environments

UWB channel fading depends on detailed aspects of the indoor setting- including not only
describing the architectural floor plan but details of the interior door. In an accurate fading
study among the measurement campaigns all of these detail must be taken into account. In the
present work’s survey character on the indoor setting, we however consider an abbreviation
but unified of the whole setting used in the measurement campaigns. Although this issue
can lead to apparent wide variability in empirical results for nominally comparable setting,
as more measurements are carried out new categories may be introduced which may provide
a better classification in terms of the variability of the signal statistics. Table 1 represents the
proposed categories based on the reviewed literature UWB channel-fading measurements.

3.2 Multipath propagation measurements techniques

Due to the importance of the multipath structure in determining the small-scale fading
effects, a number of wideband channel sounding techniques have been developed. Wideband
measurement techniques as described in (13) are

• Direct Pulse (DP): In the this measurement system, a repetitive wideband pulse is
transmitted and a receiver with wide bandpass filter is utilized to receive the pulses.
Then, the received signal is amplified using a Low Noise Amplifies (LNA) and detected
with an envelope detector before being stored and displayed on a digital oscilloscope.
This structure gives an immediate measurement of the square of CIR convolved with the
probing pulse. In this measurement, the minimum resolvable delay between multipath
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component equals the probing pulse width. To measure impulse response (2), the probing
pulse p(t) approximates the delta function. If p(t) has a time duration much smaller than
the impulse response of multipath channel p(t) does not need to be deconvolved from the
received signal in order to determine the relative multipath signal strength in the impulse
response (2) (13).

• Spread Spectrum Sliding Correlator (SC): In a spread spectrum channel sounder, a carrier
signal by mixing with a binary Pseudo-Noise (PN) sequence becomes spread over a
large bandwidth and then is transmitted. The spread spectrum signal is then received,
filtered and despread using a PN sequence generator. In this measurement system, the
chip rate of the PN sequence generator determines the time resolution. The sliding
correlator operation serves to time dilate the measured channel impulse response, thereby
compressing the measurement bandwidth and easing hardware requirements. Moreover,
a spread spectrum channel sounder has a higher dynamic range compared to the direct
pulse system (13).

• Frequency Sweeping (FS): In this measurement, a Vector Network Analyzer (VNA) controls
a synthesized frequency sweeper. The sweeper scans a particular frequency band by
stepping through discrete frequencies. Obviously, the number and spacings of these
frequency steps impact the time resolution. This frequency domain representation is then
converted to the time domain using Inverse Discrete Fourier Transform (IDFT) processing,
giving a band-limited version of the impulse response.

Table 1 shows what type of measurement technique is employed for the reviewed literature
of the UWB channel-fading campaigns.

3.3 Space and time resolution

All above utilized measurement approaches use a band-limited probing waveform and
thus have limited time resolution. Even with the sub-nanosecond resolution, used in the
measurements, the received signal pulse may still contain several multipath components and
thus may fade in a small local area. The time resolution can directly affect time of arrival
measurements. For instance, increasing the time-domain resolution of the channel response to
resolve the direct LOS path improves the performance of location finding systems employing
TOA estimation techniques. Various measurement campaign’s temporal resolutions are
summarized in Table 1. In these measurements, the different spatial grids in size and
spacing are utilized to assess the spatial variation (Table 1). The associated grids are located
horizontally where the measurements are made at the center of each grid cell. Although the
essential spatial fading statistics have been drawn based on the measurements made inside
the grid, some campaigns like in (38) move the grid to obtain the extra parameter statistics
like multipath cluster phenomenon.

3.4 Frequency range and bandwidth

A UWB signal defined by the Federal Communication Commission (FCC) is a signal with
greater than 25% relative (coherent) bandwidth1, it is also true that UWB signals tend to have
large absolute bandwidths (75) which are not less than 500MHz.
The relative bandwidth definition of UWB is stated as follows:

Brel = 2 · fh − fl

fh + fl
=

W

fc
(4)

1 Sometimes termed “fractional bandwidth".
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Measur. Time Res.∗ Measurement Grid Frequency-Bandwidth
References Environment Tech. (ns) Grid Size Spacing (cm) Absolute (GHz) Relative

(17)-(23) Office and Laboratory DP 2 7 × 7 15 NA NA

(24)-(25) Office building and Corridor FS 400 3 × 3 3 1 − 9 1.6

(26) Ship Compartments SC NA NA NA 0.8 − 2.5 1.03

(27)-(32) Residential House FS 320 5 × 5 5 4.375 − 5.625 0.25

Residential and
(33)-(34)

Commercial Building
FS 266.6 5 × 5 5 2 − 8 1.2

(35) Office and Laboratory FS 266.6 NA NA 2 − 8 1.2

(36) Residential House FS NA 1 × 20 1.253 2 − 8 1.2

(37) Laboratory FS 400 10 × 10 10 2 − 6 1

(38) Office and Corridor FS NA 30 × 30 1 1 − 11 1.66

(39) Office FS NA 30 × 30 1 1 − 11 1.66

(40) Auditorium and Office DP/SC/FC NA NA NA 1 − 3 1

(41)-(43) Office SC 200 NA NA 1.25 − 2.75 0.75

(44) Office FS 106 NA NA 3.1 − 10.6 1.1

Office, Laboratory
(45)

and Reading room
DP 2 1 × 61 2 NA NA

(46)-(47) Laboratory and Classroom FS 200 NA NA 2 − 6 1

(48)-(49) Office and Classroom DP 0.1 3 × 3 45 0.1 − 12 1.967

(50)-(51) Office and Classroom FS 33.6 3 × 3 45 0.1 − 12 1.967

(52)-(53) Office FS 500 1 × 90 (Circle) 2.8 3.1 − 10.6 1.094

(54) Office FS NA 1 × 5 10 3.1 − 10.6 1.094

(55) Office DP 0.05 1 × 23 5 3.1 − 10.6 1.094

(56)-(58) Office and Laboratory SC 0.8 25 × 25 2 3.6 − 6 0.5

(59) Office and Laboratory FS 200 5 × 5 2, 8, 16 2 − 12 1.43

(60) Office and Laboratory SC 0.83 5 × 5 2, 8, 16 3.6 − 6 0.5

(61) Residential Apartment FS 229.6 5 × 5 15 3 − 10 1.077

Office, Laboratory,(62)
and Classroom

FS 33.6 3 × 3 45 0.1 − 12 1.967

Office, Laboratory,(63)
Factory and Residential

FS 1000 NA 100 3 − 8 0.91

(64) Office FS 100 4 × 4 30 3 − 11 1.14

(65) MRI DP 0.8 1 × 8 (Circle) 15 3.168 − 4.752 0.4

(66) Office FS 200 21 × 21 2 2 − 10 1.33

(67)-(69) Underground Mine FS 533 8 × 5 7 2 − 5 0.857

(70) Underground Mine SC 2.25 7 × 7 15 2.55 − 3.45 0.3

(71) Office FC 533.3 7 × 7 5 3 − 6 0.66

(72) Office, residential, Chamber FC 533.3 1 × 9 15 3 − 6 0.66

(73) Chamber FC NA NA NA 1.5 − 8 1.368

(74) Office and Chamber SC 213.3 1 × 12 (Circle) 8 3.1 − 10.6 10.94
∗ Pulse-width for DP, twice a chip period for SC and maximum-detectable-delay for FS (13).

Table 1. UWB Channel-Fading Measurement Settings

where fh and fl denote frequencies at the upper and lower band edges, respectively. W is
the absolute-bandwidth, and fc is the center frequency. Table 1 shows the absolute- and
relative-bandwidth utilized by each reference.

4. Channel fading’s power-loss characteristics

4.1 Path-loss

Generally speaking, PL arises from the propagating wavefront’s increasing surface area as
the wavefront radiates outward from the transmitting antenna and the obstructive effects of
objects distributed between transmitter and receiver antennas such as free space loss, refraction,
reflection, diffraction, clutter, aperture-medium coupling loss, and absorption.
Both non-empirical and empirical propagation models illustrate that average path-loss
increases logarithmically as a function of Transmitter-Receiver (TR) separation distance in
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indoor radio channels (13):

PL (d) = PL0 + 10 n log10

(

d

d0

)

+ FA (5)

where n, PL0, d and FA are respectively the path-loss exponent which shows the rate
at which the path-loss increases with distance, the intercept point which is the path-loss
at d0 (a reference distance), the transmitter-receiver separation distance, and the Floor
Attenuation Factor (FAF). The bars in (5) denote the average values for the same floor
measurement and over all transmitter-receiver antennas locations, while maintaining the
same transmitter-receiver separation distance. The variations about the average path-loss
value (5) are called shadow fading and are discussed later. The path-loss exponent n depends
on the propagation environment. In free space, n = 2; with obstructions, n > 2 (13).
Measurements (21), (22), (24)-(27), (29), (30), (33), (34), (41)-(43), (45)-(58), (60), (63),
(65), (68), (70)-(72) and (74) show that (5) is applicable for both Line-of-Sight (LOS) and
Non-Line-of-Sight (NLOS), i.e. when there is no LOS path between the transmitter and
receiver, UWB channels with the calibrated PL parameters in Table 2. Depending on the UWB
receiver architecture, the PL parameters can be obtained by different methods. Basically, the
UWB indoor path-loss is calculated by the total received power integrating the power delay
profiles (defined in 5.2.1) over all delay bins (21), (22), and (41)-(43). However, if the receiver
uses a threshold detection strategy which tracks the peak of the received signal, the calculated
PL is based on the peak CIR power metric (41)-(43). Moreover, some of the receiver structures
only detect the first path; thus, the first path power is only employed for the PL calculation
(63).
The UWB indoor path-loss exponent n measured in different environments behaves as a
random variable (24), (25), (27), (29) and (30). In (27), (29), (30), (33) and (34), it is also shown
that n follows a normal distribution (see Table 2). From the measurement results:

1) Table 2 shows 1.4 < n < 4.1 for a regular indoor environment except for the hard-NLOS
situation (22), (60) and (63), and a very short-distance path-loss measurements (55) and
(65). A hard-NLOS scenario is basically defined for when there is no direct or reflected
path between transmitter and receiver e.g. two different rooms (24). However, in (60) this
definition corresponds to the situation in which not only the transmitter and receiver are
located in different rooms but also the blockage effect of the other obstacles are considered.
On the other hand, a soft-NLOS scenario mostly happens when there are reflected paths
between the transmitter and the receiver. e.g. in a room. In (22) and (60), the high value
path-loss exponent n = 7.4 is reported for a multi-wall scenario. Moreover, n = 4.9 is
reported in (63) for a multi-floor measurement. In (55) and (65), it is shown that for a short
distance NLOS scenario the path-loss exponent n is less than 1. This result, however, can
be justified using a small scale fading. The path-loss exponent for a

2) It is shown in (22) and (63) that the path-loss exponent n can be dependent on the TR
distance. To present this dependence, a dual-slope model of the normalized mean PL (5) is
proposed in (22) and (63) for different distance regions

PLD (d) =

⎧

⎨

⎩

10 n1 log10

(

d
d0

)

d ≤ D

PLD + 10 n2 log10

(

d
d0

)

d > D
(6)
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PL0 n∗ σχ (dB)
References Environment d0 (m)

(dB) µn σn µσχ σσχ

Notes

(21) Office/Laboratory LOS/NLOS 1 NA 2.4 NA 5.9 NA -

0† 2.04 NA d ≤ 11m
(22) Office/Laboratory LOS/NLOS 1

−56† 7.4 NA
4.3 NA

d > 11m

LOS 0.151 39.82 1.4 0.35

(24)-(25) Office Soft-NLOS 0.082 NA 3.2 0.21 NA -

Hard-NLOS 0.067 NA 4.1 1.87

(26) ship Compartment NLOS NA NA 1.65 NA NA -

LOS 1 47 1.7 0.3 1.6 0.5
(27), (29)-(30) Residential

NLOS 1 51 3.5 0.97 2.7 0.98
-

LOS 1 43.7 2.04 0.30 1.2 0.6
Commercial

NLOS 1 47.3 2.94 0.61 2.4 1.3
(33)-(34)

LOS 1 74.2 1.82 0.39 1.5 0.6
-

Residential
NLOS 1 50.4 3.34 0.73 2.6 0.9

3 NA Peak Power
(42)-(43) Office NLOS 1 0†

2 NA
NA

Total Power
d > 1m

2.9 4.75 Peak Power
(41) Office NLOS NA NA

2.1 3.55
NA

Total

Office/Laboratory LOS/NLOS 1 −10.9† 3.4 NA 3.2 NA
(45)

Reading room LOS 1 1.15† 1.8 NA 0.6 NA
d > 5m

1.55 NA 1.98 NA {RX,TX}={OMNI,OMNI}

(46)-(47)
Laboratory/

LOS 1 NA 1.65 NA 1.19 NA {RX,TX}={OMNI,DIR}
Classroom

1.72 NA 0.77 NA {RX,TX}={DIR,DIR}

LOS 1 NA 1.58 NA 1.91 NA

NLOS 1 NA 2.41 NA 3.26 NA
Biconical Antenna

(48)-(49) Office/Classroom
LOS 1 NA 1.6 NA 1.58 NA

NLOS 1 NA 2.6 NA 6.08 NA
TEM Horn Antenna

LOS 1 NA 1.3 NA 2.6 NA

NLOS 1 NA 2.3 NA 2.4 NA
Biconical Antenna

(50)-(51) Office/Classroom
LOS 1 NA 1.3 NA 2.8 NA

NLOS 1 NA 2.4 NA 5.1 NA
TEM Horn Antenna

LOS 1 53.7 1.62 NA 1.7 NA
(52)-(53) Office

NLOS 1 59.4 3.22 NA 5.7 NA
-

(54) Office LOS 0.1 4 1.7 NA NA NA -

LOS 1 20 2.21 NA NA NA RX & TX on a desk

20 −1.06 NA NA NA Monitor Blocked
(55) Office

NLOS 1 NA 1 NA NA NA Desk Blocked (on & under)

7.5 0.17 NA NA NA Body Blocked

LOS 1 50.54 1.916 NA 1.42 NA
(56)-(58) Office/Laboratory

NLOS 3.73 67.15 3.663 NA 2.18 NA
-

LOS 1 NA 1.8 NA 2.57 NA

(60) Office/Laboratory NLOS 4.037 NA 11.05 NA 5.17 NA
-

Hard-NLOS2 4.037 NA 7.33 NA NA NA Multi-wall effect

42 3.5 NA d ≤ 10m
Office/Laboratory Hard-NLOS

77 2.2 NA
5.1 NA

d > 10m

2.7 NA 3.9 NA Same floor
(63) Residential NLOS 1 42

3.6 NA 2.7 NA Inter-floor

42 1.5 NA d ≤ 10m
Factory LOS

57 2.9 NA
2.4 NA

d > 10m

0.435 NA NA NA Empty barrel
(65) MRI LOS/NLOS 0.087 28

0.646 NA NA NA Water-filled barrel

LOS 1 66 1.47 NA 1.1 NA
(67)-(69) Underground Mine

NLOS 5 52.5 2.45 NA 2.94 NA
-

1.8 NA Peak Power
(70) Underground Mine LOS/NLOS 10 0†

1.64 NA
NA

Total Power

(71) Office LOS/NLOS 0.1 56.1 5.8 NA 5 NA -

Office NLOS 1 75.8 2.67 NA NA NA
(72)

Chamber LOS 1 82 3.29 NA NA NA
-

(74) Office and Chamber LOS/NLOS 1 82 2.6 NA NA NA -
∗ The same-floor path-loss exponent (see note for some exceptions).

† These intercept values are calculated based on a normalized path-loss.

Table 2. Path-loss Characteristics
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where D, PLD, n1 and n2 are respectively the break point distance in the model, the
intercept point, the path-loss exponent for the first slope, i.e. d ≤ D, and the path-loss
exponent for the second slope, i.e. d > D. All these values are calculated through the
curve-fitting process on the measured data.

3) There is no significant difference between the measured values of n for UWB channels and
narrowband indoor channels which are reported in (13).

4) The path-loss in a ship compartment area follows in-building LOS (within one room) cases.

5) The path-loss exponent n slightly increases if directional antennas are employed for
the receiver and transmitter (46)-(51) because it reduces some of the obstructive effects
of objects distributed between transmitter and receiver like diffraction, reflection and
absorption. In other words, the directive antenna does not use the considerable multipath
energy while an omni-directional antenna does.

6) The standard deviation of the path-loss exponents for different measurement
locations/environments, like rooms and buildings but in the same category like residential
(27), (29) and (30), is higher for NLOS cases than for LOS cases.

7) Different types of indoor environment (e.g. office, laboratory, residences) lie in different
subranges of n ∈ [1.4, 4.1]. Instead of a deterministic n, it has been modeled as a Gaussian
random variable with empirically determined mean and variance, for residential houses
in (27), (29) and (30), and commercial areas in (33) and (34).

8) To the best of the authors’ knowledge, there is only one published paper on the FA

measurement (63). It is shown in (63) that there is no significant difference in the path loss
model between a single and multi-floor measurement. However, the results in (63) show
a considerable difference between the aforementioned scenarios when the measurements
are performed at the entrance/back of the building.

4.2 Large-scale fading

(5) overlooks shadowing loss (χ), which augments (5) to:

PL (d) = PL (d) + χ (7)

UWB measurements (21), (22), (24), (27), (29), (30), (33), (34), (41), (43), (45)-(53), (56)-(58), (60),
(63) and (68) indicate a zero-mean log-normally distribution for χ with its standard deviation
σχ dependent on the particular propagation environment (see Table 2). >From large-scale
fading measurement results:

1) Shadowing loss is generally greater for residences than for offices. environments.

2) In a LOS scenario, the shadowing loss is less than in a NLOS case.

3) For the LOS scenarios, the shadowing loss decreases if directional antennas are employed
for the receiver or transmitter. Indeed, the spatial filtering using a directive antenna results
in a more stable average PL.

4) To the authors’ knowledge, there are no published paper investigating the relationship
between χ and the transmitter-receiver separation distance, there exists only one paper
published on the inter-floor shadowing loss (63) which reports an inter-floor shadowing
loss less than the same-floor shadowing loss for a residential environment (see Table 2).
The same result is also observed for an office/laboratory environment (the inter-floor
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References Environment Small-Scale Type distribution(s)∗∗ distribution parameters

(17) Office/Laboratory LOS/NLOS Spatial Rayleigh(σ) σ = 0.46

(21)- (22) Office/Laboratory LOS/NLOS Spatial Nakagami(m) m ∼ N [µm (τk ),σ
2
m (τk )]

Office/
LOS µ = −306, σ = 311, λ = 45

(24) and (25) Laboratory/ Soft-NLOS Temporal Weibull(µ, σ, λ) µ = −304, σ = 320, λ = 46
Corridor

Hard-NLOS µ = −304, σ = 322, λ = 45

(31) Residential LOS/NLOS Temporal Gaussian(0, σ) σ = 4.7

(35) Office/Laboratory LOS Temporal Rician(k) k ∝ {d∗ , τk}
(38) Office/Corridor LOS/NLOS Temporal Rician(k) k = −9dB

(39) Office NLOS space-time† Gaussian(0, σ)× Potential(a) NA

σd∗=5 = 1.13, σd=7 = 1.24
Office/Laboratory LOS/NLOS

σd=10 = 1.16, σd=14 = 1.41
(45) Spatial Gaussian(0, σ)

σd=5 = 0.13, σd=7 = 0.26
Reading room LOS

σd=10 = 0.22, σd=14 = 0.31

(52) Office LOS/NLOS Spatial Rician(k) NA

(57) Office/Laboratory LOS/NLOS Spatial Nakagami(m) µm = 1.5,σm = 0.5

(71) Office LOS/NLOS Spatial Nakagami(m) Corresponding αGamma=2

Table 3. Small-scale statistics

shadowing loss σχ = 1.8 and the same-floor shadowing loss σχ = 3.4) (63). However,
in such an environment when we move from the inter-floor scenario to the multi-floor one
the inter-floor shadowing loss increases even more than a same-floor case (the inter-floor
shadowing loss σχ = 1.8 and the multi-floor shadowing loss σχ = 5.1) (63).

5) As many wireless devices are wearable, the human-antenna interaction could be
significant not only in open areas (40) but also in dense scatterer environments (like in
an office) (71). A UWB channel measurement for Body Area Networks (BAN) is presented
in (72). Significant echoes from the body, e.g. from the arms, and deterministic echoes from
the floor are observed in human-body effect measurement (72). In (74), the performance of
the UWB impulse radio for BAN employing a monopole antenna. The results in (74) show
that the shadowing loss in a WBAN channel does not follow the log-normal distribution.
Obayashi and Zander (77) model the body-shadowing deterministically with the existing
ray-determination methods for narrow-band channels, but no corresponding study has
been done for UWB with UWB’s distinctive demands on ray-tracing methods.

4.3 Small-scale fading

Basically, “small-scale fading" describes the received signal amplitude/energy’s fluctuations
over a short duration or in the spatial neighborhood at the moving antenna’s nominal location
(13). This definition can be generalized to UWB communications as the constructive and
destructive interferences of the multipath components due to a change in the moving antenna
location in the order of the sub-spatial width of the transmitted pulse. In the UWB small-scale
measurements, the moving antenna is mostly receiver antenna (17), (21), (22), (24), (25), (31),
(35), (39), (45), (57) and (71); however, a moving transmitter antenna is used in (38) and (52).
In the UWB indoor applications, the transmitter an receiver and scatterer move slowly (if at
all) relative to the information symbol duration. The UWB channel’s small-scale fading thus
depends mostly on the multipath phenomena and the signal bandwidth.
Measurement campaigns (17), (18), (21), (22), (24), (25), (31), (35), (38), (39), (45), (52), (57) and
(71) present different results for the small-scale statistics of received signal amplitude/energy
due to measuring time-delay interval, measuring data set (grid size and spacing), and environment
type. Table 3 shows the proposed mathematical distributions, associated with the measured

∗ d is the transmitter/receiver separation distance.
∗∗ All distributions are on amplitude except Weibull(µ, σ, λ) which is for received power.

†The Gaussian distribution corresponds to the spatial small-scale amplitude
and the Potential distribution corresponds to the temporal small-scale amplitude.
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essential parameters (shown in the last column), for the small scale fading reported by
different measurement campaigns. >From small-scale fading measurement results:

1. The small-scale distribution’s parameters depend on the transmitter-receiver separation
distance.

2. Most of the small-scale amplitude measurements show the clustering effect.

3. The more clustered office environment generally has higher standard deviations than open
areas like reading rooms, due to the multipath phenomenon.

4. The small-scale distribution strongly depends on environment type (e.g. it is shown in (39)
that the small-scale amplitude follows the Gaussian distribution whose parameters are
fixed for an European office, and also results from (21) and (22) show that the small-scale
amplitude follows the Nakagami distribution whose parameters change with increasing
excess delay for an American office).

5. As each temporal bin sums many multipath, the central limit theorem gives the Gaussian
distribution for the small-scale magnitude statistics for large delays, but the Gaussian
distribution is only approximate at small delays; hence, the Nakagami distribution
(21) and (22) whose parameters change with increasing excess delay can fit well the
small-scale amplitude while the Gaussian distribution is proposed in (7) for mathematical
convenience.

5. Channel fading’s temporal characterizations

5.1 Multipath arrival rate

The arrival rate model in (16) is employed in (17), (52) and (57) to measure arrival rate statistics
based on the multipath clustering phenomenon used in (3)

p (Tl |Tl−1) = Λe−Λ(Tl−Tl−1) (8)

p
(

τk,l |τ(k−1),l

)

= λe−λ(τk,l−τ(k−1),l) (9)

where Λ and λ are respectively the cluster arrival rate and the ray arrival rate. Results in
(17), (52) and (57) show a smaller ray-arrival rate but a larger cluster-arrival rate for UWB
than in (16) for narrowband (see Table 4). Due to UWB’s smaller ray-arrival rate but a larger
cluster-arrival rate than narrowband, the reflection mechanism seems to be superior than
other mechanisms like diffraction. In (71), a different model is suggested for BAN channels.
Indeed, it is shown in (71) that a Weibull distribution provides a better fit to the measured
data for the arrival rate statistics.

5.2 Multipath delay spread

5.2.1 Power delay profile

“power delay profile" is the small-scale averaged Instantaneous Power Delay Profile (IPDP)
P(τ) = |h(τ)|2 (13) where h(τ) is the multipath CIR defined in (2). The average IPDP
is made over a local area (a neighborhood at the moving antenna’s nominal location) for
spatial small-scale or over a short period of time (mostly a delay resolution bin) for temporal
small-scale. As shown in (17), (21), (22), (24), (25), (28), (31), (37), (38), (52) and (57), the power
delay profile is related to the excess delay as

P (τ) = a2
0 e−

τ
γ (10)
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UWB (52) UWB (57) Narrowband (16) Narrowband (16)
Parameters UWB (17)

LOS NLOS LOS NLOS (Building 1) (Building 2)
1
Λ

45.5 27.4 40.1 39 17 16.8 17.3
1
λ

2.3 0.168 0.161 NA NA 5.1 6.6

ΓC 27.9 15.7 7.5 25.18 13 33.6 78.0

γr 84.1 16.5 12 12.2 18 28.6 82.2

Table 4. Narrowband and UWB Propagation Channels’ Arrival Rates and Time Constants
(ns)

where a2
0 denotes the first multipath’s average power and γ symbolized power decay-rate.

Moreover, the presented data in (17), (52) and (57) verify the double exponential decay law of
(15):

P (Tl , τkl) = a2
0 · e

− Tl
ΓC · e−

τkl
γr (11)

where ΓC and γr determine the inter-cluster (i.e. the earliest arrival of each cluster)
decay-rate and the intra-cluster (i.e. arrival rays inside the clusters) decay-rate, respectively.
The parameters ΓC and γr are measured in (17), (52) and (57) via a manually,
so-called visually-inspection, cluster selecting approach. Moreover, it is shown in (71)
that a linear-exponential decay law could fit the measurement results better than the
double-exponential one. In (71), a dual-slope model is suggested for the cluster arrival time
and an exponential model for the ray arrival time. Table 5 summarizes the power delay profile
empirical statistics presented in the open literature. From the UWB’s power delay profile
measurement results:

1. Referring to the double exponential model (11), UWB has smaller inter-cluster decay-rate
comparing to narrowband (see Table 4). However, different results provided in (17), (52)
and (57) do not show any trend comparing with the narrowband measurement (16). In
fact, these parameter highly depend on the particular propagation channel setting. For
instance, the inter-cluster decay-rate depends primarily on the building and the floor-plan
itself but the intra-cluster decay-rate depends primarily on furnishing.

2. Measurements always have decreasing power decay-rate mean and standard deviation
with more obstruction.

3. The delay profile’s attenuation is inversely proportionate to the transmitter-receiver
separation distance.

4. Reflection gives the strongest paths in power delay profile with a noticeable difference than
other multipath mechanisms like diffraction; hence, other mechanisms such diffraction
and diffuse scattering are minor and ignorable. Corridors, due to their LOS nature and
unlike offices, have two clusters. The minor-cluster is a copy of the main-cluster, reflected
off the opposite wall. Hence, the main-cluster’s delay is inversely proportional to the
transmitter-receiver separation distance.

5.2.2 Time dispersion

Time dispersion phenomenon, mainly due to multipath in an indoor propagation
environment, can highly affect the transmitted data rate and reduce the capacity in a
multi-user UWB communication system. The time dispersion of the UWB signals is usually
presented by the first central moment and the square root of the second central moment of
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γ (ns) τRMS (ns)
Reference Environment a2

0 Mean∗ σγ Mean∗ στ
Notes

0.2 28 NA NA NA inter-cluster arrivals
(17) Residential LOS/NLOS

0.3 84 NA NA NA intra-cluster arrivals

(21)-(22) Office/Laboratory LOS/NLOS 0.031 39.8 1.34 NA NA -

LOS NA 0.010 0.021 NA NA

(24)-(25)
Office/Laboratory/

Soft-NLOS NA 0.008 0.018 NA NA 1
γ statisticsCorridor

Hard-NLOS NA 0.006 0.023 NA NA

(26) ship compartment NLOS NA NA NA 82.6 NA -

LOS NA NA NA 4.7 2.3
(27) Residential

NLOS NA NA NA 8.2 3.3
-

LOS 0.23 0.83 1.06 NA NA
(28) Residential

NLOS NA 0.89 1.03 NA NA
1
γ statistics

LOS 0.4 1.09 0.14 4.56 2.16 1
γ statistics

(31) Residential
NLOS 0.1 1.07 0.12 8.98 4.23 d† = 5m

LOS NA 34.36 2.16 12.3 0.5
(37) Laboratory

NLOS NA 43.77 1.96 14.86 1.65
d = 5m

(38) Office LOS/NLOS NA 13.6 1.5 NA NA -

(41) Office NLOS NA NA NA 6 5.22 d = 5m

(42) office NLOS NA NA NA 20 NA d = 5m

Office/Laboratory LOS/NLOS NA NA NA 14.3 2.8
(45)

Reading Room LOS NA NA NA 19.9 1.8
-

NA NA NA 17.34 NA {RX,TX}={OMNI,OMNI}

(46)-(47)
Laboratory/

LOS NA NA NA 11.35 NA {RX,TX}={OMNI,DIR}Reading Room
NA NA NA 7.71 NA {RX,TX}={DIR,DIR}

LOS NA NA NA 7 5

NLOS NA NA NA 13 7
Biconical Antenna

(48)-(49) Office/Classroom
LOS NA NA NA 3 2

NLOS NA NA NA 10 5
TEM Horn Antenna

LOS NA NA NA 8.5 NA

NLOS NA NA NA 16.2 NA
Biconical Antenna

(50)-(51) Office/Classroom
LOS NA NA NA 1.7 NA

NLOS NA NA NA 7.1 NA
TEM Horn Antenna

LOS NA 15.7 NA 4.1 2.7

NLOS NA 16.5 NA 9.9 5
inter-cluster arrivals

(52)-(53) Office
LOS NA 7.5 NA 4.1 2.7

NLOS NA 12 NA 9.9 5
intra-cluster arrivals

LOS NA NA NA 6.6 NA
(55) Office

NLOS NA NA NA 9.3 NA
-

LOS NA NA NA 14 1
(61) Residential

NLOS NA NA NA 35 6
-

(64) office NLOS NA NA NA 22.8 2.61 -

NA NA NA 12 NA Empty barrel
(65) MRI LOS/NLOS

NA NA NA 5 NA Water-filled barrel

(68) Underground Mine LOS NA NA NA 11.8 4.4 -

LOS NA NA NA 34 NA
(70) Underground Mine

NLOS NA NA NA 42 NA
-

Office NLOS NA NA NA 3.2 NA
(72)

Chamber LOS NA NA NA 1.5 NA
-

(73) Chamber LOS NA NA NA 1.5 NA -

(74) Office and Chamber LOS/NLOS NA NA NA < 12 NA -
∗ over all measurement

† d is the transmitter/receiver separation distance

Table 5. Multipath Delay Spread Statistics
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PDP, i.e. the mean excess delay τm and the root mean square delay spread τRMS, defined as
follows

τRMS =

√

√

√

√

√

√

√

∑
i

P (τi) (τi − τm)
2

∑
i

P (τi)
, τm =

∑
i

P (τi)τi

∑
i

P (τi)
(12)

Strong echoes with long delays contribute disproportionately to τRMS which is provided
to communications performance. Most of the measurement campaigns employs the delay
spread τRMS to evaluate the time dispersion of the UWB pulses. However, the ratio τm/τRMS

is also suggested in (48), (49) and (58) as an effective criterion of the time dispersion. The
delay spread τRMS is empirically found to depend on the environment structure such as
the size and type of building and existence or absence of a clear LOS path (Table 5). UWB
measurements (27), (37), (41)-(43), (46), (47) and (65) show that τRMS increases with increasing
the transmitter-receiver separation distance. A Normal distribution is suggested by (27), (28),
(31) and (45) to approximately fit the τRMS variations. Since both path-loss and τRMS increase
with transmitter-receiver separation, a correlation between them can be investigated. It is
shown in (27), (41) and (65) that the path-loss increases linearly as τRMS goes up. Moreover,
the delay spread τRMS is more correlated with path-loss than with the transmitter-receiver
separation, for offices. To summarize, the delay spread τRMS

1) is directly related to the transmitter-receiver separation.

2) has a higher mean and standard deviation for LOS than for NLOS.

3) is log-normal for office, laboratory, reading room and residential areas where
office/laboratory and reading room have the same standard deviation as residence NLOS
and LOS cases respectively.

4) is decreased when the antenna becomes more directive.

5) is more correlated with path-loss than with the transmitter-receiver separation for offices.

5.3 Temporal correlation

The temporal correlation coefficient is computed by spatially averaging the correlation
between the power of the multipath components arriving to the same room at different excess
delays.

ρi,i+l =
E{(P(τi)−P(τi))(P(τi+l)−P(τi+l))}

√

E
{

(P(τi)−P(τi))
2}

E
{

(P(τi+l)−P(τi+l))
2} (13)

where E {.} denotes the spatial averaging over the local area. The temporal correlation
coefficient ρi,i+l is useful metric to reveal the resolvability of the CIR components in the
impulse radio channels, i.e. UWB. It is enough to calculate the correlation coefficient between
adjunct bins as this coefficient obviously decreases when the bins are in distance on the time
axes.
Measurements (21), (22) and (45) show that the temporal correlation coefficient is below 0.2
and negligible for indoor UWB. This results in a resolvable fading for the UWB channels and
benefits of using RAKE receivers for this kind of channels.

39Ultra-Wideband (UWB) Communications Channel – Theory and Measurements

www.intechopen.com



14 Will-be-set-by-IN-TECH

Parameters UWB (36) UWB (17) NB (16) (Building 1) NB (16) (Building 2)

σ 22.5◦ 38◦ 25.5◦ 21.5◦

Table 6. Azimuth AOA Standard Deviation

6. Channel fading’s spatial characteristics

6.1 The fading multipath angle of arrival

Obstacles like walls, floor, furniture and human-body throughout a building, causes AOA to
spread over a wide range and frequency-dependent due to frequency-dependent reflection,
scattering and/or diffraction (87). Welch et al. (40) present measurements that for open-areas
(like auditorium) antenna-human intracts to create a very sharp null, but little effects for
highly clustered environments (like office). Prettie et al. (36) show the signal’s AOA is
frequency-independent for LOS, but frequency-dependent for NLOS case. (36) gives a smaller
range of the signal’s AOA for residence than in (17) for offices (Table 6).
Cramer et al. (17) assume CIR (3) to be separable function of delay and azimuth: h(τ, θ) =
h1(τ)h2(θ) where h2 (θ) = ∑

∞
l=0 ∑

∞
k=0 βk,lδ

(

θ − Θl − ωk,l
)

due to the angular deviation of the
signal arrivals within a cluster from the cluster mean, over all AOA’s within the cluster, does
not increase as a function of delay. In (17), Θl is found using the above mathematical form to
be approximately uniform over all angles and ωkl is zero-mean Laplacian:

p (ωkl) =
1√
2σ

e
−
∣

∣

∣

∣

√
2ωkl
σ

∣

∣

∣

∣ (14)

with a standard deviation (σ) of 38◦ which is larger than for narrowband channels (Table 6).
Moreover, the received signal magnitude βk,l is a Rayleigh-distributed random variable with

a mean-square value which follows the double exponential (11) as β2
k,l = P (Tl , τkl) (17). To

summarize:

1) The inter-cluster and intra-cluster azimuth AOA is uniform and Laplacian, respectively
similar to narrowband (80). However, UWB has a wider (σ = 38◦) Laplacian distribution
for the intra-cluster azimuth AOA than narrowband.

2) AOA is frequency-independent for the LOS case but frequency-dependent for the NLOS
case. Offices have wider (σ = 38◦) AOA spread than household (σ = 22.5◦).

3) The human-body has a little effect on AOA spread in dense environments but can create a
very sharp nulls in open areas.

6.2 Received data’s spatial correlation across the receiver’s spatial aperture

The spatial dependence of the UWB channels is analytically demonstrated via a
space-frequency correlation function between the received signals S1 and S2 (36)

R (ξ, ω) = E{S1S2} = J0

(

ω ξ
c

)

+ 2
β ∑

∞
n=−∞

n �=0

jn

n Jn

(

ω ξ
c

)

ejnα0 sin
(

nβ
2

)

(15)

where Jn(.), ξ, c, ω, β and α0 represent respectively the nth-order Bessel function, the
inter-antennas spacing distance, the speed of light, the wireless frequency, the angular range
in which AOA is assumed to be uniformly distributed and the AOA mean. As (15) implies,
the correlation length is less at higher frequency. To evaluate this result, Prettie et al. (36) have
made a set of measurements along baselines of the antenna positions at several locations in
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a residential environment. Although the measurement results (36) for NLOS case obey the
space-frequency correlation function (15), they contradicts (15) for LOS case. Another set of
spatial correlation measurements has been reported in (45). Li and Wong (45) show that

1. The average spatial correlation coefficient to depend on the excess delay. This averaging
is made over all antenna separations and over all antenna locations for each environment.
The correlation reaches the highest values for τ = 0, but then decreases for larger excess
delay (τ = 10ns).

2. For the same excess delay, the open areas like high ceiling reading room present a higher
correlation coefficient than office/laboratory environments.

3. The correlation coefficients for τ = 0 are insensitive to the transmitter-receiver separation
in offices/laboratories.

7. Channel fading’s frequency-dependent characteristics

Due to a large bandwidth in UWB systems, the frequency-dependent aspects of the channels
should be taken into account when we characterize and model the channel. There exist
many frequency-relative components of the UWB communication channel which affect the
traveling signal like the antenna pattern, materials in the propagation environment etc. In
such a channel, not only the frequency selectivity of the environment, which is mainly due to
the propagation effects e.g. multipath phenomenon, disperses the transmitted signal but also
the transmit/receive antenna does. Hence, in an impulse radio channel these aspects must be
evaluated separately as are done in this section.

7.1 Frequency selectivity

7.1.1 Transfer function characterization

Obstructions situated between the transmitter-receiver behave differently as different
frequencies. To account for frequency-dependent electromagnetic behavior of scatterers, (1) is
generalized in (8) to:

h (τ, t, fn) =
N(t, fn)−1

∑
i=0

an (τ, t, fn) eθ(τ,t, fn)δ (τ − τn (t, fn))

where fn is the nth operating frequency. In this model, the total bandwidth is divided into
several sub-bands. The center frequency of the sub-bands is called operating frequency.
Moreover, a distinct wideband model, considering the bandwidth, for each sub-band in UWB
is proposed in (8). The above-mentioned frequency-dependency has been verified by the
measurements in different ways. Measurements (24), (25), (36), (38), (43) and (79) show
that the power gain decreases with increasing frequency; as for free-space propagation, the
received power is proportional to f−2 (38), (42), (43), (79). Alvarez et al. (24), (25) show
that the mean level, averaged spatially on the assigned local area (see Table 1), of channel
transfer-function (in dB) is approximately :

10 log10|H( f )|2 = kp e−δ f (16)

where kp and δ are respectively a constant and the frequency decaying factor which is highly
dependent on the antenna specifications (24) and (25). In (24) and (25), it is indicated that
the obstruction leads to faster power-decay per unit frequency (see Table 7). Kunisch and
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δ (nS)Cases
E[δ]∗ σ[δ]∗

LOS 1.01 0.18

Hard-NLOS 1.16 0.21

Soft-NLOS 1.36 0.24
∗ over all measurements in each case

Table 7. Frequency Decaying Factor δ Statistics

Pamp (38) have also investigated the frequency-dependent power-decay in offices, for both
LOS and NLOS, which includes inside office NLOS and through-wall, i.e. hard-NLOS (24),
cases. This frequency dependency is first studied in 1990s by using a physics-based approach
(88)-(90). The NLOS case has a slightly steeper decay than LOS case for higher frequencies.
The mean transfer-function magnitude, averaged spatially on the assigned local area (see
Table 1), decays with increasing frequency:

|H( f )| = ka

(

f

F

)−m

(17)

where |H( f )|, F =
√

fh fl , ka and m, are respectively the transfer-function magnitude, the
center frequency with bandwidth BW = fh − fl (see Table 1), the amplitude factor, and the
power law exponent. For the LOS case m ∼ 2 with little variance because of the strong paths’
coherent summation. However, moving from LOS to NLOS results in a a large decrease in
m, i.e. a slower decay with f . For the NLOS and between-offices cases, m has larger variance
as the multipath become more obstructed, but has mean equal 1.2 for the between-offices
cases 1 and 2, and 1.1 for NLOS case. For both LOS and NLOS cases, log10ka is almost linear
dependent on m, i.e. one can write m = α log10ka where α is real positive value. Substituting
this linear function into (17) yields

|H( f )| = ka

(

f

F

)−α log10ka

(18)

As seen |H( f )| is no longer a linear function of ka and therefore deviates from the simple
power law. Lao et al. (44) show how the transmission coefficients with amplitude and
phase information change for different building materials. According to their investigation,
the amplitude decreases slightly with increased frequency for chip-wood material whereas
for other materials: plaster board, calcium-silicate board and tempered-glass, the amplitude
changes randomly. Meanwhile, it is shown in (44) that the variations in the transmission
coefficient amplitude for tempered-glass are significant in the measured band. Moreover,
the frequency behavior of the channel based on both vertical and horizontal polarization is
measured in (44). For different polarizations, measurement results indicate that variation is
not significant for plaster-board and Ca-Si board. For tempered glass, the variation is large
than the other material in the most of the band. To summarize:

1. |H( f )|2 decays exponentially versus frequency. More clustered obstruction increases this
decay rate.

2. |H( f )|2 deviates from the power law, with m having a larger variance with more
obstruction. log10kβ is approximately linearly related to m.

3. As expected, there is a strong relationship between the frequency-dependent parameters
of channel and the materials used in the propagation environments.
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7.2 Pulse-distortion

7.2.1 Physical description

As shown in Section 7.1, the UWB channel is seen to be frequency-selective. The phenomenon
can be apparently explained by the Geometric Theory of Diffraction (GTD) in the frequency
domain. However, from the electromagnetics point of view this frequency dependence is not
surprising in the high-frequency radio propagation. This frequency dependency accordingly
causes the pulse distortion in the time domain.
Investigations in (81)-(89) show a true picture for the UWB radio propagation which says if
a pulse propagates along multiple rays or paths, the received pulses will experience different
pulse distortion for different paths. In other words, the pulse waveforms of these received
pulses are different. These different pulse-distortions are basically difficult to model by the
state of the art statistical measurements. Hence, the physics-based deterministic behavior
of the UWB pulse transmission needs to be considered to parameterize the pulse-distortion.
In particular, recently the IEEE 802.15.4a channel model (90) adopted a special form of the
channel model suggested in (87), (88) and (89). It cited two papers (88) and (89) for first
introducing the frequency dependence in the channel model.
Although the pulse-distortion is not so severe for indoor applications such as those targeted by
IEEE 802.15.3a, it could cause serious problems for IEEE 802.15.4a systems. To address these
problems, (91) and (92) give a tutorial review of physics-based ultra-wideband signals and
their optimum and sub-optimum detection. Moreover, in (91) a physics-based deterministic
model, which captures a lot of properties that are not available in the existing statistical models
such as the IEEE 802.15.4a model, is proposed for urban environments consisting of high-rise
buildings.

7.2.2 Physic-based channel model

As discussed earlier in Section 2, the conventional multiptah channel model 2 is used to
characterize the UWB channels. One reason for this use is that the wireless communications
community is so accustomed to Turin’s multipath model (14) which is designed for
narrowband systems and where no pulse distortion is implicitly assumed for each individual
path. To mathematically model the pulse-distortion phenomenon, a generalized version of
the channel model (2) is proposed in (2):

h (τ) =
L

∑
l=1

Al (τ) hl(τ) ∗ δ (τ − τi) (19)

where hl(τ) represents an arbitrary function that has finite energy and ∗ symbolizes the
convolution. Although, the statistical parameterization of hl(τ) is a challenging task, it can be
obtained through exact, experimental, numerical or/and asymptotic methods. For instance,
hl(τ) is obtained in (91) and (92) by asymptotic solutions of MaxwellŠs equations using GTD
and Uniform Theory of Diffraction (UTD).
When the bandwidth of the employed transmission waveform goes infinite, the empirical
channel models become invalid, since no measurement system has infinite bandwidth. The
physics-based model of (19), however, is still valid. For practical applications, it is often
sufficient to consider a special form (104)

Hl(jω) = (jω)−αl (20)
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hl(τ) =
1

Γ(αl)
τ−(1−αl)U(τ) (21)

where αl assumes a positive real value, e.g., αl = 1/2. The U(τ) is Heaviside’s function. The
Gamma function is defined as Γ(z) =

∫ ∞

0 tz−1e−tdt where the real part of z is positive, i.e.,
ℜ(z) > 0. The function τ−(1−αl)U(τ) has a singularity at t = 0, and must be treated as a
generalized function. It is also regarded as an unbounded linear operator. In fact, it is the
behavior of this operator at t = 0 that determines its singular value distribution. Note Eq.(20)
is valid for infinite bandwidth or ω → ∞.
The total channel response for L paths is (104)

y(t) =
L

∑
l=1

Al(Iαl x(t)) ∗ δ(τ − τl) (22)

where Iαl can be treated as linear fractional integral operators. The fractional integral of the
order α is defined as (108)

Iα f (x) ≡ 1
Γ(α)

∫ x

a

f (t)

(x − t)1−α
dt, x > a (23)

where α > 0 is a real value. This integral is also called Riemann-Liouville fractional integral.
The singular value decomposition (SVD) for Iαl has given in (104). Based on its SVD, the
capacity of the channel can be thus derived (104). A comprehensive theory is given in (104).

7.2.3 A time-reversal based system paradigm

Often it is more convenient to design a system, based on the channel cross-correlation

Rhh(t) = h f orward(−t; r0, r1) ∗ hreverse(t; r1, r0) (24)

where ∗ denotes linear convolution, and r0 and r1 are the positions of the transceiver. If the
channel is reciprocal (99), i.e.,

h f orward(t; r0, r1) = hreverse(t; r1, r0), (25)

then, Rhh(t) = h(−t) ∗ h(t) reduces to the auto-correlation of the channel impulse response,
where the spatial positions are dropped for brevity. The use of auto-correlation simplifies
the system design based on the channel impulse response only. One good analogy is the
spread-spectrum system that uses the auto-correlation of the spreading codes. The channel
impulse response can be viewed as a spatial code.
A so-called generalized RAKE is proposed to compensate for pulse distortion in (81) and (82).
This approach however is complex to implement. A time-reversal based system paradigm
that exploits the rich multipath and also mitigates pulse distortion is recently used (1), (81),
(92)-(96).
The principle of time-reversal is based on the reciprocity of a time division duplexing
(TDD) channel. The objective of the proposed research is to achieve (cost-effective
and energy-efficient) time-reversal non-coherent reception as an alternative to coherent
communications so that the rich multipath of a UWB channel can be fully exploited as a
RAKE receiver does. The new system paradigm exploits the hostile, rich-multipath channel
(time-reversed CIR) to achieve simplicity. Combining time-reversal with Multiple-Input
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Multiple-Output (MIMO) that is the most promising approach to use spectrum and
transmission power will further take advantage of spatial-temporal focusing (99)-(104). As
a result, time-reversal trades the extremely huge bandwidth of impulse radio and the high
power efficiency of MIMO for range extension, while retaining the low-power and low-cost
of noncoherent energy-detection (97). This proposed new system paradigm will, through
time-reversal, take advantage of the unique impulsive nature of the UWB signals (100; 101), a
new dimension of a communication channel. The new frontier of impulsive time-reversal
adds more degrees of freedom in exploiting the spatio-temporal dimensions of signals.
Finally, the experimental demonstration of time reversal using a UWB system test-bed is
carried out over the air recently (103).

7.2.4 Antenna impact

Different from a narrowband system, a UWB system must include antennas as pulse shaping
filters. In addition, antennas act as different pulse shaping filters for different angles. Due
to unpredictable arriving angles of multi-path, antennas distort or shape the transmitted
pulses differently for different paths, as experimentally observed. Thus, both antennas and
propagation environments suggest channel models of (19). The antenna impact on the pulse
deformation is studied in (92) and (105). In particular, the antenna as the source of possible
distortions on the matching and the radiation pattern is introduced in (105) and also a model
for the input impedance and a model to have a representation of the radiation pattern is
proposed in (105). The result in (106) show both pulse distortion in the time domain and
frequency filtering in the frequency domain. Moreover, a procedure is proposed in (106) how
to design a UWB antenna with minimum pulse distortion. The frequency-dependent delay
of UWB antennas is investigated in (107). A strong agreement with the delay extracted via
time-domain impulse response measurements is shown in (107).

8. Conclusions

In this paper, a comprehensive investigation on the UWB propagation channels measurements
is presented. We have reviewed the essential parameters of the channel, like those used
in physics-based models, based on a large number of measurement campaigns. These
parameters include the important propagation effects in UWB communication channels: 1)
Power-loss characteristics including Path-Loss (PL), large-scale fading and small-scale fading. 2)
Temporal characteristics including multipath arrival rate, multipath delay spread (Power Delay
Profile (PDP) and Root-Mean-Squared (RMS) delay spread) and temporal correlation. 3) Spatial
characteristics including multipath Angle-of-Arrival (AOA) and spatial correlation across the
receiver’s spatial aperture. 4) Frequency characteristics including Frequency-Selectivity (FSE) and
Pulse-Distortion (PD). We have supported this tutorial overview by a integrated summary on
measurement results giving insights on UWB fading channel characterization and modeling.
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