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1. Introduction 

The heterodyne process has been an important part of electronic communications systems 
for over 100 years.  The most common use of the heterodyne process is in modulation and 
demodulation where a local oscillator produces the heterodyne signal which is then mixed 
with (multiplied by) the signal of interest to move it from one frequency band to another.  
For example, the superheterodyne receiver invented by U.S. Army Major Edwin Armstrong 
in 1918 uses a local oscillator to move the incoming radio signal to an intermediate band 
where it can be easily demodulated with fixed filters rather than needing a variable filter or 
series of fixed filters for each frequency being demodulated (Butler, 1989, Duman 2005).  
Today you will find heterodyne as a critical part of any modern radio or TV receiver, cell 
phone, satellite communication system, etc. 
In this chapter we will introduce the concept of making a tunable or adaptive filter using the 
heterodyne process.  The concept is very similar to that of the superheterodyne receiver, but 
applied to tunable filters.  Most tunable filters require a complicated mechanism for 
adjusting the coefficients of the filter in order to tune the filter.  Using the heterodyne 
approach, we move the signal to a fixed filter and then move the signal back to its original 
frequency band minus the noise that has been removed by the fixed filter. Thus complicated 
fixed filters that would be virtually impossible to tune using variation of the filter 
parameters can be easily made tuneable and adaptive. 

1.1 Applications of adaptive heterodyne filters 
Modern broad-band wireless systems are designed to be co-located with older narrow-band 

communications so as to be able to share valuable spectrum (Etkin et al., 2005, Peha, 1998, 

2000). This is accomplished by using a pseudorandom number sequence to control the 

spreading of the spectrum of the modern wireless transmitter so that it appears to be 

background noise that is easily filtered out by the narrow-band receiver. The five most 

common techniques for achieving spread-spectrum communications are (1) Frequency 

Hopping Spread Spectrum (FHSS, e.g.: IEEE 802.11-1997) in which the signal is transmitted 

at a random series of frequencies across the spectrum, (2) Direct Sequence Spread Spectrum 

(DSSS, e.g.: IEEE 802.11b and 802.11g) in which the transmitter multiplies the signal by a 

random sequence to make it appear like background noise, (3) Time Hopping Spread 
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Spectrum (THSS, e.g.: IEEE 802.15) in which the carrier is turned on and off by the random 

code sequence, (4) Chirp Spread Spectrum (CSS, e.g.: IEEE 802.15.4a-2007) which uses 

wideband linear frequency modulated chirp pulses to encode the information, and (5) Ultra 

Wide Band (UWB, e.g.: IEEE 802.15.3a – Note: No standard assigned, MB-OFDM and DS-

UWB will compete in market) based on transmitting short duration pulses. 

When working properly, the narrow-band transmissions licensed to the frequency spectrum 

do not affect the broadband systems. They either interfere with a small portion of the broad-

band transmission (which may be re-sent or reconstructed) or the narrow-band signals are 

themselves spread by the receiver demodulation process (Pickholtz et al., 1982). However, 

in practice the narrow-band transmissions can cause serious problems in the spread-

spectrum receiver (Coulson, 2004, McCune, 2000). To alleviate these problems, it is often 

necessary to include narrow-band interference attenuation or suppression circuitry in the 

design of the spread-spectrum receiver. Adaptive heterodyne filters are an attractive 

approach for attenuation of narrow-band interference in such broadband systems.  Other 

approaches include smart antennas and adaptive analog and digital filters, but adaptive 

heterodyne filters are often a good choice for attenuation of narrow band interference in 

broadband receivers (Soderstrand, 2010a). 

1.2 Preliminary concepts 
Figure 1 shows the most common digital heterodyne circuit. The incoming signal x(n) is 

multiplied by the heterodyne signal cos(ω0n). The parameter ω0 is the heterodyne frequency 
which, along with all frequencies contained in x(n), must be less than ߨ ʹൗ  in order to avoid 

aliasing. 

 

 

Fig. 1. Basic digital heterodyne operation. 

Most textbooks analyze this basic heterodyne operation in the time domain making use of 

trigonometric identities to show that the effect of the heterodyne operation is to generate 

two images of the input signal x(n), one translated up in frequency by ω0 and the other 

translated down in frequency by ω0.  However, for our purposes it is better to view things in 

the frequency domain (z-domain). 

The time domain multiplication of x(n) by ݁௝ఠబ௡ rotates the z-domain representation of the 

signal X(z) left by ω0 to X(z݁ି௝ఠబ).  The signal that was at DC, now appears at -ω0.  Similarly, 

the time domain multiplication of x(n) by ݁ି௝ఠబ௡ rotates the z-domain representation of the 

signal X(z) right by ω0 to X(z݁௝ఠబ).  The signal that was at DC, now appears at -ω0.  This 

important relationship is expressed in the following equation (Dorf & Wan, 2000, Roberts, 

2007): 

ሺ݊ሻ݁௝ఠబ௡ݔ  ௓⇔ ܺሺି݁ݖ௝ఠబሻ (1) 

y(n)

cos(ω0n) 

x(n) 
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If we express cos(ω0n) in terms of the complex exponential, we get the following: 

ሺ݊ሻݔ  cosሺ߱଴݊ሻ = ଵଶ ሺ݊ሻ[݁௝ఠబ௡ݔ + ݁ି௝ఠబ௡] ௓⇔ ଵଶ [ܺ൫ି݁ݖ௝ఠబ൯ + ܺ൫݁ݖ௝ఠబ൯] (2) 

From equation (2) we can clearly see the separation of the input signal into two signals, one 
translated in frequency by rotation to the left ω0 and the other translated in frequency by 
rotation to the right ω0 in the z-plane.  In a modulation system, we would filter out the lower 
frequency and send the higher frequency to the antenna for transmission.  In a demodulator, 
we would filter out the higher frequency and send the lower frequency to the IF stage for 
detection. 

1.3 A simple tunable heterodyne band-pass filter 
The basic heterodyne operation of Figure 1 can be used to implement a simple tunable 
narrow-band band-pass filter using the circuit of Figure 2. 
 

 

Fig 2. Simple tunable heterodyne band-pass filter (H(z) must be a narrow-band low-pass 
filter) 

Using the same analysis as equation (2) we obtain: 

ሺ݊ሻݑ  = ሺ݊ሻݔ cosሺ߱଴݊ሻ = ଵଶ ሺ݊ሻ[݁௝ఠబ௡ݔ + ݁ି௝ఠబ௡] ௓⇔ ܷሺݖሻ = ଵଶ [ܺ൫ି݁ݖ௝ఠబ൯ + ܺ൫݁ݖ௝ఠబ൯] (3) 

After the filter stage we have: 

 ܸሺݖሻ = ଵଶ [ܺ൫ି݁ݖ௝ఠబ൯ + ܺ൫݁ݖ௝ఠబ൯]ܪሺݖሻ (4) 

The final heterodyne operation then results in the output Y(z): 

 ܻሺݖሻ = ଵସ ௝ఠబ൯ି݁ݖ൫ܪൣ + ሻݖ௝ఠబ൯൧ܺሺ݁ݖ൫ܪ + ଵସ ଶ௝ఠబሻି݁ݖ௝ఠబ൯ܺሺି݁ݖ൫ܪൣ +  ଶ௝ఠబሻ൧ (5)݁ݖ௝ఠబ൯ܺሺ݁ݖ൫ܪ

Equation (5) is obtained by the straight-forward application of equation (1) for the 
multiplication of equation (4) by the cosine heterodyne function.  Equation (5) consists of 
four separate terms.  If H(z) is a narrow-band low-pass filter, then the first two terms of 
equation (5) represent a narrow-band band-pass filter centered at the heterodyne frequency 
ω0. 

 ஻ܻ௉ሺݖሻ = ଵସ ௝ఠబ൯ି݁ݖ൫ܪൣ +  ሻ (6)ݖ௝ఠబ൯൧ܺሺ݁ݖ൫ܪ

This narrow-band band-pass filter has only half the energy, however, because the other half 
of the energy appears in the high-frequency last terms in equation (5). 

 ுܻிሺݖሻ = ଵସ ଶ௝ఠబሻି݁ݖ௝ఠబ൯ܺሺି݁ݖ൫ܪൣ +  ଶ௝ఠబሻ൧ (7)݁ݖ௝ఠబ൯ܺሺ݁ݖ൫ܪ

cos(ω
0
n)

x(n)

cos(ω
0
n)

H(z)
v(n)

y(n)
u(n)
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However, if H(z) is of sufficiently narrow bandwidth, these high-frequency terms will be 

attenuated by H(z) and equation (6) will substantially represent the output of the simple 

tunable heterodyne filter of Figure 2. 

Figure 3 shows the impulse response of the circuit of Figure 1 as simulated in MatLab for 

four different values of the heterodyne frequency. Figure 3 was implemented by the 

following MatLab script (COSHET): 

 
 
 

% COSHET  (Lab book p. 129 12/11/2010) 

% Function to implement cosine heterodye filter 

% Set the following inputs before calling COSHET: 

%      inp = 0 (provide input file inpf) 

%          = 1 (impulse response) 

%      npoints = number of points in input 

%      w0 = heterodyne frequency 

%      [b a] = coefficients of filter H(z) 

% 

% OUTPUTS:  hdb = frequency response of the filter 

if inp==1 

    for index=1:npoints 

        inpf(index)=0; 

    end 

    inpf(1)=1; 

end 

for index=1:npoints 

    x(index)=inpf(index)*sqrt(2)*cos(w0*(index-1)); 

end 

y=filter(b,a,x); 

for index=1:npoints 

    yout(index)=y(index)*sqrt(2)*cos(w0*(index-1)); 

end 

h=fft(yout); 

hdb=20*log10(abs(h)); 

plot(hdb,'k') 

 

 
 
 

Before invoking the above script each of the input values was set (inp=1, npoints=1000,  ω0 = 

π/5, ω0 = 2π/5, ω0 = 3π/5 and ω0 = 4π/5).  The filter H(z) was selected as an inverse-

Chebyshev filter designed as [b,a] = cheby2(11, 40, 0.1). As can be seen from Figure 3, we 

have been able to implement a tunable narrow-band band-pass filter that can be tuned by 

the changing the heterodyne frequency. 

Figure 4 shows a MatLab simulation of the ability of the circuit of Figure 2 to attenuate 

frequencies outside the band-pass filter and pass frequencies inside the bandwidth of the 

band-pass filter. The following MatLab script (GENINP) generates an input signal 

consisting of nine cosine waves spaced by π/10 in the z-plane: 

www.intechopen.com



 
Adaptive Heterodyne Filters 363 

% GENINP  (Lab book p. 129 12/11/2010) 

% Generates nine sinusoidal inputs spaced by pi/10 

% INPUTS:  npoints = number of points 

for index=1:npoints 

    inpf(index)=cos(pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(2*pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(3*pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(4*pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(5*pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(6*pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(7*pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(8*pi*(index-1)/10); 

    inpf(index)=inpf(index)+cos(9*pi*(index-1)/10); 

end 

 

 

 

Fig. 3. MatLab simulation of circuit of Figure 2 for various values of the heterodyne 
frequency ω0. 

Fig. 3a. Tunable band-pass filter with ߱଴ = ͷ Fig. 3b. Tunable band-pass filter with ߱଴/ߨ =  ͷ/ߨʹ

Fig. 3c. Tunable band-pass filter with ߱଴ = Ͷߨ/ͷ Fig. 3d. Tunable band-pass filter with ߱଴ = Ͷߨ/ͷ 

www.intechopen.com



 
Adaptive Filtering 364 

This input is then used with the previous script (COSHET) to generate Figure 4 (inp=0). 

 

Fig. 4. Output of circuit of figure 2 when input is nine equally-spaced cosine waves. 

In Figure 4 you can see the nine equally spaced cosine waves.  The heterodyne frequency 

was set to π/2.  Thus the cosine waves at all frequencies except π/2 are severely attenuated.  

There is nearly 40db difference between the cosine output at π/2 and the cosine output at 

other frequencies.  Once again, this verifies the ability of the circuit of Figure 2 to implement 

a tunable narrow-band band-pass filter.  (NOTE:  The plots obtained from MatLab label the 

Nyquist frequency π as 500.  The plots show the entire frequency response from 0 to 2π.  

Hence, the cosine at π/2 appears at 250 on the x-axis.). 

1.4 Problems with the simple tunable heterodyne structure 
While the Simple Tunable Heterodyne Band-Pass Filter of Section 1.3 works very well, 

attempts to use the structure of Figure 2 to realize tunable wide-band filters such as tunable 

Band-Stop or Notch Filters, tunable cut-off frequency Low Pass or High Pass Filters or 

tunable bandwidth Band-Pass Filters will fail.  Equation (7) represents the high-frequency 

components at 2ω0 that must be substantially attenuated by H(z) in order to prevent 

interference with the desired filter of equation (6).  In the case of a wide-band H(z), this 

attenuation does not happen and interference destroys the operation of the filter.   

But an even more serious problem is in equation (6) itself.  For example, if we try to design a 
tunable Band-Stop Filter by making H(z) a wide-band High-Pass Filter, equation (6) 

indicates that the stop-band of the High-Pass Filter H(z) has been moved to ω0 as desired to 

attenuate frequencies around ω0.  However, since H(z) passes frequencies away from  ω0, 
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the maximum attenuation that can be achieved across the stop band is only 6db!  This is 
illustrated in Figure 5 where we have replaced the narrow-band band-pass H(z) from the 
previous section with a wide-band high-pass H(z). 
 
 

 
   Fig. 5a. H(z) for a wideband high-pass filter    Fig. 5b. Tunable band-stop filter  
                        (poor attenuation) 
 

Fig. 5. Demonstration of failure of circuit 2 to work with wide-band functions. 

2. The complex digital heterodyne circuit 

The key to designing Complex Heterodyne Tunable Filters is in the modification of the 

Basic Digital Heterodyne Circuit of Figure 1 into the Complex Digital Heterodyne Circuit 

shown in Figure 6a. When implemented in software or in hardware that supports complex 

arithmetic, the circuit is of little more complexity than the Basic Digital Heterodyne circuit 

of Figure 1.  However, in standard hardware we must implement the complex arithmetic 

using standard digital hardware as shown in Figure 6b.  Figure 6b is the complete 

implementation of the Complex Digital Heterodyne Circuit of Figure 6a.  Figures 6c and 

6d show simplified hardware for real input and for real output respectively.  In the 

remainder of this chapter, we shall use the circuit diagram of Figure 6a to represent all the 

circuits of Figure 6. 

 
 

 
 

Fig. 6a. Complex heterodyne circuit for software or hardware that supports complex 
arithmetic 
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Fig. 6b. Complete hardware implementation of complex digital heterodyne circuit. 

 

 

Fig. 6c. Implementation of real-input complex digital heterodyne 

 

 
Fig. 6d. Implementation of real-output complex digital heterodyne. 

Fig. 6. Implementations of the complex heterodyne circuit 
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2.1 Complex heterodyne rotation 
Now we consider what happens when we replace the basic digital heterodyne circuit in 

Figure 2 with the complex digital heterodyne unit of Figure 6 to obtain the Complex 

Heterodyne Rotation Circuit of Figure 7. 

 
 

 
 
 

Fig. 7. Complex heterodyne rotation circuit (Rotates H(z) by ω0 in the z-plane so that what 
was at DC is now at ω0) 

The MatLab code to implement Figure 7 is as follows: 
 
 
 

% EXPHET  (Lab book p. 129 12/11/2010) 

% Function to implement complex exponential heterodyne 

filter 

% Set the following inputs before calling EXPHET: 

%      inp = 0 (provide input file inpf) 

%          = 1 (impulse response) 

%      npoints = number of points in input 

%      w0 = heterodyne frequency 

%      [b a] = coefficients of filter H(z) 

% OUTPUTS:  hdb = frequency response of the filter 

clear x y yout hdb 

if inp==1 

    for index=1:npoints 

        inpf(index)=0; 

    end 

    inpf(1)=1; 

end 

for index=1:npoints 

    x(index)=inpf(index)*exp(-1i*w0*(index-1)); 

end 

y=filter(b,a,x); 

for index=1:npoints 

    yout(index)=y(index)*exp(1i*w0*(index-1)); 

end 

hdb=20*log10(abs(fft(yout))); 

plot(hdb,'k') 

݁௝ఠబ௡ 

x(n) 

݁ି௝ఠబ௡ 

H(z)
v(n)

y(n) 
u(n)
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Fig. 8. Demonstration of complex heterodyne rotation circuit of Figure 7  

Using the same prototype wideband High-Pass Filter as we used in Section 1.4 to get 
Figures 5a and 5b, let’s use this prototype filter in the Complex Heterodyne Rotation Circuit 
if Figure 7.  The results are shown in Figure 8.  Figure 8a shows the frequency response of 
the prototype wideband High-Pass Filter, Figure 8b shows the pole-zero plot for this 
prototype filter, Figure 8c shows the frequency response of the rotated filter at the output of 
Figure 7, and Figure 8d shows the pole-zero plot for the circuit of Figure 7 with the 
wideband High-Pass prototype filter used for H(z).  
Figure 8 demonstrates the ability of the Complex Heterodyne Rotation Circuit of Figure 7 to 
rotate poles and zeros in the z-plane.  However, the output of Figure 7 is not real.  It is a 
complex output generating a frequency response that is not symmetric around the Nyquist 
frequency.  This means that the filter will attenuate frequencies at +ω0 but not at -ω0.  Since 
real systems have frequencies at both +ω0 and -ω0, the circuit of Figure 7 cannot be used to 
implement a band-stop filter for real systems.  In sections 3, 4 and 5 we shall see three 
different ways we can make use of the basic circuit of Figure 7 to implement tunable band-
stop and notch filters, tunable cut-off frequency high-pass and low-pass filters, and tunable 
bandwidth band-pass filters.  

Fig. 8a. Frequency response of prototype filter Fig. 8b. Pole-zero plot of prototype filter 

Fig. 8c. Frequency response of rotated filter Fig. 8d. Pole-zero plot of rotated filter 
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3. Three-way tunable complex heterodyne filter (Azam’s technique) 

The basic structure for Tunable Complex Heterodyne filters is shown in Figure 9.  This 
Three-Way Tunable Complex Heterodyne circuit consists of three complex heterodyne units 
of Figure 6 and two identical prototype filters H(z).  By selecting the correct prototype filter, 
we are able to design tunable band-stop and notch filters, tunable cut-off frequency low-
pass and high-pass filters and tunable bandwidth band-pass and band-stop filters.  These 
filters are maximally tunable in that the band-pass and band-stop filters can be tuned from 
DC to the Nyquist frequency and the other filters can be tuned such that their bandwidth 
varies from zero to half the Nyquist frequency.  There is no distortion in the filters, the 
prototype design transfers directly except that the pass-band ripple is doubled, thus we 
must design prototype filters with half the desired pass-band ripple.  
 

 

Fig. 9. Three-way tunable complex heterodyne filter (Azam’s method) 

 

 

Fig. 10. Creation of a notch at ω0 using the three-way tunable complex heterodyne filter of 
Figure 9 (z-plane). 

Before we look at the detailed analysis of Figure 9, let’s take an overview of its operation.  In 

order to make the procedure clear, let’s assume that H(z) is a wide-band high-pass filter like 

that of Figure 8a and 8b.  Then the first heterodyne operation rotates the input signal x(n) 

(shown in Figure 10a.) by -ω0 so that the frequencies that were at DC are now located at -ω0 

(see Figure 10b).  H(z) is then applied attenuating frequencies that were at ω0 in x(n) before 

the rotation (indicated by white spot in Figure 10b).  At this point if we simply rotated back 

like we did in the circuit of Figure 7, we would get the rotated H(z) as shown in Figure 8c 

and 8d.  However, in Figure 9 we now rotate back 2ω0 so that the frequencies of x(n) that 

were at DC are now at +ω0 in x(n) (see Figure 10c)  The second identical H(z) then attenuates 

frequencies in x(n) that were at -ω0 before any of these rotations (indicated by second white 

spot in Figure 10c).  Finally, we rotate the signal back to its original frequencies with the 

attenuation having been applied both at +ω0 (first H(z)) and -ω0 (second H(z)) as shown in 

Figure 10d.  Since H(z) is applied twice, we will experience twice the pass-band ripple.  

Hence, the prototype filter H(z) must be designed with one-half the ripple desired in the 

݁ି௝ఠబ௡ 

x(n) 

݁ି௝ఠబ௡ 

H(z)
v(n)

y(n) 
s(n)

݁ଶ௝ఠబ௡ 

H(z)
u(n) w(n)

          Fig. 10a. Input X(z)   Fig. 10b. Rotate ω0 to DC  Fig. 10c. Rotate - ω0 to DC    Fig. 10d. Rotate back 
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final filter.  Also because H(z) is applied twice, some portions of the stop-band will have 

twice the attenuation while other parts will have the desired attenuation.  Having more 

attenuation than specified is not a problem, so we will design the prototype filter H(z) with 

the desired stop-band attenuation (not half the stop-band attenuation). 

Now let’s look at the detailed mathematics of Figure 9.  Making use of the relationship of 
Equation 1, we have the following as a result of passing x(n) (see Figure 10a) through the 
first complex heterodyne unit in Figure 9: 

ሺ݊ሻ݁ି௝ఠబ௡ݔ  ௓⇔ ܺ൫݁ݖ௝ఠబ൯ (8) 

Next we apply the prototype filter H(z) (see Figure 10b):  

ሺ݊ሻ݁ି௝ఠబ௡ݔ  ∗ ℎሺ݊ሻ ௓⇔ ܺ൫݁ݖ௝ఠబ൯ܪሺݖሻ (9) 

Now we rotate back 2ω0 by passing through the second complex heterodyne unit (see Figure 
10c): 

ሺ݊ሻ݁ି௝ఠబ௡ݔ]  ∗ ℎሺ݊ሻ]݁ଶ௝ఠబ௡ ௓⇔ ܺ൫ି݁ݖ௝ఠబ൯ܪሺି݁ݖଶ௝ఠబ௡ሻ (10) 

We then apply the second identical prototype filter H(z) (see Figure 10c): 

 ൛ൣݔሺ݊ሻ݁ି௝ఠబ௡ ∗ ℎሺ݊ሻ൧݁ଶ௝ఠబ௡ൟ ∗ ℎሺ݊ሻ ௓⇔ ܺ൫ି݁ݖ௝ఠబ൯ܪ൫ି݁ݖଶ௝ఠబ௡൯ܪሺݖሻ (11) 

Finally we pass through the last complex heterodyne unit returning the signal to its original 
location (see Figure 10d): 

 ሺ൛ൣݔሺ݊ሻ݁ି௝ఠబ௡ ∗ ℎሺ݊ሻ൧݁ଶ௝ఠబ௡ൟ ∗ ℎሺ݊ሻሻ݁ି௝ఠబ௡ ௓⇔ ܺሺݖሻܪ൫ି݁ݖ௝ఠబ௡൯ܪሺ݁ݖ௝ఠబ௡ሻ (12) 

The transfer function shown in equation (12) above is the effect of the entire Three-Way 

Tunable Complex Heterodyne Filter shown in Figure 9.  By choosing different prototype 

filters H(z) we are able to implement tunable center-frequency band-stop and notch filters, 

tunable cut-off frequency low-pass and high-pass filers, and tunable bandwidth band-pass 

and band-stop filters.  In the following sections we will look at the details for each of these 

designs. 

Designing tunable filters using the Three-Way Complex Heterodyne circuit of Figure 9 is 

simply a matter of choosing the correct prototype filter H(z).  Table 1 on the next page 

shows the types of tunable filters that can be designed using the Three-Way Complex 

Heterodyne Technique including the requirements for the prototype filter H(z) and the 

tunable range.  In the following sections we shall make use of this table to design examples 

of each of these tunable filters. 

3.1 Design of tunable center-frequency band-stop filter 
In this and the following five sections we will give an example of each of the filter designs in 

Table 1.  In all of these designs the prototype filter H(z) may be designed using any of the 

many filter design techniques. For example, in MatLab we may design Butterworth (butter), 

Chebyshev (cheby1), inverse Chebyshev (cheby2), elliptical (ellip) or Parks-McClellan 

Linear Phase Filters (firpm) to name a few.  The Three-Way Complex Heterodyne Circuit of 

Figure 9 and Table 1 will preserve the key characteristics of the prototype filter except as 
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noted in Table 1. The examples in this chapter will all be based on linear-phase Parks-

McClellan filters. The prototype filter H(z) will use a 64-tap prototype filter with weights 

designed to obtain 40db attenuation in the stop band and a maximum ripple of 1.5db in the 

prototype filter pass-band (3db in the tunable filter pass-band).   

 

 

Desired Tunable 
 Filter 

Required H(z) Tunable Range 

Tunable center-
frequency band-stop 

filter 

High-pass filter with cut-off frequency equal to 
one-half of the desired band-width, pass-band 
ripple equal to one-half the desired pass-band 
ripple and stop-band attenuation equal to the 
desire stop-band attenuation for the tunable 

center-frequency band-stop filter. 

Fully tunable from 
DC to the Nyquist 

frequency. 

Tunable cut-off 
frequency low-pass 

filter 

Low-pass filter with cut-off frequency equal to 
one-half of the Nyquist frequency, pass-band 
ripple equal to one-half the desired pass-band 
ripple and stop-band attenuation equal to the 

desire stop-band attenuation for the tunable cut-
off frequency low-pass filter. 

Cut-off frequency 
tunable from DC 

to one-half the 
Nyquist frequency 

Tunable cut-off high-
pass filter 

High-pass filter with cut-off frequency equal to 
one-half of the Nyquist frequency, pass-band 
ripple equal to one-half the desired pass-band 
ripple and stop-band attenuation equal to the 

desire stop-band attenuation for the tunable cut-
off frequency high-pass filter. 

Cut-off frequency 
tunable from DC 

to one-half the 
Nyquist frequency 

Tunable band-width 
band-pass filter 

Band-pass filter centered at /2 with band-

width of /2, pass-band ripple equal to one-half 
the desired pass-band ripple and stop-band 
attenuation equal to the desired stop-band 

attenuation for the tunable band-width band-
pass filter. 

Bandwidth 

tunable from  to 

/2 

Tunable band-width 
band-stop filter 

Band-stop filter centered at /2 with band-

width of /2, pass-band ripple equal to one-half 
the desired pass-band ripple and stop-band 
attenuation equal to the desired stop-band 

attenuation for the tunable band-width band-
stop filter. 

Bandwidth 

tunable from  to  

/2 

NOTE:  In bandwidth tuning,  is the smallest bandwidth available.  The actual value of  
depends on the transition band of the prototype filter H(z). The narrower the transition 

band, the smaller the value of .  Attempts to tune the bandwidth to less than  will result 
in leakage at DC and the Nyquist frequency. 

 

Table 1. Design of tunable filters using the three-way complex heterodyne circuit of Figure 9 

www.intechopen.com



 
Adaptive Filtering 372 

The following MatLab code is used to implement the Three-Way Complex Heterodyne 
Circuit of Figure 9: 
 
 

% N3WAYHET 

% Implements the Three-Way Heterodyne Rotion Filter 

% Also known as the Full-Tunable Digital Heterodyne Filter 

% INPUTS: 

% Set the following inputs before calling 3WAYHET: 

%      inp = 0 (provide input file inpf) 

%          = 1 (impulse response) 

%      npoints = number of points in input 

%      w0 = heterodyne frequency 

%      [b a] = coefficients of filter H(z) 

%      scale = 0 (do not scale the output) 

%            = 1 (scale the output to zero db) 

% 

% OUTPUTS:  ydb = frequency response of the filter 

%           hdb, sdb, udb, vdb, wdb (intermediate outputs) 

clear y ydb hdb s sdb u udb v vdb w wdb 

if inp==1 

    for index=1:npoints 

        inpf(index)=0; 

    end 

    inpf(1)=1; 

end 

for index=1:npoints 

    s(index)=inpf(index)*exp(-1i*w0*(index-1)); 

end 

u=filter(b,a,s); 

for index=1:npoints 

    v(index)=u(index)*exp(+2*1i*w0*(index-1)); 

end 

w=filter(b,a,v); 

for index=1:npoints 

    y(index)=w(index)*exp(-1i*w0*(index-1)); 

end 

[h,f]=freqz(b,a,npoints,'whole'); 

hdb=20*log10(abs(h)); 

sdb=20*log10(abs(fft(s))); 

udb=20*log10(abs(fft(u))); 

vdb=20*log10(abs(fft(v))); 

wdb=20*log10(abs(fft(w))); 

ydb=20*log10(abs(fft(y))); 

if scale==1 

    ydbmax=max(ydb) 

    ydb=ydb-ydbmax; 

end 

plot(ydb,'k') 
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To design a tunable center-frequency band-pass filter, the prototype filter must be a narrow-

band low-pass filter with the bandwidth equal to half the bandwidth of the desired tunable 

band-pass filter.  Before calling the MatLab m-file n3wayhet, we initialize the input variables 

as follows: 

inp=1;npoints=1000;w0=0;a=1;b=firpm(64,[0 .1*.8 .1/.8 1],[0 0 1 1],[10 1]);scale=1 n3wayhet; 

Figure 11 shows the design criteria for the prototype wide-band high-pass filter needed to 

implement the tunable band-stop filter.  The prototype high-pass filter needs a stop-band 

bandwidth of one-half the desired bandwidth of the tunable notch filter.  The prototype 

filter must have one-half the pass-band ripple of the desired pass-band ripple for the tunable 

band-pass filter.  However, the prototype high-pass filter should have the same stop-band 

attenuation as is desired in the tunable band-stop filter. 

 
 

 
 

Fig. 11. Design criteria for prototype wide-band high-pass filter H(z) required to implement 
a tunable band-stop filter using the three-way complex heterodyne circuit of Figure 9. 

Figure 12 shows the result of running this MatLab m-file simulation of the circuit of Figure 9 

for four different values of ω0, ߱଴ = Ͳ, ߱଴ = గସ , ߱଴ = గଶ 	and	߱଴ = ଷగସ . Key features of the 

Three-Way Complex Heterodyne Technique can be seen in Figure 12. First, when ߱଴ = Ͳ we 

get the frequency response shown in Figure 12a which is the prototype filter convolved with 

itself (H(z)H(z)).  Thus we have over 80db attenuation in the stop band and the desired less 

that 3db ripple in the pass-band. The prototype filter is High-Pass.  Figure 12b shows the 

circuit with ߱଴ =  Ͷ.  This tunes the center frequency to /4 which shows up as 125 on the/ߨ

x-axis of Figure 12b.  Figure 12c shows the circuit with ߱଴ =  This tunes the center  .ʹ/ߨ

frequency to /2 which shows up as 250 on the x-axis of Figure 12c. Figure 12d shows the 

circuit with ߱଴ =  Ͷ.  This tunes the center frequency to 3/4 which shows up as 375 on/ߨ͵

the x-axis of Figure 12d. Notice that the attenuation of the tuned band-stop filters is over 

40db which is the same stop-band attenuation as the prototype filter. All of these filters 

retain the linear-phase property of the prototype filter that was designed using the Parks-

McClellan algorithm. 
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Fig. 12. Tunable center-frequency linear-phase band-stop filter using the three-way Complex 
heterodyne circuit 

3.2 Tunable cut-off frequency low-pass filter 
To design a tunable cut-off frequency low-pass filter, the prototype filter must be a wide-
band low-pass filter with the bandwidth equal to half the Nyquist Frequency.  Before calling 
the MatLab m-file n3wayhet, we initialize the input variables as follows: 

inp=1;npoints=1000;w0=0;a=1;b=firpm(64,[0 .5*.955 .5/.955 1],[1 1 0 0],[1 10]); 
scale=1;n3wayhet 

Figure 13 shows the design criteria for the prototype low-pass filter with cut-off frequency 

at /2 that is needed to implement the tunable cut-off frequency low-pass filter.  The 

prototype low-pass filter needs a cut-off frequency of /2.  The prototype filter must have 

one-half the pass-band ripple of the desired pass-band ripple and the same stop band 

attenuation as for the tunable cut-off frequency low-pass filter. 

Fig. 12a. Tunable band pass ߱଴ = Ͳ [H(z)H(z)]     Fig. 12b. Tunable band pass ߱଴ =   Ͷ/ߨ

 Fig. 12c. Tunable band pass ߱଴ = Fig. 12d. Tunable band pass ߱଴                ʹ/ߨ =   Ͷ/ߨ͵
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Fig. 13. Design criteria for prototype low-pass filter H(z) with cut-off frequency at /2 
required to implement a tunable cut-off frequency low-pass filter using the three-way 
complex heterodyne circuit of Figure 9. 

 

Fig. 14. Tunable cut-off frequency linear-phase low-pass filter using three-way complex 
heterodyne circuit 

Fig. 14a. Tunable cut-off low-pass filter ߱଴ = Ͳ [H(z)H(z)]  Fig. 14b. Tunable cut-off low-pass ߱଴ =  Ͷ/ߨ

Fig. 14c. Tunable cut-off low-pass ߱଴ = ʹ/ߨ            Fig. 14d. Tunable cut-off low-pass ߱଴ =  Ͷ/ߨ͵
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Figure 14 shows the tunable cut-off frequency low-pass filter. First, when ߱଴ = Ͳ we get the 

frequency response shown in Figure 14a which is the prototype filter convolved with itself 

(H(z)H(z)).  Thus we have over 80db attenuation in the stop band and the desired less that 

3db ripple in the pass-band.  The prototype filter is Low-Pass with bandwidth set to one-half 

the Nyquist frequency (250 on the x-axis).  Figure 14b shows the circuit with ߱଴ =  This  .8/ߨ

tunes the cut-off frequency to /2 - /8 = 3/8 which shows up as 187.5 on the x-axis of 

Figure 14b. Figure 14c shows the circuit with ߱଴ =  Ͷ.  This tunes the cut-off frequency to/ߨ

/2 - /4 = /4 which shows up as 125 on the x-axis of Figure 14c.    Figure 14d shows the 

circuit with ߱଴ =  This tunes the center frequency to /2 - 3/8  = /8 which shows  .8/ߨ͵

up as 62.5 on the x-axis of Figure 14d.  Notice that the attenuation of the tuned low-pass 

filters is over 40db which is the same stop-band attenuation as the prototype filter. All of 

these filters retain the linear-phase property of the prototype filter that was designed using 

the Parks-McClellan algorithm. 

3.3 Tunable cut-off frequency high-pass filter 
To design a tunable cut-off frequency high-pass filter, the prototype filter must be a wide-
band high-pass filter with the bandwidth equal to half the Nyquist Frequency.  Before 
calling the MatLab m-file n3wayhet, we initialize the input variables as follows: 

inp=1;npoints=1000;w0=0;a=1;b=firpm(64,[0 .1*.8 .1/.8 1],[0 0 1 1],[10 1]);  
scale=1;n3wayhet; 

Figure 15 shows the design criteria for the prototype high-pass filter with cut-off 

frequency at /2 that is needed to implement the tunable cut-off frequency high-pass 

filter.  The prototype high-pass filter needs a cut-off frequency of /2. The prototype filter 

must have one-half the pass-band ripple of the desired pass-band ripple and the same 

stop band attenuation as for the tunable cut-off frequency high-pass filter. 

 

 
 

Fig. 15. Design criteria for prototype high-pass filter h(z) with cut-off frequency at /2 
required to implement a tunable cut-off frequency high-pas filter using the three-way 
complex heterodyne circuit of figure 9. 
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Figure 16 shows the tunable cut-off frequency high-pass filter.  First, when ߱଴ = Ͳ we get 

the frequency response shown in Figure 16a which is the prototype filter convolved with 

itself (H(z)H(z)).  Thus we have over 80db attenuation in the stop band and the desired less 

that 3db ripple in the pass-band.  The prototype filter is High-Pass with bandwidth set to 

one-half the Nyquist frequency (250 on the x-axis).  Figure 16b shows the circuit with ߱଴ =  This tunes the cut-off frequency to /2 + /8 = 5/8 which shows up as 312.5 on  .8/ߨ

the x-axis of Figure 16b.  Figure 16c shows the circuit with ߱଴ =  Ͷ.  This tunes the cut-off/ߨ

frequency to /2 + /4 = 3/4 which shows up as 375 on the x-axis of Figure 16c.    Figure 

16d shows the circuit with ߱଴ =  =  This tunes the center frequency to /2 + 3/8  .8/ߨ͵

7/8 which shows up as 437.5 on the x-axis of Figure 16d.  Notice that the attenuation of the 

tuned high-pass filters is over 40db which is the same stop-band attenuation as the 

prototype filter. All of these filters retain the linear-phase property of the prototype filter 

that was designed using the Parks-McClellan algorithm. 

 
 

 
 

Fig. 16. Tunable cut-off frequency linear-phase high-pass filter using three-way complex 
heterodyne circuit 

Fig. 16a. Tunable high-pass filter ߱଴ = Ͳ (H(z)H(z)) Fig. 16b. Tunable high-pass filter ߱଴ =  8/ߨ

Fig. 16c. Tunable high-pass filter ߱଴ = Ͷ Fig. 16d. Tunable high-pass filter ߱଴/ߨ =  8/ߨ͵
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3.4 Tunable bandwidth band-pass filter 
To design a tunable bandwidth band-pass filter, the prototype filter must be a wide-band 
band-pass filter with the bandwidth equal to half the Nyquist Frequency.  Before calling the 
MatLab m-file n3wayhet, we initialize the input variables as follows: 

inp=1;npoints=1000;w0=0;a=1;b=firpm(64,[0 .25*.9 .25/.9 .75*.95 .75/.95 1], 
[0 0 1 1 0 0],[10 1 10]);scale=1;n3wayhet 

Figure 17 shows the design criteria for the prototype band-pass filter with bandwidth of /2 
that is needed to implement the tunable bandwidth band-pass filter.  The prototype band-

pass filter needs a bandwidth of /2.  The prototype filter must have one-half the pass-band 
ripple of the desired pass-band ripple and the same stop band attenuation as for the tunable 
bandwidth band-pass filter. 
Figure 18 shows the tunable bandwidth band-pass filter.  First, when ߱଴ = Ͳ we get the 
frequency response shown in Figure 18a which is the prototype filter convolved with itself 
(H(z)H(z)).  Thus we have over 80db attenuation in the stop band and the desired less that 

3db ripple in the pass-band.  The prototype filter is Band-Pass centered at /2 with 

bandwidth of /2 (125 to 375 on the x-axis).  Figure 18b shows the circuit with ߱଴ =   .ͳ͸/ߨ

This tunes the lower band edge to /2 - /4 + /16 = 5/16 (156.25 on the x-axis of Figure 

18b) and the upper band edge to /2 + /4 - /16 = 11/16 (343.75 on the x-axis of Figure 

18b).  Figure 18c shows the circuit with ߱଴ =  - This tunes the lower band edge to /2  .8/ߨ

/4 + /8 = 3/8 (187.5 on the x-axis of Figure 16c) and the upper band edge to /2 + /4 - 

/8 = 5/8  (312.5 on the x-axis in Figure 18c).    Figure 18d shows the circuit with ߱଴  ͳ͸.  This tunes the lower band edge to /2 - /4 + 3/16 = 7/16 (218.75 on the x-axis of/ߨ͵=

Figure 18d) and the upper band edge to /2 + /4 - 3/16 = 9/16 (281.25 on the x-axis of 
Figure 18d).  Notice that the attenuation of the tuned band-pass filters is over 40db which is 
the same stop-band attenuation as the prototype filter. All of these filters retain the linear-
phase property of the prototype filter that was designed using the Parks-McClellan 
algorithm. 
 
 

 

Fig. 17. Design criteria for prototype band-pass filter h(z) centered at /2 with bandwidth of 

/2 (band edges at /4 and 3/4) required to implement a tunable bandwidth band-pass 
filter using the three-way complex heterodyne circuit of figure 9. 
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Fig. 18. Tunable bandwidth linear-phase band-pass filter using three-way complex 
heterodyne circuit 

3.5 Tunable bandwidth band-stop filter 
To design a tunable bandwidth band-stop filter, the prototype filter must be a wide-band 

band-stop filter with the bandwidth equal to half the Nyquist Frequency. Before calling the 

MatLab m-file n3wayhet, we initialize the input variables as follows: 

inp=1;npoints=1000;w0=0;a=1;b=firpm(64,[0 .25*.9 .25/.9 .75*.95 .75/.95 1],[1 1 0 0 1 1], 
[1 10 1]);scale=1;n3wayhet 

Figure 19 shows the design criteria for the prototype band-stop filter with bandwidth of /2 

that is needed to implement the tunable bandwidth band-stop filter.  The prototype band-

stop filter needs a bandwidth of /2. The prototype filter must have one-half the pass-band 

ripple of the desired pass-band ripple and the same stop band attenuation as for the tunable 

bandwidth band-stop filter. 

Fig. 18a. Tunable bandwidth BP filter ߱଴ = Ͳ (H(z)H(z)) Fig. 18b. Tunable bandwidth BP filter ߱଴ =   8/ߨ

Fig. 18c. Tunable bandwidth BP filter ߱଴ = Ͷ      Fig. 18d. Tunable bandwidth BP filter ߱଴/ߨ =   8/ߨ͵

www.intechopen.com



 
Adaptive Filtering 380 

 

Fig. 19. Design criteria for prototype band-stop filter H(z) centered at /2 with bandwidth of 
/2 (band edges at /4 and 3/4) required to implement a tunable bandwidth band-stop 
filter using the three-way complex heterodyne circuit of Figure 9. 

 

Fig. 20. Tunable bandwidth linear-phase band-stop filter using three-way complex 
heterodyne circuit 

Fig. 20a. Tunable bandwidth BS filter ߱଴ = Ͳ (H(z)H(z)) Fig. 20b. Tunable bandwidth BS filter ߱଴ =   8/ߨ

Fig. 20c. Tunable bandwidth BS filter ߱଴ = Ͷ      Fig. 20d. Tunable bandwidth Bs filter ߱଴/ߨ =  8/ߨ͵
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Figure 20 shows the tunable bandwidth band-stop filter.  First, when ߱଴ = Ͳ we get the 
frequency response shown in Figure 20a which is the prototype filter convolved with itself 
(H(z)H(z)).  Thus we have over 80db attenuation in the stop band and the desired less that 3db 

ripple in the pass-band.  The prototype filter is Band-Stop centered at /2 with bandwidth of 

/2 (125 to 375 on the x-axis).  Figure 20b shows the circuit with ߱଴ =  ͳ͸.  This tunes the/ߨ

lower band edge to /2 - /4 + /16 = 5/16 (156.25 on the x-axis of Figure 18b) and the 

upper band edge to /2 + /4 - /16 = 11/16 (343.75 on the x-axis of Figure 20b).  Figure 20c 

shows the circuit with ߱଴ =  This tunes the lower band edge to /2 - /4 + /8 = 3/8  .8/ߨ

(187.5 on the x-axis of Figure 20c) and the upper band edge to /2 + /4 - /8 = 5/8  (312.5 
on the x-axis in Figure 20c).    Figure 20d shows the circuit with ߱଴ =  ͳ͸.  This tunes the/ߨ͵

lower band edge to /2 - /4 + 3/16 = 7/16 (218.75 on the x-axis of Figure 20d) and the 

upper band edge to /2 + /4 - 3/16 = 9/16 (281.25 on the x-axis of Figure 20d).  Notice that 
the attenuation of the tuned band-stop filters is over 40db which is the same stop-band 
attenuation as the prototype filter. All of these filters retain the linear-phase property of the 
prototype filter that was designed using the Parks-McClellan algorithm. 

3.6 Summary of three-way tunable complex heterodyne filter (Azam’s technique) 
The Three-Way Complex Heterodyne Technique is capable of designing tunable center 
frequency band-stop and notch filter, tunable cut-off frequency low-pass and high-pass 
filters and tunable bandwidth band-pass and band-stop filters.  The technique is not able to 
implement tunable center-frequency band-pass filters, but these are easily implementable by 
the simple cosine heterodyne circuit of Figure 2. 
Figure 9 is the basic Three-Way Complex Heterodyne Circuit used to implement these filters 
in software or hardware.  A very nice FPGA implementation of this circuit has been 
reported in the literature in a paper that won the Myril B. Reed Best Paper Award at the 
2000 IEEE International Midwest Symposium on Circuits and Systems (Azam et. al., 2000).  
For further information on this paper and the award, visit the MWSCAS web page at 
http://mwscas.org.  Table 1 provides the design details for the five possible tunable filters.  
Sections 3.1 through 3.5 provide examples of each of the five tunable filters from Table 1.  In 
section 6 of this chapter we shall show how to make these tunable filters adaptive so that 
they can automatically very center frequency, cut-off frequency or bandwidth to adapt to 
various signal processing needs. 

4. Bottom-top tunable complex heterodyne filters (Cho’s technique) 

The Three-Way Tunable Complex Heterodyne Circuit of section 3 implemented by the 
circuit of Figure 9 is a special case of a more general technique referred to as the Bottom-Top 
Tunable Complex Heterodyne Filter Technique. Figure 21 below shows the complete circuit 
for the Bottom-Top Tunable Complex Heterodyne Filter: 
 

 

Fig. 21. Bottom-top tunable complex heterodyne circuit (Cho’s technique) 
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Comparing the circuit of Figure 21 to the circuit of Figure 9, we see that the circuit of Figure 
21 has one additional fixed filter block Hz(z) between the input and the first heterodyne 
stage.  This block allows for fixed signal processing that is not subject to the rotations of the 
other two blocks.  Otherwise, this is the same circuit as Figure 9.  However, the addition of 
this extra block gives us the flexibility to do many more signal processing operations. 
We do not have sufficient room in this chapter to explore all the possibilities of the circuit of 
Figure 9, so we shall limit ourselves to three:  (1) Tunable filters with at least some real poles 
and zeros, (2) Tunable filters with poles and zeros clustered together on the unit circle, and 
(3) Tunable filters realized with a Nyquist filter that allows the elimination of the last 
heterodyne stage.  This third option is so important that we will cover it as a separate topic 
in section 5. The first two are covered here in section 4.1 and 4.2 respectively. 

4.1 Tunable filters with real poles and zeros 
When the prototype filter has some of its poles and zeros located on the real axis, it is often 
useful to remove these poles and zeros from the rotation process and allow them to remain 
on the real axis.  An example of this is the design of a tunable cut-off frequency low-pass (or 
high-pass) filter.  Such filters typically have some poles and zeros on the real axis.  An 
excellent example of this is a Butterworth Low-Pass Filter.  An nth order Butterworth Filter 
has n zeros located at -1 on the real axis.  If we wish to design a tunable cut-off frequency 
Butterworth Low-Pass Filter, the prototype filter will have a cut-off frequency at /2.  The 
only other specification for a Butterworth Filter is the order of the filter.  Here we pick an 
11th order Butterworth Low-Pass Filter with cut-off frequency of /2: 

[b,a]=butter(11,0.5); 

To design a tunable cut-off frequency low-pass filter using the circuit of Figure 21, we will 
divide the poles and zeros of the prototype filter between the three transfer function boxes 
such that Hz(z) contains all the real poles and zeros, HB(z) contains all the complex poles and 
zeros with negative imaginary parts (those located in the bottom of the z-plane) and HT(z) 
contains all the complex poles and zeros with positive imaginary parts (those located in the 
top of the z-plane).  The following MatLab m-file accomplishes this: 
 

% BOTTOMTOP 

% Extracts the bottom and top poles and zeros from a filter 

function 

% INPUT:  [b,a] = filter coefficients 

%         delta = maximum size of imaginary part to consider 

it zero 

% OUTPUT: 

%         [bz,az] = real poles and zeros 

%         [bb,ab] = bottom poles and zeros 

%         [bt,at] = top poles and zeros 

clear rb rbz rbt rbb ra raz rat rab bz bt bb az at ab 

rb=roots(b); 

lb=length(b)-1; 

% find real zeros 

rbz=1; 

nbz=0; 

nbt=0; 

nbb=0; 

for index=1:lb 
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        if abs(imag(rb(index)))<delta 

        nbz=nbz+1; 

        rbz(nbz,1)=real(rb(index)); 

% find top zero 

    elseif imag(rb(index))>0 

        nbt=nbt+1; 

        rbt(nbt,1)=rb(index); 

% find bottom zero 

     else 

        nbb=nbb+1; 

        rbb(nbb,1)=rb(index); 

    end 

end 

ra=roots(a); 

la=length(a)-1; 

% find real poles 

raz=1; 

naz=0; 

nat=0; 

nab=0; 

for index=1:la 

    if abs(imag(ra(index)))<delta 

        naz=naz+1; 

        raz(naz,1)=real(ra(index)); 

% find top zero 

    elseif imag(ra(index))>0 

        nat=nat+1; 

        rat(nat,1)=ra(index); 

% find bottom zero 

    else 

        nab=nab+1; 

        rab(nab,1)=ra(index); 

    end 

end 

if nbz==0 

    bz=1; 

else 

    bz=poly(rbz); 

end 

if nbt==0 

    bt=1; 

else 

    bt=poly(rbt); 

end 

if nbb==0 

    bb=1; 

else 

    bb=poly(rbb); 

end 

if naz==0 

    az=1; 

else 

    az=poly(raz); 
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end 

if nat==0 

    at=1; 
else 

    at=poly(rat); 

end 

if nab==0 

    ab=1; 

else 

    ab=poly(rab); 

end 
 

Figure 22 shows the results of applying the above m-file to the prototype 11th order 

Butterworth Low-Pass Filter with cut-off frequency at /2. 
 

 
Fig. 22a. Pole-zero plot of H (z)      Fig. 22b. Pole-zero plot of Hz(z)                              

    (11
th

 order butterworth LP)              (real poles and zeros) 

 
 

Fig. 22. Illustration of the result of the Matlab m-file dividing the poles and zeros in the 

prototype 11th order butterworth low-pass filter designed with a cut-off frequency of /2.  
The resulting transfer functions Hz(z), HB(z) and HT(z) are then implanted in the appropriate 
boxes in the circuit of Figure 21. 

   Fig. 22c.  Pole-Zero Plot of H
 B

(z)                           Fig. 22b.  Pole-Zero Plot of H
T
(z) 

              (bottom poles and zeros).         (top poles and zeros)  
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To simulate the Bottom-Top Tunable Complex Heterodyne Filter of Figure 21, we make use 
of the following MatLab m-file: 
 

% CMPLXHET 

% Implements the Complex Heterodyne Filter 

% INPUTS: 

% Set the following inputs before calling 3WAYHET: 

%      inp = 0 (provide input file inpf) 

%          = 1 (impulse response) 

%      npoints = number of points in input 

%      w0 = heterodyne frequency 

%      [bz az] = coefficients of filter Hz(z) 

%      [bb ab] = coefficients of filter Hb(z) 

%      [bt at] = coefficients of filter Ht(z) 

%      scale = 0 (do not scale the output) 

%            = 1 (scale the output to zero db) 

% 

% OUTPUTS:  ydb = frequency response of the filter 

%           hdb, sdb, udb, vdb, wdb (intermediate outputs) 

clear y ydb hdb s sdb u udb v vdb w wdb h f 

if inp==1 

    for index=1:npoints 

        inpf(index)=0; 

    end 

    inpf(1)=1; 

end 

r=filter(bz,az,inpf); 

for index=1:npoints 

    s(index)=r(index)*exp(1i*w0*(index-1)); 

end 

u=filter(bb,ab,s); 

for index=1:npoints 

    v(index)=u(index)*exp(-2*1i*w0*(index-1)); 

end 

w=filter(bt,at,v); 

for index=1:npoints 

    y(index)=w(index)*exp(1i*w0*(index-1)); 

end 

[h,f]=freqz(b,a,npoints,'whole'); 

hdb=20*log10(abs(h)); 

rdb=20*log10(abs(fft(r))); 

sdb=20*log10(abs(fft(s))); 

udb=20*log10(abs(fft(u))); 

vdb=20*log10(abs(fft(v))); 

wdb=20*log10(abs(fft(w))); 

ydb=20*log10(abs(fft(y))); 

if scale==1 

    ydbmax=max(ydb) 

    ydb=ydb-ydbmax; 

end 

plot(ydb,'k') 
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Figure 23 shows the results of this simulation for the 11th order Butterworth Low Pass 

prototype filter with cut-off frequency of /2 (250).  Figure 23a shows the result for ω0 = 0.  
This is the prototype filter.  Unlike the Three-Way Tunable Complex Heterodyne 
Technique of the previous section, we do not need to design for half the desired pass-
band ripple.  We can design for exactly the desired properties of the tunable filter.   

Figure 23b shows the result for ω0 = -/8.  This subtracts /8 from the cut-off frequency of 

/2 moving the cut-off frequency to 3/8 (187.5).   Figure 23c shows the result for  

ω0 = -/4.  This subtracts /4 from the cut-off frequency of /2 moving the cut-off 

frequency to /4 (125).  Figure 23d shows the result for ω0 = -3/8.  This subtracts 3/8 

from the cut-off frequency of /2 moving the cut-off frequency to /8 (62.5).  The 
horizontal line on each of the plots indicates the 3db point for the filter.  While there is 
some peaking in the pass-band as the filter is tuned, it is well within the 3db tolerance of 
the pass-band. 
 
 

 

Fig. 23. Implementation of a tunable cut-off frequency low-pass filter using the bottom-top 
technique of Figure 21. 

Fig. 23a. Tunable low-pass with ω
0
 = 0                Fig. 23b. Tunable low-pass with ω

0
 = -/8   

Fig. 23c. Tunable low-pass with ω
0
 = -/4    Fig. 23d. Tunable low-pass with ω

0
 = -3/8   
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4.2 Tunable filters with poles and zeros clustered together on the unit circle 
One of the most powerful applications of the Bottom-Top Tunable Complex Heterodyne 
Technique is its ability to implement the very important tunable center-frequency band-stop 
filter.  Such filters, when made adaptive using the techniques of section 6 of this chapter, are 
very important in the design of adaptive narrow-band noise attenuation circuits.  The 
Bottom-Top structure of Figure 21 is particularly well suited to the implementation of such 
filters using any of the designs that result in a cluster of poles and zeros on the unit circle.  

This is best accomplished by the design of narrow-band notch filters centered at /2.  All of 
the IIR design techniques work well for this case including Butterworth, Chebyshev, Inverse 
Chebyshev and Elliptical Filters.   
As an example, we design a Butterworth 5th order band-stop filter and tune it from DC to 
the Nyquist frequency.  In MatLab we use [b,a]=butter(5,[0.455 0.545],’stop’); to obtain the 
coefficients for the prototype filter.  We then use the m-file BOTTOMTOP as before to split 
the poles and zeros into the proper places in the circuit of Figure 21.  Finally, we run the 
MatLab m-file CMPLXHET to obtain the results shown in Figures 24 and 25.  
 

 
 
 

 
 

Fig. 24. Distribution of poles and zeros for 5th order butterworth band-stop filter centered at 
/2.  Notice how the poles and zeros are clustered on the unit circle.  This is the ideal case of 
use of the bottom-top tunable complex heterodyne filter circuit of Figure 21. 

  Fig. 24a. Pole-zero plot of prototype band-stop filter               Fig. 24b. Pole zero plot of H
z
(z) 

                (real poles and zeros) 

Fig. 24c. Pole-zero plot of H
B
(z)       Fig. 24d. Pole zero plot of H

T
(z)  

          (bottom poles & zeros)                       (top poles & zeros) 
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Figure 24 shows the poles and zeros clustered in the z-plane on the unit circle.  Figure 24a. 
shows the poles and zeros of the prototype 5th order Butterworth band-stop filter centered at 

/2 designed by [b,a]=butter(5,[0.455 0.545],’stop’);.  Figure 24b shows the poles and zeros 
assigned to Hz(z) by the MatLab m-file BOTTOMTOP.  Similarly, Figures 24c and 24d show the 
poles and zeros assigned by the MatLab m-file BOTTOMTOP to HB(z) and HT(z) respectively.   
Figure 25 shows the MatLab simulation of the Bottom-Top Tunable Complex Heterodyne 
Filter as implemented by the circuit of Figure 21 in the MatLab m-file CMPLXHET.  The 
band-stop center frequency is fully tunable from DC to the Nyquist frequency.  The tuned 
band-stop filter is identical to the prototype band-stop filter.  Furthermore, this works for 
any band-stop design with clustered poles and zeros such as Chebyshev, Inverse Chebyshev 
and Elliptical designs.  In section 6 we shall see how to make these filters adaptive so that 
they can automatically zero in on narrow-band interference and attenuate that interference 

very effectively.  Figure 25a is for ω0 = 0, Figure 25b is for ω0 = -7/16, Figure 25c is for ω0 = -

3/16 and Figure 25d is for ω0 = 5/16.  Note the full tenability form DC to Nyquist.   
 

 
 

 

Fig. 25. Butterworth tunable band-stop filter implemented using bottom-top tunable 
complex heterodyne technique. Note that the band-stop filter is fully tunable from DC to the 
Nyquist frequency. 

Fig. 25a.  Band Stop Tuned to /2 (ω
0
 = 0)        Fig. 25b.  Band Stop Tuned to /16 (ω

0
 = -7/16) 

 Fig. 25c.  Band Stop Tuned to 5/16 (ω
0
 = -3/16)     Fig. 25b.  Band Stop Tuned to 13/16 (ω

0
 = 5/16) 
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4.3 Summary of bottom-top tunable complex heterodyne filter (Cho’s technique) 
The Bottom-Top  Complex Heterodyne Technique is the most flexible of the heterodyne 

filter circuits allowing the design of tunable center frequency band-pass, band-stop and 

notch filter, tunable cut-off frequency low-pass and high-pass filters and tunable bandwidth 

band-pass and band-stop filters.  However, the technique is particularly useful in designing 

full tunable band-stop filters with characteristics identical to the prototype filter but tunable 

from DC to the Nyquist frequency. 

Figure 21 is the basic Bottom-Top Complex Heterodyne Circuit used to implement these 

filters in software or hardware.  A practical implementation of this circuit has been reported 

in the literature in a paper appearing in the proceedings of the IEEE International 

Symposium on Circuit and Systems (Cho, et. al., 2005).  The Bottom-Top Complex 

Heterodyne band-stop filters reported in this paper are aimed at narrow-band attenuation in 

spread-spectrum radio receivers.  In section 6 of this chapter we shall show how to make 

these tunable filters adaptive so that they can automatically very center frequency, cut-off 

frequency or bandwidth to adapt to various signal processing needs. 

5. Nyquist tunable complex heterodyne filter technique (Soderstrand’s 
technique) 

The final technique for designing Tunable Complex Heterodyne Filters makes use of a 
modified version of the circuit in Figure 21 shown in Figure 26. 
 

 

Fig. 26. Nyquist tunable complex heterodyne filter circuit (Soderstrand’s technique) 

In the circuit of Figure 26 the signal is first passed through HNQ(z), a complex-coefficient 

digital filter that removes all frequencies from the bottom half of the unit circle in z-plane.  

Thus this filter removes the negative frequencies or equivalently the frequencies above the 

Nyquist frequency.  Such a filter is easily designed in MatLab by designing a low-pass filter 

with cut-off frequency of /2 and then rotating it in the z-plane so as to pass positive 

frequencies (frequencies above the real axis in the z-plane) and to attenuate negative 

frequencies (frequencies below the unit circle in the z-plane). 

5.1 Design of the Nyquist Filter HNQ(z) 
The Nyquist Filter will normally be the same filter regardless of what tunable filter we are 

realizing. Choice of the Nyquist Filter depends primarily on hardware or software 

considerations for the target application.  If phase is not critical, an IIR Nyquist Filter can be 

designed using MatLab functions BUTTER, CHEBY, CHEBY2 or ELLIP. However, in many 

applications phase is of great importance and the Nyquist Filter needs to be designed using 

the Parks McClellan linear phase technique implemented in MatLab with FIRPM. For our 
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examples we shall assume that we need a Nyquist Filter with 60db attenuation of the 

negative frequencies and no more than 1db ripple in the pass-band (positive frequencies). 

We shall choose a 64-tap filter, although excellent results can be obtained with many fewer 

taps. 

The first step in the design of the Nyquist Filter is to use FIRPM to design a low-pass filter 

with cut-off frequency at /2 with the desired specifications (60db stop-band attenuation 

and 1db ripple in the pass-band, and 3db attenuation at DC): 

alp=1;blp=firpm(64,[0 0.45 0.55 1],[1 1 0 0],[1 2]); 

Figure 27a shows the pole-zero plot of this low-pass filter and Figure 27c shows the 

frequency response. Note the  attenuation at DC is 5db rather than the desired 3db. We 

shall see this show up in the tunable filter later. In practice we would assure 3db – but we 

have deliberately left it at 5db to show the effect. We then use MatLab m-file NQFILTER 

to rotate the low-pass filter by 90 degrees in the z-plane to create the Nyquist Filter whose 

pole-zero plot is shown in Figure 27b and frequency response in Figure 27d. 

 
 
 
 

% NQFILTER 

% This script rotates a low-pass filter with a 

% cut-off frequency at 0.5 (pi/2) by phi radians 

% in the z-plane to create a complex-coefficient 

% digital filter that removes the frequencies in 

% the lower half of the z-plane (phi = pi/2). 

% INPUTS:  [blp,alp] = lowpass filter with 0.5 cut-off 

%           phi =  (suggest pi/2) 

% OUTPUTS: 

%          [bnq,anq] = the complex-coefficents of 

%                      the Nyquist filter 

clear nb na bnq anq 

nb = length(blp); 

na = length(alp); 

if nb > 1 

    for index=1:nb 

        bnq(index)=blp(index)*exp(1i*(index-1)*(phi)); 

    end 

else 

    bnq = 1; 

end 

if na > 1 

    for index=1:na 

        anq(index)=alp(index)*exp(1i*(index-1)*(phi)); 

    end 

else 

    anq = 1; 

end 
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Fig. 27. Design of a nyquist filter by rotating a 64-tap parks McClellan linear-phase filter 

with cut-off frequency at /2 by 90 degrees in the z-plane to obtain a filter that attenuates all 
negative frequencies. 

5.2 Novel technique for tuning a complex heterodyne prototype filter (Soderstrand’s 
technique) 
Once the negative frequencies have been removed from the input signal, the problem of 
tuning the filter becomes much simpler.  Any prototype filter H(z) may be rotated from its 
center at DC to its center at ω0 through the standard rotation technique of Figure 7.  This is 
exactly what is done in the Nyquist Tunable Complex Heterodyne Circuit of Figure 26.  The 
potential problem, however, is that we obtain a filter with all the poles and zeros in the 
upper half of the z-plane and none in the lower half.  Hence the output, y(n), will consist of 
complex numbers.  The novelty of Soderstrand’s Technique is that the mirror image poles 
and zeros needed in the bottom half of the z-plane can be easily created by simply taking the 
real part of the output y(n).  Since we only need the real part of the output, this also 
simplifies the hardware because we can use the simplified circuit of Figure 6d in the last 
stage of the circuit of Figure 26.  The simulation of the circuit of Figure 26 is accomplished in 
MatLab with the m-file NQHET: 

Fig. 27a. Pole-zero plot of low-pass filter                   Fig. 27b. Pole-zero plot of nyquist filter 

Fig. 27c. Frequency response plot of low-pass filter    Fig. 27d. Frequency response plot of nyquist filter 

www.intechopen.com



 
Adaptive Filtering 392 

% NQHET  (Lab book p. 129 12/11/2010) 

% Function to implement Cho complex heterodyne filter 

% Set the following inputs before calling NQHET: 

%      inp = 0 (provide input file inpf) 

%          = 1 (impulse response) 

%      npoints = number of points in input 

%      w0 = heterodyne frequency 

%      [bnq,anq] = coefficients of the Nyquist Filter 

%      [b,a] = coefficients of filter H(z) 

% 

% OUTPUTS:  hdb = frequency response of the filter 

%           udb, vdb, wdb, ydb 

clear y ydb yout hdb u udb v vdb w wdb 

if inp==1 

    for index=1:npoints 

        inpf(index)=0; 

    end 

    inpf(1)=1; 

end 

u=filter(bnq,anq,inpf); 

for index=1:npoints 

    v(index)=u(index)*exp(-1i*w0*(index-1)); 

end 

w=filter(b,a,v); 

for index=1:npoints 

    y(index)=w(index)*exp(1i*w0*(index-1)); 

end 

udb=20*log10(abs(fft(u))); 

vdb=20*log10(abs(fft(v))); 

wdb=20*log10(abs(fft(w))); 

ydb=20*log10(abs(fft(y))); 

yout=2*real(y); 

hdb=20*log10(abs(fft(yout))); 

plot(hdb,'k') 

5.3 Example design of nyquist tunable complex heterodyne filter using circuit of 
Figure 26 (Soderstrand’s technique) 
The Nyquist Technique is very general and can rotate any type filter, IIR of FIR, low-pass, 

high-pass, band-pass or band-stop.  However, one of the most important uses of the 

Nyquist Complex Heterodyne Filter is the design of a tunable band-stop filter that can be 

used to attenuate narrow-band interference in spread-spectrum receivers.  To design 

tunable stop-band filters, the prototype filter, H(z), must be a high-pass filter with cut-off 

frequency set to one-half the desired bandwidth of the desired tunable band-stop filter. 

The high-pass prototype filter should have the same stop-band attenuation and pass-band 

ripple as the desired tunable band-stop filter as all characteristics of the prototype filter 

are maintained in the tunable filter.  The MatLab instruction to design the prototype high-

pass filter is  

a=1;b=firpm(64,[0 0.05 0.15 1],[0 0 1 1],[1 30]); 

www.intechopen.com



 
Adaptive Heterodyne Filters 393 

 

 
 

Fig. 28. Example of nyquist tunable complex heterodyne filter (Soderstrand’s technique) for 
a tunable band-stop filter with 40db attenuation in the stop band, less than .1 db ripple in 

the pass-band and bandwidth /10. 

Figure 28 shows the MatLab simulation of the Nyquist Tunable Complex Heterodyne Filter 

of the circuit of Figure 26. This is fully tunable from DC to the Nyquist frequency.  For 

example, to get the plot of Figure 28d, we use: 

inp=1;npoints=1000;w0=3*pi/4;nqhet; 

Notice the dip at DC and the Nyquist Frequency. This is due to the Nyquist Filter not 

having 3db attenuation at DC. We deliberately allowed the attenuation to be 5db to 

demonstrate the effect of not having 3db attenuation at DC in the Nyquist filter.  However, 

the effect is negligible only causing a ripple of less than 1db.  If the attenuation were greater, 

the dip would be greater.  If the attenuation is less than 3db, we would see a upward bulge 

at DC and the Nyquist frequency in Figure 27.  The tunable filter has the same stop-band 

Fig. 28a. Nyquist tunable band-stop ω
0
 = 0      Fig. 28b. Nyquist tunable band-stop ω

0
 = /4  

Fig. 28c. Nyquist tunable band-stop ω
0
 = /2  Fig. 28d. Nyquist tunable band-stop ω

0
 = 3/4  
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attenuation and pass-band ripple as the prototype filter except for this added ripple due to 

the Nyquist filter.  The bandwidth of the stop-band is twice the bandwidth of the prototype 

filter. 

5.4 Summary of nyquist tunable complex heterodyne filter (Sodestrand’s technique) 
The Nyquist Complex Heterodyne Technique has the advantage of using the least hardware 
or software of any of the complex heterodyne filter techniques.  The technique is particularly 
useful in designing full tunable band-stop filters with characteristics identical to the 
prototype filter but tunable from DC to the Nyquist frequency. 
Figure 26 is the basic Nyquist Complex Heterodyne Circuit used to implement these filters 

in software or hardware.  A practical implementation of this circuit has been reported in the 

literature in a paper appearing in the proceedings of the International System on a Chip 

Conference (Soderstrand & Cho, 2009).  The Nyquist Complex Heterodyne band-stop filters 

reported in this paper are aimed at narrow-band attenuation in spread-spectrum radio 

receivers.  In section 6 of this chapter we shall show how to make these tunable filters 

adaptive so that they can automatically very center frequency, cut-off frequency or 

bandwidth to adapt to various signal processing needs. 

6. Making the tunable filters adaptive 

While tunable filters may be of interest in themselves, the primary interest in Tunable 

Complex Heterodyne Filters is to make them into Adaptive Complex Heterodyne Filters 

that can automatically detect interference and adapt the tunable filter to the correct place to 

attenuate the interference. In this section we shall look at how to adapt tunable complex 

heterodyne band-stop or notch filters to attenuate narrow-band noise in wide-band 

communication systems such as Frequency Hopping (FHSS) and Direct Sequence Spread 

Spectrum (DSSS) receivers.  This approach is based on a series of papers presented at 

international conferences (Nelson, et. al., 1997, Soderstrand 2006, 2007, 2010a, 2010b) and 

two patents (White, et.al. 1999, White, et.al. 2003). 

6.1 Narrow-band interference detection circuit 
Figure 29 shows the circuit used to make the tunable heterodyne filters into adaptive 
heterodyne filters.  The input x(n) is simultaneously provided to an Attenuation Frequency  
 

 

Fig. 29. Narrow-band interference detection circuit to turn tunable complex heterodyne 
filters into adaptive complex heterodyne filters. 
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Detection Circuit and to the Tunable Complex Heterodyne Filter. The Attenuation 
Frequency Detection Circuit (shown in inset) is a simple second-order FIR LMS adaptive 
notch filter.  Because the detection circuit is FIR it will identify the interference without bias. 
Furthermore, this simple second-order FIR filter is known to be robust and to converge 
quickly on the correct frequency.  However, the simple second-order FIR filter does not 
provide an adequate attenuator for the narrow-band interference because it attenuates too 
much of the desired signal.  Therefore we only use the detection circuit to determine the 

value of  needed to generate the complex heterodyne tuning signal ݁ି௝ఠబ௡.  This value of  
is fed to a numerically controlled complex oscillator that produces the complex heterodyne 

signal ݁ି௝ఠబ௡.  

6.2 Comparison of adaptive three-way complex heterodyne band-stop filter to 
adaptive gray markel lattice 
To illustrate the performance of adaptive complex heterodyne filters, we shall set up a 
simulation in MatLab to compare the performance of the Three-Way Complex Heterodyne 
Filter to the very popular Gray-Markel Lattice (Gray, 1973, Petraglia, 1994).  Figure 30 shows 
the simulation test setup. 
 

 

Fig. 30. Test setup for simulation in MatLab of a comparison of adaptive complex 
heterodyne filters to adaptive gray-markel lattice filters. 

Figure 31 shows plots of the energy leakage during a transition of the narrow-band 

interference from one frequency to another. Both the Gray Markel and the Complex 

Heterodyne Adaptive Filters track the interference very well. However, in large 

transitions such as those shown in Figure 31a (transition from frequency /24 to 11/24) 

and Figure 31b (transition from /12 to 5/12) the Adaptive Complex Heterodyne Filter 

provides more attenuation of the narrow-band interference than the Gary-Markel 

Adaptive Filter. In the case of Figure 31a, the difference is about 20db and in the case of 

Figure 31b it is only about 10db.  However, these represent significant differences in the 

ability to attenuate a fast moving signal. On the smaller transitions of Figure 31c 

(transition from /8 to 3/8) and Figure 31d. (transition from /4 to /8) there is little 

difference between the two filters (although the Gray-Markel adaptive filter is a bit 

smoother in the transition). The point of this simulation is to show that Adaptive 

Heterodyne Filters offer an excellent alternative to currently used adaptive filters such as 

the Gray-Markel adaptive filter. 
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Fig. 31. Comparison of gray-markel and complex heterodyne adaptive filters while tracking 
a moving signal. 

7. Summary and conclusions 

In this chapter we have explored four techniques for designing tunable filters using a 
heterodyne signal as the tuning agent: 
1. The Simple Tunable Heterodyne Filter of Figure 2 requires only two real heterodyne 

operations, but is limited to tuning the center frequency of narrow-band band-pass 

filters.  However, this is the preferred technique for designing tunable band-pass filters 

unless the bandwidth of the filter is too large to accommodate the requirements of 

Figure 2. 

2. The Three-Way Tunable Complex Heterodyne Filter (Azam’s Technique) of Figure 9 

requires three complex heterodyne operations, but is able to implement tunable center-

frequency band-stop and notch filters, tunable cut-off low-pass and high-pass filter, and 

tunable bandwidth band-stop and notch filters.  However, it is not suitable for tunable 

center frequency band-pass filters.  

Fig. 31c. Transition from /8 to 3/8                       Fig. 31d. Transition from  /4 to  /8 

Fig. 31a. Transition from /24 to 11/24           Fig. 31b. Transition from  /12 to  5/12 
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3. The Bottom-Top Tunable Complex Heterodyne Filter (Cho’s Technique) of Figure 21 
has all the other tunable heterodyne filters as special cases.  This is the most flexible 
tunable heterodyne filter, but also requires the most hardware. 

4. The Nyquist Tunable Complex Heterodyne Filter (Soderstrand’s Technique) of 
Figure 26 is ideally suited for implanting center-frequency tunable filters.  Center-
frequency tunable Band-pass and band-stop filters are most suited to this technique.   
This technique is able to implement full tunable filters from DC to the Nyquist 
frequency. 

By matching the proper technique above to the particular application it is possible to design 
extremely efficient tunable filters and then make use of techniques like the one outlined in 
section 6 to make those tunable filters adaptive.  The example of section 6 is typical of what 
can be accomplished using these new tunable heterodyne filters. 
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configuration of the system and, in particular, the position where the adaptive processor is placed generate
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cancellation of interference, etc., which are very important in many disciplines such as control systems,
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these environments of multiple input/output, variant-time behaviors, and long and complex transfer functions

effectively, but fundamentally they still have to evolve. This book is a demonstration of this and a small

illustration of everything that is to come.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Michael A. Soderstrand (2011). Adaptive Heterodyne Filters, Adaptive Filtering, Dr Lino Garcia (Ed.), ISBN:

978-953-307-158-9, InTech, Available from: http://www.intechopen.com/books/adaptive-filtering/adaptive-

heterodyne-filters



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


