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1. Introduction

Adaptive filters are self-designing systems for information extraction which rely for their
operation on a recursive algorithm (Haykin, 2001). They find application in environments
where the optimum filter cannot be applied because of lack of knowledge about the
signal characteristics and/or the data to be processed. This a priori knowledge required
for the design of the optimum filter is commonly based on stochastic signal models,
which traditionally are stationary. However, the parameters of many signals found in
communication, radar, telemetry and many other fields can be represented as periodic
functions of time (Gardner, 1991). When this occurs, stationary signal models cannot
exploit the signal periodicities, while cyclostationary models become more suitable since they
represent more reliably the statistical signal properties.1

Firstly, let us review some of the key points of cyclostationary signals, while introducing some
definitions that will be used throughout this chapter. We have said that most of signals used
in many fields such as communication, radar, or telemetry exhibit statistical parameters which
vary periodically with time. The periodicities of these parameters are related to the parameters
of the signal modulation, such as the carrier frequency or the chip rate among others (Gardner,
1986; 1994). Let the second-order2 auto-correlation function of a zero-mean stochastic signal
be defined as:

Rxx(t, λ) � E {x(t) x∗(λ)} (1)

A signal is said to be (second-order) cyclostationary if, and only if, its (second-order)
auto-correlation function is a periodic function of time, namely with period T. Therefore,
it can be expanded in a Fourier series (Giannakis, 1998):

Rxx (t, λ) =
∞

∑
p=−∞

R
αp
xx(t − λ) ej2παpλ (2)

where αp = p/T are called the cycle frequencies of x(t), and the set of all the cycle frequencies
is referred to as the cyclic spectrum. The Fourier coefficients of the expansion in (2) are named

1 Cyclostationary signal models are a more general class of stochastic processes which comprise the
stationary ones. Therefore, they always represent the statistical properties of the signal at least as well
as the stationary ones.

2 Since the optimality criterion used in this chapter is based on the Mean Squared Error (MSE), only the
second-order statistical moments are of interest to us. The first-order statistical moment (i.e. the mean)
is zero by assumption. Throughout this chapter, the second-order cyclostationarity is exploited. For
brevity, hereinafter the cyclostationarity and correlation functions are assumed to be of second order,
even without explicit mention.
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2 Will-be-set-by-IN-TECH

cyclic auto-correlation functions and are computed as:

R
αp
xx(τ) �

1

T

∫ T

0
Rxx (t + τ, t) e−j 2π

T pt dt (3)

In practice, the signal periodicities are often incommensurable with each other, which yields
that the auto-correlation function in (1) is not periodic, but an almost-periodic function of time.
In this general case (in the sense that periodic functions are a particular case of almost-periodic
ones), the signal is said to be almost-cyclostationary, and its auto-correlation function allows
its expansion as a generalized Fourier series:

Rxx (t, λ) = ∑
αp∈Axx

R
αp
xx(t − λ) ej2παpλ (4)

where the set Axx stands for the cyclic spectrum of x(t), and is generally composed of the sum
and difference of integer multiples of the signal periodicities (Gardner, 1987; Gardner et al.,
1987; Napolitano & Spooner, 2001). Additionally, the definition of the cyclic auto-correlation
functions must be changed accordingly:

Rα
xx(τ) � lim

T→∞

1

2T

∫ T

−T
Rxx (t + τ, t) e−j2παt dt (5)

One of the most important properties of almost-cyclostationary signals concerns the existence
of correlation between their spectral components. The periodicity of the auto-correlation
function turns into spectral correlation when it is transformed to the frequency domain. As a
result, almost-cyclostationarity and spectral correlation are related in such a way that a signal
exhibits almost-cyclostationary properties if, and only if, it exhibits spectral correlation too.
Let X∆ f (t, f ) be the spectral component of x(t), around time t and frequency f , and with
spectral bandwidth ∆ f :

X∆ f (t, f ) =
∫ t+ 1

2∆ f

t− 1
2∆ f

x(u) e−j2π f u du (6)

The spectral correlation function of the signal x(t) is defined as:

Sα
xx( f ) � lim

∆ f→0
∆ f lim

T→∞

1

2T

∫ T

−T
E
{

X∆ f (t, f ) X∗
∆ f (t, f − α)

}
dt (7)

which represents the time-averaged correlation between two spectral components centered
at frequencies f and f − α, as their bandwidth tends to zero. It can be demonstrated
that the spectral correlation function matches de Fourier transform of the cyclic correlation
functions (Gardner, 1986), that is:

Sα
xx( f ) =

∫ ∞

−∞
Rα

xx(τ) e−j2π f τ dτ (8)

where the inherent relationship between almost-cyclostationarity and spectral correlation
is fully revealed. Intuitively, Eq. (8) means that the spectral components of almost-
cyclostationary signals are correlated with other spectral components which are spectrally
separated at the periodicities of their correlation function, i.e. their cyclic spectrum. For this
reason the cycle frequency is also known as spectral separation (Gardner, 1991). Note that,
at cycle frequency zero, the cyclic auto-correlation function in (5) represents the stationary
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Adaptive-FRESH Filtering 3

(or time-averaged) part of the nonstationary auto-correlation function in (3). Therefore,
it is straightforward from (8) that the spectral correlation function matches the Power
Spectral Density (PSD) at α = 0, and also represents the auto-correlation of the signal spectral
components, which is indicated by (7).
The key result from the above is that, since almost-cyclostationary signals exhibit spectral
correlation, a single spectral component can be restored not only from itself, but also from
other components which are spectrally separated from it as indicated by the cyclic spectrum
of the signal. It is clear that a simple Linear Time-Invariant (LTI) filter cannot achieve this
spectral restoration, but intuition says that a kind of filter which incorporates frequency shifts
within its structure could. Contrary to optimal linear filtering of stationary signals, which
results in time-invariant filters, the optimal linear filters of almost-cyclostationary signals
are Linear Almost-Periodically Time-Variant (LAPTV) filters (also known as poly-periodic
filters (Chevalier & Maurice, 1997)). This optimality can be understood in the sense of
Signal-to-Noise Ratio (SNR) maximisation or in the sense of Minimum Mean Squared Error
(MMSE, the one used in this chapter), where the optimal LAPTV filter may differ depending
on the criterion used. Therefore, LAPTV filters find application in many signal processing
areas such as signal estimation, interference rejection, channel equalization, STAP (Space-Time
Adaptive Processing), or watermarking, among others (see (Gardner, 1994) and references
therein, or more recently in (Adlard et al., 1999; Chen & Liang, 2010; Chevalier & Blin,
2007; Chevalier & Maurice, 1997; Chevalier & Pipon, 2006; Gameiro, 2000; Gelli & Verde,
2000; Gonçalves & Gameiro, 2002; Hu et al., 2007; Li & Ouyang, 2009; Martin et al., 2007;
Mirbagheri et al., 2006; Ngan et al., 2004; Petrus & Reed, 1995; Whitehead & Takawira, 2004;
2005; Wong & Chambers, 1996; Yeste-Ojeda & Grajal, 2008; Zhang et al., 2006; 1999)).
This chapter is devoted to the study of LAPTV filters for adaptive filtering. In the
next sections, the fundamentals of LAPTV filters are briefly described. With the aim of
incorporating adaptive strategies, the theoretical development is focused on the FRESH
(FREquency SHift) implementation of LAPTV filters. FRESH filters are composed of a set of
frequency shifters followed by an LTI filter, which notably simplifies the analysis and design
of adaptive algorithms. After reviewing the theoretical background of adaptive FRESH filters,
an important property of adaptive FRESH filters is analyzed: Their capability to operate in the
presence of errors in the LAPTV periodicities. This property is important because small errors
in these periodicities, which are quite common in practice due to non-ideal effects, can make
the use of LAPTV filters unfeasible.
Finally, an application example of adaptive FRESH filters is used at the end of this chapter
to illustrate their benefit in real applications. In that example, an adaptive FRESH filter
constitutes an interference rejection subsystem which forms part of a signal interception
system. The goal is to use adaptive FRESH filtering for removing the unwanted signals so that
a subsequent subsystem can detect any other signal present in the environment. Therefore, the
interference rejection and signal detection problems can be dealt with independently, allowing
the use of high sensitivity detectors with poor interference rejection properties.

2. Optimum linear estimators for almost cyclostationary processes

This section is devoted to establishing the optimality of LAPTV filters for filtering
almost-cyclostationary signals. The theory of LAPTV filters can be seen as a generalization
of the classical Wiener theory for optimal LTI filters, where the signals involved are
no longer stationary, but almost-cyclostationary. Therefore, optimal LTI filters become a
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particularization of LAPTV ones, as stationary signals can be seen as a particularization of
almost-cyclostationary ones.
The Wiener theory defines the optimal (under MMSE criterion) LTI filter for the estimation
of a desired signal, d(t), given the input (or observed) signal x(t), when both d(t) and x(t)
are jointly stationary. In this case, their auto- and cross-correlation functions do not depend
on the time, but only on the lag, and the estimation error results constant too. Otherwise,
the estimation error becomes a function of time. The Wiener filter is still the optimal LTI
filter if, and only if, d(t) and x(t) are jointly stationarizable processes (those which can be
made jointly stationary by random time shifting) (Gardner, 1978). In this case, the Wiener
filter is optimal in the sense of Minimum Time-Averaged MSE (MTAMSE). For instance,
jointly almost-cyclostationary processes (those whose auto- and cross-correlation functions
are almost-periodic functions of time) are always stationarizable. Nonetheless, if x(t) and
d(t) are jointly almost-cyclostationary, it is possible to find an optimal filter which minimizes
the MSE at all instants, which becomes a Linear Almost-Periodically Time-Variant (LAPTV)
filter (Gardner, 1994). This result arises from the orthogonality principle of optimal linear
estimators (Gardner, 1986), which is developed next.

Let d̂(t) be the estimate of d(t) from x(t), obtained through the linear filter h(t, λ):

d̂(t) =
∫ ∞

−∞
h(t, u) x(u) du (9)

The orthogonality principle establishes that, if h(t, λ) is optimum, then input signal x(t) and

the estimation error (ε(t) = d(t)− d̂(t)) are orthogonal with each other: 3

E {ε(t) x∗(λ)} = 0 , ∀λ, t ∈ R (10)

Rdx(t, λ) =
∫ ∞

−∞
hΓ(t, u) Rxx(u, λ) du , ∀λ, t ∈ R (11)

where
Ruv(t, λ) � E {u(t) v∗(λ)} (12)

stands for the cross-correlation function between u(t) and v(t), and hΓ(t, λ) stands for the
optimal LAPTV filter (where the meaning of the subindex Γ will be clarified in the next
paragraphs). Since d(t) and x(t) are jointly almost-cyclostationary by assumption, their auto-
and cross-correlation functions are almost-periodic functions of time, and therefore they can
be expanded as a generalized Fourier series (Corduneanu, 1968; Gardner, 1986):

Rdx (t, λ) = ∑
αk∈Adx

Rαk

dx(t − λ) ej2παkλ (13)

Rxx (t, λ) = ∑
βp∈Bxx

R
βp
xx(t − λ) ej2πβpλ (14)

where Adx and Bxx are countable sets consisting of the cycle frequencies of Rdx(t, λ) and
Rxx(t, λ), respectively. In addition, the cyclic cross- and auto-correlation functions Rα

dx(τ)

3 Up to this point, the signals considered are real valued and therefore the complex-conjugation operator
can be ignored. However, it is incorporated in the formulation for compatibility with complex signals,
which will be considered in following sections.
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and Rα
xx(τ) are computed as generalized Fourier coefficients (Gardner, 1986):

Rα
dx(τ) � lim

T→∞

1

2T

∫ T

−T
Rdx (t + τ, t) e−j2παt dt (15)

Rα
xx(τ) � lim

T→∞

1

2T

∫ T

−T
Rxx (t + τ, t) e−j2παt dt (16)

Substitution of (13) and (14) in (11) yields the condition:

∑
αk∈Adx

Rαk

dx(t − λ) ej2παkλ = ∑
βp∈Bxx

∫ ∞

−∞
hΓ(t, u) R

βp
xx(u − λ) ej2πβp λ du (17)

This condition can be satisfied for all t, λ ∈ R if hΓ(t, λ) is also an almost-periodic function
of time, and therefore, can be expanded as a generalized Fourier series (Gardner, 1993;
Gardner & Franks, 1975):

hΓ(t, λ) � ∑
γq∈Γ

h
γq

Γ (t − λ) ej2πγqλ (18)

where Γ is the minimum set containing Adx and Bxx which is closed in the addition and

subtraction operations (Franks, 1994). The Fourier coefficients in (18), h
γq

Γ (τ), can be computed
analogously to Eq. (15) and (16). Then, the condition in (17) is developed by using the
definition in (18), taking the Fourier transform, and augmenting the sets Adx and Bxx to the
set Γ, which they belong to, yielding the following condition:

∑
αk∈Γ

Sαk

dx( f ) ej2παkλ = ∑
βp ,γq∈Γ

H
γq

Γ ( f ) S
βp
xx( f − γq) ej2π(βp+γq)λ (19)

which must be satisfied for all f , λ ∈ R, and where the Fourier transform of the cyclic cross-
and auto-correlation functions,

Sα
uv( f ) =

∫ ∞

−∞
Rα

uv(τ) e−j2π f τ dτ (20)

stands for the spectral cross- and auto-correlation function, respectively (Gardner, 1986).
Finally, we use the fact that two almost-periodic functions are equal if and only if their
generalized Fourier coefficients match (Corduneanu, 1968), which allows to reformulate (19)
as the design formula of optimal LAPTV filters:

Sαk

dx( f ) = ∑
γq∈Γ

H
γq

Γ
( f ) S

αk−γq
xx ( f − γq) , ∀αk ∈ Γ, ∀ f ∈ R (21)

Note that the sets of cycle frequencies Adx and Bxx are, in general, subsets of Γ. Consequently,
the condition in (21) makes sense under the consideration that Sα

dx( f ) = 0 if α /∈ Adx, and
Sα

xx( f ) = 0 if α /∈ Bxx, which is coherent with the definitions in (15) and (16). Furthermore,
(21) is also coherent with the classical Wiener theory. When d(t) and x(t) are jointly stationary,
then the sets of cycle frequencies Adx, Bxx, and Γ consist only of cycle frequency zero, which
yields that the optimal linear estimator is LTI and follows the well known expression of Wiener
filter:

S0
dx( f ) = H0

Γ( f ) S0
xx( f ) (22)

Let us use a simple graphical example to provide an overview of the implications of the
design formula in (21). Consider the case where the signal to be estimated, s(t), is corrupted
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Fig. 1. Power spectral densities of the signal, the noise and interference in the application
example.

by additive stationary white noise, r(t), along with an interfering signal, u(t), to form the
observed signal, that is:

x(t) = s(t) + r(t) + u(t) (23)

d(t) = s(t) (24)

Assuming that s(t), r(t), and u(t) are statistically independent processes, the design formula
becomes:

Sαk
ss ( f ) = ∑

γq∈Γ

H
γq

Γ ( f )
[
S

αk−γq
ss ( f − γq) + S

αk−γq
rr ( f − γq) + S

αk−γq
uu ( f − γq)

]
(25)

In the following, let us consider the PSDs plotted in Fig. 1 for the signal, the noise and
the interference, all of which are flat in their spectral bands, with PSD levels ηs, ηr and ηu,
respectively. Let us further simplify the example by assuming that the signal is received
with a high Signal-to-Noise Ratio (SNR), but low Signal-to-Interference Ratio (SIR), so that
ηu ≫ ηs ≫ ηr. The Wiener filter can be obtained directly from Fig. 1, and becomes:

Hw( f ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ηs

ηs+ηr+ηu
≈ 0 f ∈ Bu

ηs

ηs+ηr
≈ 1 f /∈ Bu, f ∈ Bs

0 f /∈ Bs

(26)

where Bu and Bs represent the frequency intervals comprised in the spectral bands of the
interference and the signal, respectively. Thus, the Wiener filter is not capable of restoring
the signal spectral components which are highly corrupted by the interference, since they are
almost cancelled at its output.
On the contrary, an LAPTV filter could restore the spectral components cancelled by the
Wiener filter depending on the spectral auto-correlation function of the signal and the
availability at the input of correlated spectral components of the signal which are not
perturbed by the interference. In our example, consider that the signal s(t) is Amplitude
Modulated (AM). Then, the signal exhibits spectral correlation at cycle frequencies α = ±2 fc,
in addition to cycle frequency zero, which means that the signal spectral components at
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Adaptive-FRESH Filtering 7

positive frequencies are correlated with those components at negative frequencies (Gardner,
1987). 4 The spectral correlation function of the AM signal is represented in Fig. 2.

(a) α = 0 (b) α = 2 fc (c) α = −2 fc

Fig. 2. Spectral correlation function of the signal with AM modulation.

The design formula in (25) states that the Fourier coefficients of the optimal LAPTV filter
represent the coefficients of a linear combination in which frequency shifted version of Sα

xx( f )
are combined in order to obtain Sα

dx( f ). For simplicity, let us suppose that the set of cycle
frequencies Γ only consists of the signal cyclic spectrum, that is Γ = {−2 fc, 0, 2 fc}, so that
the design formula must be solved only for these values of αk. Suppose also that the cycle

frequencies ±2 fc are exclusive of s(t), so that S
±2 fc
xx ( f ) = S

±2 fc
ss ( f ). This is coherent with the

assumption that noise is stationary and with Fig. 1, where the bandwidth of the interference is
narrower than 2 fc, and therefore none of its spectral components is separated 2 fc in frequency.
Fig. 3 graphically represents the conditions imposed by the design formula (25) on the
Fourier coefficients of the optimal LAPTV filter, where each column stands for the different
equations as αk takes different values from Γ. The plots in the first three rows stand for the
amplitude of the frequency shifted versions of the spectral auto-correlation function of the
signal, the noise and the interference, while the plots in the last row represent the spectral
cross-correlation between the input and the desired signals. The problem to be solved is

to find the filter Fourier coefficients, {H
−2 fc

Γ ( f ), H0
Γ( f ), H

2 fc

Γ ( f )}, which multiplied by the
spectral correlation functions represented in the first three rows, and added together, yield
the spectral cross-correlation function in the last row.
Firstly, let us pay attention to the spectral band of the interference at positive frequencies.
From Fig. 3, the following equation system apply:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S0
xx( f ) H0

Γ( f ) + S
−2 fc
xx ( f − 2 fc) H

2 fc

Γ
( f ) = S0

ss( f )

S
2 fc
xx ( f ) H0

Γ( f ) + S0
xx ( f − 2 fc) H

2 fc

Γ
( f ) = S

2 fc
ss ( f )

S0
xx( f + 2 fc) H

−2 fc

Γ
( f ) = 0

, f ∈ B+
u (27)

4 The definition of the spectral correlation function used herein (see Eq. (7)) differs in the meaning of
frequency from the definition used by other authors, as in (Gardner, 1987). Therein, the frequency
stands for the mean frequency of the two spectral components whose correlation is computed. Both
definitions are related with each other by a simple change of variables, that is Sα

xx( f ) = S′α
xx( f − α/2),

where S′α
xx( f ) corresponds to spectral correlation function according to the definition used in (Gardner,

1987).
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(a
)

α
k
=

0
(b

)
α

k
=

2
f c

(c
)

α
k
=

−
2

f c

Fig. 3. Graphical representation of the design formula of LAPTV filters, which has been
applied to our example. Each plot corresponds to a different value of αk in (25).
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(a) α = 0 (b) α = 2 fc (c) α = −2 fc

Fig. 4. Fourier coefficients of the optimal LAPTV filter.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ηs + ηr + ηu) H0
Γ( f ) + ηs H

2 fc

Γ ( f ) = ηs

ηs H0
Γ( f ) + (ηs + ηr) H

2 fc

Γ ( f ) = ηs

ηr H0
Γ( f ) = 0

, f ∈ B+
u (28)

where B+
u stands for the range of positive frequencies occupied by the interference. The

solution to the linear system in (28) is:

H0
Γ( f ) =

ηs ηr

ηs (ηr + ηu) + ηr (ηs + ηr + ηu)
, f ∈ B+

u (29)

H
2 fc

Γ
( f ) =

ηs (ηr + ηu)

ηs (ηr + ηu) + ηr (ηs + ηr + ηu)
= H0

Γ( f )

(
ηu

ηr
+ 1

)
, f ∈ B+

u (30)

H
−2 fc

Γ ( f ) = 0 , f ∈ B+
u (31)

The result in (31) is coherent with the fact that there are not any signal spectral components
located in B+

u after frequency shifting the input downwards by 2 fc. After using the
approximations of high SNR and low SIR, the above results for the other filter coefficients
can be approximated by:

H0
Γ( f ) ≈ 0 , f ∈ B+

u (32)

H
2 fc

Γ
( f ) ≈

SNR

SNR + 1
≈ 1 , f ∈ B+

u (33)

The underlaying meaning of (32) is that the optimal LAPTV filter cancels the spectral
components of the signal which are corrupted by the interference. But contrary to the Wiener
filter, these spectral components are restored from other components which are separated 2 fc

in frequency, which is indicated by (33).
By using a similar approach, the Fourier coefficients of the LAPTV filter are computed for the
rest of frequencies (those which do not belong to B+

u ). The result is represented in Fig. 4. We
can see in Fig. 4(a) that |H0

Γ( f )| takes three possible values, i.e. 0, 0.5, and 1. |H0
Γ( f )| = 0 when

f ∈ Bu (as explained above) or f /∈ Bs (out of the signal frequency range). The frequencies at
which the Fourier coefficients are plotted with value |Hα

Γ | = 0.5 correspond to those spectral
components of the signal which are estimated from themselves, and jointly from spectral
components separated α = 2 fc (or alternatively α = −2 fc), since both are only corrupted by
noise. For their part, the frequencies at which |H0

Γ( f )| = 1 match the spectral components

cancelled by H
±2 fc

Γ ( f ) (see Fig. 4(b) and 4(c)). These frequencies do not correspond to the
spectral band of the interference, but the resulting frequencies after shifting this band by ±2 fc.
Consequently, such spectral components are estimated only from themselves.
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The preceding example has been simplified in order to obtain comprehensive results of
how an LAPTV filter performs, and to intuitively introduce the idea of frequency shifting
and filtering. This idea will become clearer in Section 4, when describing the FRESH
implementation of LAPTV filters. In our example, no reference to the cyclostationary
properties of the interference has been made. The optimal LAPTV filter also exploits the
interference cyclostationarity in order to suppress it more effectively. However, if we had
considered the cyclostationary properties of the interference, the closed form expressions for
the filter Fourier coefficients would have result more complex, which would have prevented
us from obtaining intuitive results. Theoretically, the set of cycle frequencies Γ consists of
an infinite number of them, which makes very hard to find a closed form solution to the
design formula in (21). This difficulty can be circumvented by forcing the number of cycle
frequencies of the linear estimator h(t, λ) to be finite, at the cost of performance (the MSE
increases and the filter is no longer optimal). This strategy will be described along with the
FRESH implementation of LAPTV filters, in Section 4. But firstly, the expression in (22) is
generalized for complex signals in the next section.

3. Extension of the study to complex signals

Complex cyclostationary processes require up to four real LAPTV filters in order to achieve
optimality, that is:

1. To estimate the real part of d(t) from the real part of x(t),

2. to estimate the real part of d(t) from the imaginary part of x(t),

3. to estimate the imaginary part of d(t) from the real part of x(t) and

4. to estimate the imaginary part of d(t) from the imaginary part of x(t).

This solution can be reduced to two complex LAPTV filters whose inputs are x(t) and
the complex conjugate of x(t), that is x∗(t). As a consequence, the optimal filter is not
formally a linear filter, but a Widely-Linear Almost-Periodically Time-Variant (WLAPTV)
filter (Chevalier & Maurice, 1997) (also known as Linear-Conjugate Linear, LCL (Brown, 1987;
Gardner, 1993)). Actually, the optimal WLAPTV filter reduces to an LAPTV filter when the
observations and the desired signal are jointly circular (Picinbono & Chevalier, 1995). 5 The
final output of the WLAPTV filter is obtained by adding together the outputs of the two
complex LAPTV filters:

d̂(t) =
∫ ∞

−∞
h(t, u) x(u) du +

∫ ∞

−∞
g(t, u) x∗(u) du (34)

Since the orthogonality principle establishes that the estimation error must be uncorrelated
with the input, it applies to both x(t) and x∗(t), yielding the linear system:

{
E {ε(t) x∗(λ)} = 0

E {ε(t) x(λ)} = 0
, ∀λ, t ∈ R (35)

⎧
⎪⎪⎨
⎪⎪⎩

Rdx(t, λ) =
∫ ∞

−∞
hΓ(t, u) Rxx(u, λ) du +

∫ ∞

−∞
gΓ(t, u) [Rxx∗(u, λ)]∗ du

Rdx∗(t, λ) =
∫ ∞

−∞
hΓ(t, u) Rxx∗(u, λ) du +

∫ ∞

−∞
gΓ(t, u) Rxx(λ, u) du

, ∀λ, t ∈ R

(36)

5 The observed and desired signals, respectively x(t) and d(t), are jointly circular when x∗(t) is
uncorrelated with both x(t) and d(t) (Picinbono & Chevalier, 1995).
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Analogously to Section 2, it can be demonstrated that the condition in (36) is satisfied if
both hΓ(t, λ) and gΓ(t, λ) are almost-periodic functions, and the linear system in (36) can be
reformulated as the design formula (Gardner, 1993):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Sαk

dx( f ) = ∑
γq∈Γ

H
γq

Γ
( f ) S

αk−γq
xx

(
f − γq

)
+ G

γq

Γ
( f )

[
S

γq−αk

xx∗

(
γq − f

)]∗

Sαk

dx∗( f ) = ∑
γq∈Γ

H
γq

Γ
( f ) S

αk−γq

xx∗

(
f − γq

)
+ G

γq

Γ
( f )

[
S

γq−αk
xx

(
γq − f

)]∗ , ∀αk ∈ Γ, ∀ f ∈ R

(37)

where the set of cycle frequencies Γ is defined in this case as the minimum set comprising
Adx, Adx∗ , Bxx and Bxx∗ , which is closed in the addition and subtraction operations (with Adx∗

and Bxx∗ being the sets of cycle frequencies of the cross-correlation functions of the complex
conjugate of the input, x∗(t), with d(t) and x(t), respectively.)
As it occurred for real signals in Section 2, finding a closed-form solution to the design formula
in (37) may result too complicated when a large number of cycle frequencies compose the set
Γ. In the next section a workaround is proposed based on the FRESH implementation of
LAPTV filters and the use of a reduced set of cycle frequencies, Γs ⊂ Γ.

4. Implementation of WLAPTV filters as FRESH (FREquency-SHift) filters

For simplicity reasons, LAPTV filters are often implemented as FREquency SHift (FRESH)
filters (Gameiro, 2000; Gardner, 1993; 1994; Gardner & Franks, 1975; Gonçalves & Gameiro,
2002; Loeffler & Burrus, 1978; Ngan et al., 2004; Reed & Hsia, 1990; Zadeh, 1950). FRESH
filters consist of a bank of LTI filters, whose inputs are frequency-shifted versions of the input
signal. In general, the optimum FRESH filter would require an infinite number of LTI filters.
Because this is not feasible, the FRESH filters used in practice are sub-optimal, in the sense
that they are limited to a finite set of frequency shifters.
Any WLAPTV filter can be implemented as FRESH filter. 6 This result emerges from using in
(34) the generalized Fourier series expansion of LAPTV filters. Let h(t, γ) and g(t, γ) be two
arbitrary LAPTV filters. Then, each of them can be expanded in a generalized Fourier series
yielding:

d̂(t) =
∫ ∞

−∞
h(t, u) x(u) du +

∫ ∞

−∞
g(t, u) x∗(u) du (38)

=
∫ ∞

−∞
∑
k

hαk (t − u) ej2παku x(u) du +
∫ ∞

−∞
∑
p

gβp (t − u) ej2πβp u x∗(u) du (39)

= ∑
k

∫ ∞

−∞
hαk (t − u)

[
ej2παku x(u)

]
du + ∑

p

∫ ∞

−∞
gβp (t − u)

[
ej2πβp u x∗(u)

]
du (40)

It can be clearly seen that the output of the WLAPTV filter, d̂(t), is the result of adding together
the outputs of the LTI filters hαk(t) and gβp (t), whose inputs are frequency-shifted versions
of the input signal x(t) and its complex conjugate x∗(t), respectively. This is precisely the
definition of a FRESH filter.

6 Formally, two FRESH filters are required respectively for the input and its complex conjugate.
Nevertheless, we will refer to the set of both as a FRESH filter herein.
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Fig. 5. Block diagram of the FRESH implementation of a WLAPTV filter.

The most difficult problem in the design of sub-optimal FRESH filters concerns the choice of
the optimal subset of frequency shifts, Γs ⊂ Γ, under some design constraints. For instance,
a common design constraint is the maximum number of branches of the FRESH filter. The
optimum Γs becomes highly dependent on the spectral correlation function of the input
signal and can change with time in nonstationary environments. However, with the aim
of simplifying the FRESH implementation, Γs is usually fixed beforehand and the common
approach to determine the frequency shifts consists in choosing those cycle frequencies at
which the spectral cross-correlation functions between d(t) and x(t), or its complex conjugate,
exhibits maximum levels (Gardner, 1993; Yeste-Ojeda & Grajal, 2008).
Once the set of frequency shifts has been fixed, the design of FRESH filters is much simpler
than that of WLAPTV filters, because FRESH filters only use LTI filters. Because of the
nonstationary nature of the input (it is almost-cyclostationary), the optimality criterion used
in the design of the set of LTI filters is the MTAMSE criterion, in contrast to the MMSE
criterion (Gardner, 1993). The resulting FRESH filter is a sub-optimum solution since it is
optimum only within the set of FRESH filters using the same set of frequency shifts.
Let us formulate the output of the FRESH filter by using vector notation:

d̂(t) =
∫ ∞

−∞
w†(t − u) x(u) du (41)

where w†(t) stands for the conjugate transpose of vector w(t), and each component of the
input vector x(t) represents the input of an LTI filter according to the scheme represented in
Fig. 5:

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)

...
xP(t)

xP+1(t)
...

xL(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t) ej2πα1t

x(t) ej2πα2t

...

x(t) ej2παPt

x∗(t) ej2πβ1t

...

x∗(t) ej2πβL−Pt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

where P is the number of branches used for filtering the frequency shifted versions of x(t),
(L − P) is the number of branches used for filtering its complex conjugate x∗(t), and L
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is the total number of branches. Note that the first P cycle frequencies can be repeated
in the next P − L cycle frequencies, since using a frequency shift for the input x(t) does
not exclude it from being used for its complex conjugate. With the aim of computing the
MTAMSE optimal set of LTI filters, a stationarized signal model is applied to both the desired
signal d(t) and the input vector x(t), which are jointly almost-cyclostationary processes, and
therefore stationarizable (Gardner, 1978). The stationary auto- and cross-correlation functions
are obtained by taking the stationary part (time-averaging) the corresponding nonstationary
correlation functions. As a result, the orthogonality principle is formulated as follows:

E
{

ε(t + τ) x†(t)
}
= 0

T , ∀τ ∈ R (43)

Rdx(τ) =
∫ ∞

−∞
w†

Γs
(τ − u) Rxx(u) du , ∀τ ∈ R (44)

where 0 is the null vector, and the cross-correlation (row) vector Rdx(τ) and the auto-
correlation matrix Rxx(τ) are computed by time-averaging the corresponding nonstationary
correlation functions. For Rdx(τ) this yields:

Rdx(τ) = lim
T→∞

1

2T

∫ T

−T
E
{

d(t + τ) x†(t)
}

dt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rα1

dx(τ)
Rα2

dx(τ)
...

RαP

dx(τ)
R

αP+1

dx∗ (τ)
...

RαL

dx∗(τ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(45)

where the cyclic cross-correlation functions were defined in (15). The matrix Rxx(τ) becomes:

Rxx(τ) = lim
T→∞

1

2T

∫ T

−T
E
{
x(t + τ) x†(t)

}
dt (46)

where the element in the q-th row and k-th column is:

[Rxx(τ)]qk =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R
αk−αq
xx (τ) ej2παqτ q ≤ P, k ≤ P

R
αk−αq

xx∗ (τ) ej2παqτ q ≤ P, k > P[
R

αq−αk

xx∗ (τ)
]∗

ej2παqτ q > P, k ≤ P
[

R
αq−αk
xx (τ)

]∗
ej2παqτ q > P, k > P

(47)

where the cyclic auto-correlation functions were defined in (16).
Finally, the orthogonality principle leads directly to the multidimensional Wiener filter, and
the frequency response of the set of filters is obtained by taking the Fourier transform in (44):

Sdx( f ) = W †
Γs
( f )Sxx( f ) (48)

WΓs
( f ) = [Sxx( f )]−1

S†
dx( f ) (49)

where the Hermitian property of matrix Sxx( f ) has been used,

Sdx( f ) =
[
Sα1

dx( f ), Sα2

dx( f ), . . . , SαP

dx( f ), S
αP+1

dx∗ ( f ), . . . , SαL

dx∗( f )
]

(50)

271Adaptive-FRESH Filtering

www.intechopen.com



14 Will-be-set-by-IN-TECH

and the element of the q-th row and k-th column of matrix Sxx( f ) is:

[Sxx( f )]qk =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S
αk−αq
xx

(
f − αq

)
q ≤ P, k ≤ P

S
αk−αq

xx∗

(
f − αq

)
q ≤ P, k > P[

S
αq−αk

xx∗

(
αq − f

)]∗
q > P, k ≤ P

[
S

αq−αk
xx

(
αq − f

)]∗
q > P, k > P

(51)

It is noteworthy that the expression in (37), which defines the optimal WLAPTV filter, is a
generalization of (48) for the case where Γs = Γ. In addition, we want to emphasize the main
differences between optimal and sub-optimal FRESH filters:

1. Optimal FRESH filters are direct implementations of optimal WLAPTV filters defined by
(37), and generally consist of an infinite number of LTI filters. Contrarily, sub-optimal
FRESH filters are limited to a finite set of LTI filters.

2. For jointly almost-cyclostationary input and desired signals, optimal FRESH filters are the
optimal with respect to any other linear estimator. On the contrary, sub-optimal FRESH
filters are defined for a given subset Γs and, therefore, they are optimal only in comparison
to the rest of FRESH filters using the same frequency shifts.

3. Optimal FRESH filters minimize the MSE at all times (MMSE criterion). However,
sub-optimal FRESH filters only minimize the MSE on average (MTAMSE criterion). This
means that another FRESH filter, even by making use of the same set of frequency shifts,
could exhibit a lower MSE at specific times.

Finally, the inverse of matrix Sxx( f ) could not exist for all frequencies, which would
invalidate the expression in (49). However, since its main diagonal represents the power
spectral density of the frequency shifted versions of the input, this formal problem can be
ignored by assuming that a white noise component is always present at the input.
At this point we have finished the theoretical background concerning FRESH filters. The
following sections are focused on the applications of adaptive FRESH filters. Firstly, the
introduction of an adaptive algorithm in a FRESH filter is reviewed in the next section.

5. Adaptive FRESH filters

The main drawback of using FRESH filters is that the phase of the LTI filters (or
alternatively the phase of the frequency shifters) must be “synchronized” with the desired
signal. Otherwise, the contribution of the different branches can be destructive rather than
constructive. For example, the phase of the signal carrier must be known if the frequency
shifts are related to the carrier frequency, or the symbol synchronism must be known if
the symbol rate is involved in the frequency shifts. As a consequence, the knowledge
required for the design of sub-optimal 7 FRESH filter is rarely available beforehand, which
leads to the use adaptive algorithms. Since FRESH filters consist of a set LTI filters,
conventional adaptive algorithms can be directly applied, such as Least-Mean-Square (LMS)
or Recursive-Least-Squares (RLS). The general scheme of an adaptive FRESH filter is shown
in Fig. 6.

7 Hereinafter, FRESH filters are always limited to a finite set of frequency shifts. Therefore, sub-optimal
FRESH filters will be referred to as “optimal” for brevity.
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Fig. 6. Block diagram of an adaptive FRESH filter.

In order to simplify the analysis of the adaptive algorithms, the structure of FRESH filters is
particularized to the case of discrete-time signals with the set of LTI filters exhibiting Finite
Impulse Response (FIR filters). After filtering the received signal, x(n), the output of the
adaptive FRESH filter is compared to a desired (or reference) signal, d(n), and the error, ε(n),
is used by an adaptive algorithm in order to update the filter coefficients. Commonly, the
desired signal is either a known sequence (as a training sequence for equalizers), or obtained
from the received signal (as for blind equalizers).
Let the output of the FRESH filter be defined as the inner product:

d̂(n) � w†(n)x(n) =
L

∑
i=1

w†
i (n)xi(n) (52)

where the vectors w(n) and x(n) are the concatenation of the filter and the input vectors,
respectively:

w(n) =

⎡
⎢⎢⎢⎣

w1(n)
w2(n)

...
wL(n)

⎤
⎥⎥⎥⎦ , x(n) =

⎡
⎢⎢⎢⎣

x1(n)
x2(n)

...
xL(n)

⎤
⎥⎥⎥⎦ (53)

wi(n) and xi(n) are the filter and input vectors, respectively, of the i-th branch:

wi(n) = [wi(n), wi(n − 1), . . . , wi(n − Mi + 1)]T (54)

xi(n) = [xi(n), xi(n − 1), . . . , xi(n − Mi + 1)]T (55)

where Mi is the length of the i-th filter. Consequently, the total length of vectors w(n) and
x(n) is M = ∑

L
i=1 Mi.
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Using the results in the previous sections, the optimal set of LTI filters is given by
multidimensional Wiener filter theory:

wo = (Rx)
−1

p (56)

where Rx stands for the time-averaged auto-correlation matrix of the input vector, 8

Rx =
〈

E
{
x(n) x†(n)

}〉
(57)

where 〈·〉 denotes the time average operator:

〈
E
{
x(n) x†(n)

}〉
= lim

N→∞

1

2N + 1

N

∑
n=−N

E
{
x(n) x†(n)

}
(58)

In Eq. (56), the vector p represents the time-averaged cross-correlation between the input
vector x and d(n):

p = 〈E {x(n)d∗(n)}〉 (59)

The correlation functions in (57) and (59) are time-averaged in order to force the LTI
characteristic of wo. The expressions in (56), (57), and (59) allow to follow the classical
developments of adaptive algorithms (Haykin, 2001). Despite using classical algorithms,
adaptive FRESH filters naturally exploit the cyclostationary properties of the signals as the
inputs of the LTI filters are frequency-shifted versions of the input of the adaptive FRESH
filter.

5.1 Blind Adaptive FRESH filters (BAFRESH)

One of the main reasons for using adaptive FRESH filters is their inherent ability to operate
blindly (Zhang et al., 1999). Commonly, adaptive algorithms require a reference signal which
is not available in many applications of adaptive filtering. When the adaptive filter works
without such a reference signal, we say that it is “blind”. Blind Adaptive FRESH (BAFRESH)
filters can be obtained directly by simply using as frequency shifts those cycle frequencies
which belong to the cyclic spectrum of the input and satisfy the condition:

Sα
xx( f ) = Sα

dx( f ) (60)

for the first P branches, and
Sα

xx∗( f ) = Sα
dx∗( f ) (61)

for the rest of branches (those working with x∗(t)). Then, the input signal itself can be used
as the reference signal, as it is represented in Fig. 7, while the adaptive algorithm converges to
the same solution as if a “clean” reference signal were used. 9 Intuitively, the conditions (60)
and (61) mean that a BAFRESH filter must use only those cycle frequencies (among all the
cycle frequencies of the input) at which only the part of the input which is correlated with the
desired signal exhibits spectral correlation. It is noteworthy that (60) excludes cycle frequency
zero from being used in the branches not using the complex conjugate of the input signal.
The reason is that all stochastic processes exhibit spectral correlation at cycle frequency zero

8 We have assumed that the matrix Rx is nonsingular, which is always true as long as there exists a white
noise component at the input.

9 However, using x(t) instead of a “clean” reference produces an increase in the power of ε(n), which
could influence the adaptive FRESH filter performance.
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Fig. 7. Block diagram of a BAFRESH filter.

and therefore (60) could only be satisfied if the desired and the input signals are the same,
which would eliminate the necessity of a filter. Contrarily, many stochastic processes do not
exhibit spectral cross-correlation with their complex conjugate at cycle frequency zero, for
instance the circular stochastic processes. This allows the condition (61) to be satisfied without
implying that d(t) = x(t).
When adaptive BAFRESH filters use a suitable set of frequency shifts, the correlation between
the inputs of the LTI filters, xi(n), and the reference signal x(n), is only due to the signal to
be estimated. Thus, the adaptive algorithm will converge to a solution by which the desired
signal is estimated at the output of the BAFRESH filter, while any other component present
at the input is minimized. This is a powerful characteristic of adaptive FRESH filters which
turns them into a good candidate for those applications where no reference signal is available
at the receiver.

6. Adaptive FRESH filters for cycle-frequency errors compensation

This section deals with the problem of uncertainties in the periodicities of LAPTV filters. 10

The purpose in this section is to analyze the nonstationary behavior of adaptive FRESH filters
in order to mitigate this problem. Since they exploit the spectral correlation of signals at
specific values of frequency separation or cycle frequency, LAPTV filters are severely affected
by errors in such cycle frequencies. These errors may be due to non-perfect knowledge
of the cyclic spectrum, or natural effects such as the Doppler effect. In such a case, it
will be demonstrated that the filter can become totally useless. The reason is that a high
enough error (in comparison to the observation time) produces a loss of coherence among
the outputs of the FRESH branches. This causes a destructive interference rather than a

10 The main body of this section can be found in (Yeste-Ojeda & Grajal, 2010).
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constructive one when the outputs of the branches are added together. Although this is a well
known problem, it has been exhaustively dealt with only in the field of beamforming and
direction finding, mainly regarding MUSIC (Schmidt, 1986) and SCORE (Agee et al., 1990)
algorithms. Besides describing the problem, some solutions have been proposed. Schell
and Gardner stated that the degradation in performance increases with the product of the
observation time and the error in cycle frequency (Schell & Gardner, 1990). As a solution, they
proposed two alternatives: Using multiple cycle frequencies in order to increase robustness,
or adaptively estimating the cycle frequencies by maximizing the magnitude of the FFT of
the lag product of the observations. Lee and Lee proposed two procedures for estimating the
cycle-frequency offset (Lee & Lee, 1999). Both of them are based on the maximization of the
highest eigenvalue of the product of a sample autocorrelation-related matrix. In (Lee et al.,
2000), cycle frequencies are estimated iteratively through a gradient descent algorithm which
maximizes the output power of an adaptive beamformer, assuming that the initial cycle
frequencies are close enough. A similar approach can be found in (Jianhui et al., 2006),
where the conjugate gradient algorithm is used instead of gradient descent, and after proper
modifications in the cost function. A new approach is described in (Zhang et al., 2004), where
the robustness of the beamformer is achieved by minimizing a cost function which is averaged
over a range of cycle frequencies, instead of trying to correct the cycle frequency errors.
The approach used in this section is rather different from the cited work. The purpose of
this section is to explore an additional advantage of using adaptive filters for FRESH filtering,
which is their capability of working in the presence of errors in the frequency shifts. This is
possible because the adaptive filter is able to track these errors, by updating the coefficients of
the LTI filters in a cyclic manner. As a result, the adaptive filter at each branch of the FRESH
filter behaves as a Linear Periodically Time-Variant (LPTV) filter, rather than converging to
an LTI filter. This ability is strongly conditioned by the rate of convergence of the adaptive
algorithm. For slow convergence, the outputs of the branches with frequency-shift errors
are cancelled. As the convergence accelerates, the adaptive filters of those branches with
frequency-shift errors behave as LPTV filters in order to compensate the errors. These subjects
shall be dealt with later on, but firstly let us highlight the problem of cycle-frequency errors in
FRESH filtering.

6.1 Effect of errors in the frequency shifts

The scheme of the adaptive FRESH filter considered in this section has been shown in Fig. 6.
The problem of an error in the frequency shifts of the FRESH filter is that the correlation
between the desired signal and the corresponding filter input vanishes. For a nonadaptive
FRESH filter, the error can be tolerated during a limited observation time. At each branch,
the contribution to the signal estimate is constructive for an interval lesser than the inverse of
the error of its frequency shift. Therefore, the observation time tolerated by the whole filter
is determined by the inverse of the biggest error in the frequency shifts. 11 For an infinite
observation time, the optimal LTI filter is null for all branches with an error in their frequency
shifts, as we shall demonstrate in this section. This is due to the discrete nature of the cyclic
spectrum, which means that the cyclic correlation function is different from zero only at a
countable set of cycle-frequency values. Thus, an error in a cycle frequency yields that the
signal at the input of the corresponding filter is correlated neither with d(n), nor with the
inputs of the rest of filters.

11 However, the degradation of the estimation error depends on the contribution of the corresponding
branch to the signal estimate.
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Let us use the definitions introduced in the previous section, specifically from (52) to (59). For
convenience, let the auto-correlation matrix of the input vector be expressed in the form

Rx =

[
Rx11

〈
E
{
x1(n)x

†
2L(n)

}〉
〈
E
{
x2L(n)x

†
1(n)

}〉
Rx2L

]
(62)

where Rxij
, with i ≤ j, stands for the auto-correlation matrix of input vectors from the i-th to

the j-th branch:

Rxij
=

〈
E
{
xij(n) x

†
ij(n)

}〉
(63)

Similarly, the vector xij(n) stands for the concatenation of input vectors from the i-th to the
j-th branch:

xij(n) =
[
xT

i (n), . . . , xT
j (n)

]T
(64)

Let us assume that there is an error in the frequency shift used for the first branch. Then, the
time-averaged cross-correlation between x1(n) and the input vectors of the rest of branches is
zero. Moreover, the time-averaged cross-correlation of x1(n) with the desired signal, d(n), is
also zero. Thus, the optimal set of LTI filters when there exist errors in the frequency shift of
the first branch results:

w′
o = (Rx)

−1
p =

[
R
−1
x11

0

0 R
−1
x2L

] [
0

p2L

]
=

[
0

R
−1
x2L

p2L

]
(65)

Therefore, the optimal LTI filter of the first branch and its output are null. In addition, the
optimal set of filters for the other branches is equivalent to not using the first branch. In short,
what is happening is that the first frequency shift does not belong to set Γ. When all branches
exhibit errors in their frequency shifts, then the optimal filter vector is zero and the FRESH
filter becomes useless. It is noteworthy that the cancellation of the branches with an error in
their frequency shift is caused by the LTI characteristic of the filters, which has been forced by
time-averaging Rx and p. In the next section, it is shown that the errors in the frequency shifts
can be compensated by allowing the filters to be time-variant, specifically, LPTV.

6.2 LPTV solution

When there exist errors in the frequency shifts, an adaptive-FRESH filter can compensate
them. In order to understand the behavior of the adaptive filter, let us assume that these
errors are known. One direct solution to this problem is to substitute the corresponding LTI
filters by LPTV filters consisting of a correcting frequency shift followed by an LTI filter, as
shown in Fig. 8. Formally, the output of the optimal FRESH filter defined in (56), when there
are not errors in the frequency shifts, is:

d̂(n) = w†
o x(n) =

L

∑
i=1

w†
oi xi(n) (66)

where woi stands for the optimal LTI filter in the i-th branch and xi(n) are the outputs of the
frequency shifters without error. The LPTV solution can be obtained by including the errors
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Fig. 8. Cycle frequency errors correction by means of LPTV filters.

in the frequency shifts:

d̂(n) =
L

∑
i=1

w†
oi xi(n) ej2π∆in e−j2π∆in

=
L

∑
i=1

(
e−j2π∆in w†

oi

) (
xi(n) ej2π∆in

)

=
L

∑
i=1

w̃†
oi(n) x̃i(n) = w̃†

o (n) x̃(n)

(67)

where w̃o(n) is the set of LPTV filters, and x̃(n) are the input vector to these filters (the output
of the first frequency shifters in Fig. 8).
By defining the diagonal matrix

Φ �

⎡
⎢⎢⎢⎣

ej2π∆1 IM1
0 · · · 0

0 ej2π∆2 IM2
· · · 0

...
...

. . .
...

0 0 · · · ej2π∆L IML

⎤
⎥⎥⎥⎦ (68)

where IN is the N × N identity matrix, the vectors w̃o(n) and x̃(n) can be expressed in the
form:

w̃o(n) = Φ
n wo (69)

x̃(n) = Φ
n x(n) (70)

Additionally, the optimal set of linear time-variant filters is obtained by minimization of the
instantaneous MSE. This optimal set (whose input vector is x̃(n)) is (Van Trees, 1968):

w̃o(n) = [Rx̃(n)]
−1

p̃(n) (71)
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where

Rx̃(n) = E
{
x̃(n) x̃†(n)

}
(72)

p̃(n) = E {x̃(n) d∗(n)} (73)

Therefore, since (69) is verified, a sufficient condition to obtain (69) from (71), is that:

Rx̃(n) � Φ
n
〈

E
{
x(n) x†(n)

}〉
Φ

−n

= Φ
n

Rx Φ
−n (74)

p̃(n) � Φ
n 〈E {x(n)d∗(n)}〉

= Φ
n p (75)

where Rx and p have been defined in (57) and (59) respectively.
Note that (74) and (75) are not the true auto-correlation matrix and cross-correlation vector
between x̃(n) and d(n). On the contrary, they are based on the stationarized signal model of
the input vector x(n) and the desired signal d(n), so that the LTI characteristic of the filters
after the second frequency shifters in Fig. 8 is forced.
An additional motivation for introducing (74) and (75) is that these expressions will serve
us to develop the convergence of the LMS algorithm mathematically. We have chosen the
Least Mean Squares (LMS) adaptive algorithm for the analysis because of its mathematical
simplicity, which allows an analytical treatment of the problem. Nonetheless, any adaptive
algorithm (for instance, Recursive Least Squares (RLS) (Haykin, 2001)) can be used instead to
compensate cycle-frequency errors. The approach herein is the same as as in (Widrow et al.,
1976), where the MSE (Mean-Squared-Error) of the adaptive filter is decomposed into the error
due to noise in the gradient estimation, and the error due to lag between the optimal and the
adaptive filters.
It is straightforward that the LPTV solution in (69) is equivalent to the optimal FRESH filter in
the absence of errors. In practice, the errors in the frequency shifts are unknown. Thus, there is
not any fixing frequency shifter (the second one, in Fig. 8), and the filters of each branch must
work with input vector x̃(n). The advantage of using an adaptive filter is that it can produce
the periodic variations of the filters by updating their coefficients. This is only possible for
a fast enough rate of convergence. Otherwise, the adaptive filter tends to the LTI optimal
solution defined by (56) after substituting the input vector x(n) with x̃(n) in (57) and (59).
This solution implies the cancellation of the branches with errors in their frequency shift. This
issue is addressed in next section.

6.3 Excess MSE of the LMS algorithm in the presence of errors in the frequency shifts

In this section we develop an analytical expression for the time-averaged MSE at steady-state
of adaptive FRESH filters using the LMS algorithm (LMS-FRESH). The objective is to obtain
an expression that accounts for errors in the frequency shifts of the LMS-FRESH filter.
Basically, the LMS algorithm consists in updating the filter weights in the direction of a
gradient estimate of the MSE function, which can be thought as a stochastic version of
the steepest descent algorithm (Widrow et al., 1976). Let w̃(n) be the concatenation vector
defining the LMS-FRESH filter. The updating algorithm can be formulated as follows:
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w̃(n + 1) = w̃(n) + 2µε∗(n)x̃(n)

ε(n) = d(n)− d̂(n)

d̂(n) = w̃†(n) x̃(n)

(76)

where µ is the convergence factor (also known as step-size parameter).
The LMS-FRESH filter exhibits an excess MSE with respect to the set of filters w̃o(n)
presented in the previous section as the LPTV solution. This excess MSE can be computed
as follows (Widrow et al., 1976):

ξe(n) = E
{
[w̃(n)− w̃o(n)]

†
Rx̃(n) [w̃(n)− w̃o(n)]

}
(77)

Let us separate the excess MSE into two terms: The excess MSE due to gradient noise and the
excess MSE due to lag error. The separation is possible by considering the weight error vector
as the sum of two terms:

w̃(n)− w̃o(n) = [w̃(n)− E {w̃(n)}] + [E {w̃(n)} − w̃o(n)] = ũ(n) + ṽ(n) (78)

The first term of the sum in the right hand side, ũ(n) = w̃(n)− E {w̃(n)}, produces the excess
MSE due to gradient noise, which is related to the gradient estimation process. The second
term, ṽ(n) = E {w̃(n)} − w̃o(n), produces the excess MSE due to lag, which quantifies the
error due the fact that the adaptive filter cannot follow the variations of w̃o(n) with time. By
substituting (78) in (77), we obtain:

ξe(n) = E
{
ũ†(n) Rx̃(n) ũ(n)

}
+ E

{
ṽ†(n) Rx̃(n) ṽ(n)

}
+ 2Re

{
E
{
ũ†(n) Rx̃(n) ṽ(n)

}}

(79)
It can be easily shown (from the definitions of ũ(n) and ṽ(n)) that the last term of (79) is zero.
Thus, the total time-averaged MSE at steady-state of the LMS-FRESH filters can be expressed
as the sum of three terms:

ξLMS �
〈

E
{
|ε(n)|2

}〉
= ξmin + 〈ξe(n)〉 = ξmin + ξ∇ + ξlag (80)

where ξmin is the minimum time-averaged MSE attained by the optimal FRESH filter, ξ∇ is
the time-averaged excess MSE due to gradient noise, and ξ lag is the time-averaged excess MSE
due to lag error.
The minimum time-averaged MSE results from multivariate Wiener theory (Gardner, 1993):

ξmin = σ2
d −

〈
w̃†

o (n) Rx̃(n) w̃o(n)
〉

= σ2
d −w†

o Rx wo (81)

where σ2
d =

〈
E
{
|d(n)|2

}〉
is the mean power of the reference signal.

At each instant, the excess MSE due to gradient noise can be computed as
follows (Widrow et al., 1976):

ξ∇(n) = E
{
ũ†(n) Rx̃(n) ũ(n)

}
(82)

280 Adaptive Filtering

www.intechopen.com



Adaptive-FRESH Filtering 23

Assuming that the LMS adaptive filter converges to an LPTV filter at each branch (as shown
in Fig. 8), the time-averaged excess MSE at steady-state can be approximated by12:

ξ∇ = 〈ξ∇(n)〉 ≈ µ ξmin tr {Rx} (83)

where tr {Rx} is the trace of matrix Rx defined in (57). From (83), ξ∇ can be reduced as much
as desired by decreasing µ. However, the convergence factor µ controls the rate of convergence
of the LMS, so that it is faster as µ increases. Additionally, it will be shown next that the excess
MSE due to lag error increases as µ decreases.
The excess MSE due to lag error becomes apparent when the adaptive filter cannot follow
the variations of w̃o(n) (the LPTV solution) with time. This excess MSE is a function of the
weight-error vector ṽ(n), which represents the instantaneous difference between the expected
value of the adaptive filter and w̃o(n):

ξlag(n) = ṽ†(n) Rx̃(n) ṽ(n) (84)

The mathematical development of the time-averaged excess MSE at steady-state due to the
lag error can be found in the appendix of (Yeste-Ojeda & Grajal, 2010), and yields:

ξlag = v†
Rx v (85)

where v, which does not depend on time, is the weight-error vector at steady-state. Under the
same conditions that were assumed for (83) (see footnote 12):

v = lim
n→∞

Φ
−n E {w̃(n)} −wo

=
(

2µ [Φ − IM + 2µRx]
−1 − R

−1
x

)
p (86)

6.4 Analysis of the results

The study of the previous expressions allows to infer several conclusions:

1. The lag error, ξlag, tends to zero as µ increases. This is easily seen by taking the limit of (86)
as µ → ∞:

lim
µ→∞

v =
(

R
−1
x − R

−1
x

)
p = 0 (87)

This result indicates that, for a high enough convergence factor, the LMS-FRESH filter is
fast enough to follow the variations of the LPTV solution, and therefore the excess MSE
due to lag error is zero. However, µ cannot be made as big as desired because then, the
adaptive algorithm may not converge, as we shall discuss next.

2. The lag error is also zero when there are not any errors in the frequency shifts. In this case,
Φ = IM, which substituted in (86) gives v = 0. This result is coherent with the concept
of lag error. In the absence of errors, the LPTV solution to which the LMS-FRESH filter
converges becomes LTI. Consequently, the existence of a lag is not possible.

3. On the contrary, the lag error is maximum when µ tends to zero (and there exist frequency-
shift errors). Taking the limit of (86) as µ → 0 yields:

lim
µ→0

v = −R
−1
x p = −wo (88)

12 Under small error conditions, and by assuming that ε(n) and x̃(n) are Gaussian, and x̃(n) is
uncorrelated over time, i.e. E {x̃(n) x̃(n + k)} = 0, with k �= 0, (Widrow et al., 1975; 1976).
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which implies that the LMS-FRESH filter converges to the null vector in a mean sense.
Moreover, the filter converges to the null vector also in a mean square sense. This results
is derived from the fact that the gradient noise tends to zero as µ tends to zero (see
(83)), which entails that ũ(n) = 0, and therefore the LMS-FRESH filter vector matches its
expected value, i.e. w̃(n) = E {w̃(n)} = 0. As a result, the outputs of the branches with
an error in their frequency shift are null. The time-averaged excess MSE due to lag error is
obtained by substituting (88) in (85), which yields:

lim
µ→0

ξlag = w†
o Rx wo (89)

Thus, the total time-averaged MSE at steady-state for µ tending to zero is

lim
µ→0

ξLMS = σ2
d (90)

This result could be obtained considering that, since the output of the adaptive-FRESH
filter is null, the error signal is ε(n) = d(n).

4. The optimal convergence factor which minimizes the time-averaged MSE of the LMS
algorithm is obtained from (80), (83) and (85), which yields:

µo = arg min
µ

{
µ ξmin tr {Rx}+ v†

Rx v
}

(91)

where vector v is defined by (86).

As regards the convergence of the LMS-FRESH filter, a sufficient condition is that the poles
of all components of vector v(z) are located inside the unit circle (Yeste-Ojeda & Grajal, 2010).
This is equivalent to the condition that the maximum absolute value of the eigenvalues of
matrix

(IM − 2µRx) Φ
−1 (92)

is lesser or equal than 1. When a single branch is used for the LMS-FRESH filter, then it
is straightforward that the eigenvalues of (92) are e−j2π∆(1 − 2µλk), with k = 1, . . . , M, and
where ∆ is the frequency-shift error of the single branch, and λk are the eigenvalues of matrix
Rx . As a result, the condition for the convergence of the LMS algorithm is:

0 < µ < (λmax)
−1 (93)

where λmax is the maximum eigenvalue of matrix Rx . This is the same condition as for
stationarity environments (Haykin, 2001; Widrow et al., 1976). 13

6.5 Application

Finally, let us quantify the performance of adaptive FRESH filters for cycle-frequency error
compensation through a case study where the received signal consists of a BPSK signal
embedded in stationary white Gaussian noise. The receiver incorporates a FRESH filter with
the purpose of extracting the BPSK signal from the noise. Two frequency shifts related to the
cyclic spectrum of the BPSK signal are used, the inverse of its symbol interval α1 = 1/Ts, and
twice its carrier frequency, α2 = 2 fc. These two cycle frequencies have been chosen, according
to the common approach mentioned in Section 4, because they exhibit the highest values of

13 Note that the value of the convergence factor used in (Haykin, 2001) is twice the value used herein.
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Fig. 9. Blind adaptive FRESH filter for BPSK signal extraction.
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Fig. 10. Analytical time-averaged MSE as a function of the convergence factor, when using
only the branch corresponding to frequency shift α = 2 fc. The thick dashed line corresponds
to ∆2 = 0.

spectral correlation for a BPSK modulation (Gardner et al., 1987). The desired signal for the
adaptive algorithm is the received signal, d(n) = x(n), following the blind scheme described
in Section 5.1 (see Fig. 9). In all cases, the carrier frequency and symbol interval have been set
to fc = 0.3 (normalized to the sampling frequency) and Ts = 32 samples. The noise power is
set to σ2

r = E
{
|r(n)|2

}
= 1, and the SNR is also fixed to SNR= 0 dB, and is defined as the ratio

between the mean power of the signal and the noise: SNR=
〈
E
{
|s(n)|2

}〉
/σ2

r . Both w̃1(n)
and w̃2(n), are FIR filters with Mi = 64 taps.
In order to clarify some concepts, let us consider firstly the case where the FRESH filter
is composed of only the branch associated with the frequency shift α2 = 2 fc. The total
time-averaged MSE at steady-state (hereinafter referred to as simply “the MSE”) is shown in
Fig. 10, as a function of the convergence factor and for different values of the frequency-shift
error, ∆2, which are also normalized to the sampling frequency. The MSE of the LMS-FRESH
filter when ∆2 = 0 is plotted with a dashed thick line as a point of reference. This is the
lower bound of the MSE attainable by the LMS-FRESH filter, and converges to the MSE of the
optimal FRESH filter, ξmin, as µ decreases. Note that the minimum MSE is always greater than
the noise power, i.e. ξmin > 1, since even if the signal were perfectly estimated (ŝ(n) = s(n)),
the error signal would match the noise (ε(n) = r(n)).
When there exist errors in the frequency shift, the MSE is always higher than the lower bound.
Since the lower bound includes the gradient noise effect, the excess MSE over the lower bound
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Fig. 11. Analytical time-averaged MSE as a function of the convergence factor, when using
only the branch corresponding to frequency shift α = 1/Ts. The thick dashed line
corresponds to ∆1 = 0.

is due to the lag error only, and varies from zero (for high µ) up to w†
o Rxwo = σ2

d − ξmin, (see

(89), for small µ). Thus, the total MSE tends to σ2
d when µ decreases. The curves also show the

dependence of the MSE with the error in the frequency shift, which increases with ∆2 (at any
given µ). Therefore, in order to obtain a small excess MSE due to lag, it is required a faster rate
of convergence (bigger µ) when ∆2 increases.
An additional result shown in Fig. 10 is that for high enough errors in the frequency shifts, the
MSE does not reach ξmin at any value of µ. In other words, it is impossible to simultaneously
reduce the MSE terms due to the lag error and the gradient noise. In such a case, the optimal µ
locates at an intermediate value as a result of the trade-off between reducing the lag error and
the gradient noise. In practice, the error of the frequency-shifts is commonly unknown. Then
the convergence factor should be chosen as a trade-off between the maximum cycle-frequency
error which can be compensated by the adaptive filter and the increase of the excess MSE due
to gradient noise.
Similar results can be extracted from Fig. 11, which corresponds to the case where only the
branch of the FRESH filter with frequency shift α = 1/Ts has been used. The main difference
between Figures 10 and 11 is that the minimum MSE, ξmin, is bigger when only α = 1/Ts is
used. The reason is that the spectral correlation level exhibited by a BPSK signal is smaller at
α = 1/Ts than at α = 2 fc (Gardner et al., 1987). Furthermore, it can be seen that σ2

d is not an
upper bound for the MSE (as could be thought from Fig. 10), but the limit of the MSE as µ
tends to zero.
For the case illustrated in Fig. 12, the two branches shown in Fig. 9 are used, but there is
uncertainty only in the symbol rate, that is, the error in the frequency shift related to the
carrier frequency, ∆2, is always zero. The curves show that the improvement in the MSE is
not very significant when the error in the symbol rate is compensated. This occurs when the
contribution to the signal estimate for a branch is more significant than for the other, which is
mainly caused by the different spectral level exhibited by a BPSK signal at cycle frequencies
α = 1/Ts and α = 2 fc. As a consequence, the minimum MSE when only the second branch
is used (ξmin,2), and when both branches are used (ξmin,12) are very similar. Furthermore, µ

tends to zero the MSE tends to ξmin,2 instead of σ2
d , since there is no uncertainty in the carrier

frequency.
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Fig. 12. Time-averaged MSE as a function of the convergence factor, when using the two
branches. ∆2 = 0 in all cases, also for the thick dashed line which corresponds to ∆1 = 0.
Simulation results are represented by cross marks.
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Fig. 13. Time-averaged MSE as a function of the convergence factor, when using the two
branches. ∆1 = 10−5 in all cases, except for the thick dashed line which corresponds to
∆1 = 0 and ∆2 = 0. Simulation results are represented by cross marks.

Fig. 13 shows the MSE when there exist errors in both frequency shifts. The curves correspond
to an error in the symbol rate ∆1 = 10−5 and different errors for the carrier frequency. In this
case, the minimum MSE is attained at a convergence factor such that the lag error of both
branches is compensated. However, compensating the error in the carrier frequency is critical,
while compensating the error in the symbol rate only produces a slight improvement. This
conclusion can be deduced from the curve for ∆2 = 10−7. Since ∆1 = 10−5, it is required a
convergence factor close to µ = 10−4 or higher in order to compensate the frequency-shift
error at the first branch (see Fig. 11). However, the excess MSE due to lag error is small
for µ = 10−6 or higher, where only the frequency-shift error at the second branch can be
compensated.
The analytical expression for the MSE has been obtained under some assumptions
(Gaussianity, small error conditions and input uncorrelated over time) which in practice are
only approximations, and also in the case studies presented. Therefore, in order to check its
accuracy, Figures 12 and 13 also include the MSE obtained by simulation, which is represented
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Parameter Min. value Max. value

INR (interference-to-noise ratio) -20 dB 20 dB

Ts2 (interference symbol interval) 1 sample 64 samples

fc2 (interference carrier frequency) 0 1

∆1 −10−5 10−5

∆2 −10−5 10−5

Table 1. Range of the random variables used in the simulation with a BPSK interference. The
INR is defined analogously to SNR. fc2 is normalized with the sampling rate. ∆1 and ∆2 are
the absolute cycle-frequency errors of the branches with cycle frequencies α1 = 1/Ts and
α2 = 2 fc, respectively.

by the lines with cross marks: 200 realizations have been used for the ensemble averages in
order to obtain the instantaneous MSE. Then, the instantaneous MSE has been time-averaged
over 200.000 samples after the convergence of the LMS. The agreement between theoretical
and simulation results is excellent in all cases, which confirms the validity of the assumptions
made.
A last case study is presented with a twofold purpose: 1) To demonstrate that the adaptive
algorithm compensates cycle-frequency errors also in the presence of interferences. 2) To
demonstrate that an adaptive algorithm different from the LMS exhibits a similar behavior.
For this reason, we shall use the RLS algorithm in this last case study, despite the lack of
an analytical expression for the MSE. The scheme for the adaptive FRESH filter presented in
Fig. 9 is valid also in this case study, but a BPSK interference having random parameters
has been added to the input, along with the BPSK signal and the noise defined for the
previous case studies. The errors in the frequency shifts of the FRESH filter are also random.
All random variables are constant at each trial, but change from trial to trial according an
uniform distribution within the ranges gathered in Table 1. As regards the RLS algorithm,
it is exponentially weighted with a convergence factor λ = 1 − µ, where µ is known as the
forgetting rate (Haykin, 2001). Also, we have used in this case study the BPSK signal as the
reference signal, so that the MSE does not depend on the random interference power.
Fig. 14 shows the MSE obtained by simulation (using 100 trials for computing the ensemble
averages and 20000 samples for the time averages). The results show the capability of the RLS
algorithm for compensating errors in the frequency shifts in the presence of the interference.
Otherwise, the RLS algorithm would have converged to a FRESH filter which cancels its
output, and the obtained MSE would have been equal to σ2

d . Analogously to the previous
case studies using the LMS algorithm, the RLS algorithm cannot compensate errors in the
frequency shifts if the forgetting rate is too small (slow convergence). In such a case, the
adaptive FRESH filter tends to cancel its output and the error is σ2

d . For moderate forgetting
rates, the cycle-frequency errors are compensated, and the MSE approaches ξmin. Contrarily,
an excessively high forgetting rate increases the MSE as a consequence of the gradient noise.
In summary, the possible existence of cycle-frequency errors in LAPTV filtering is a serious
problem that must be managed. When using the non-adaptive FRESH implementation, the
minimum time-averaged MSE is obtained when the branches with uncertainties in their
frequency shifts are not used (or equivalently, their output is cancelled). On the contrary,
adaptive-FRESH filters can work in the presence of errors in the frequency shifts. In such a
case, the adaptive-FRESH filter behaves as an LPTV filter for those branches with an error in
the frequency shift. In order to be effective, the rate of convergence of the adaptive algorithm
must be carefully chosen. The optimal rate of convergence results from the trade-off between
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Fig. 14. Simulated time-averaged MSE as a function of the forgetting rate of the RLS
algorithm, in the presence of a BPSK interference with random parameters.

decreasing the excess MSE due to gradient noise (slow rate of convergence) and decreasing
the excess MSE due to lag error (fast rate of convergence). The analytical expressions in
this section allow to compute the optimal convergence factor and the time-averaged MSE
at steady-state of the LMS-FRESH filter.

7. Adaptive FRESH filters for interference rejection in signal detection

Finally, we end this chapter with the description of a real application example of
adaptive-FRESH filters. The system developed in this section, previously presented
in (Yeste-Ojeda & Grajal, 2008), finds application in fields such as electronic warfare or
spectrum management. The increasing saturation of the radio-electric spectrum has led
modern radar and communication systems to employ complex signal waveforms capable
of operating under the presence of interferences. On the contrary, interception systems face
serious problems in the detectiong unknown or partially known signals if the signal of interest
(SOI) is hidden by temporally and spectrally overlapping interferences. Therefore, hostile
transmitters can take advantage of this fact and reduce their probability of interception by
following this strategy.
The problem dealt with in this section consists in detecting an unknown signal hidden by
an interference with known parameters when only one sensor is available. The SOI and the
interference are overlapped simultaneously in time and frequency, with the interference being
more powerful that the SOI. As the reader will have guessed, the solution adopted to solve
this problem is to exploit the cyclostationary properties of the interference in order to extract
it from the received signal. This procedure requires knowing, at least, the cyclic spectrum
of the interference. On the other hand, much work has been done when only the SOI cyclic
spectrum is known, mainly with the aim of robust signal detection and estimation (Gardner,
1993; Mirbagheri et al., 2006; Zhang et al., 1999). The approach in this section is significantly
different from these works, since it exploits the cyclostationarity of those signals to be
removed, i.e. the interference.
Our approach is based on a “divide and conquer” strategy, by which the global problem is split
into two sub-problems: A signal separation problem and a signal detection one. Firstly, the
interference is separated by means of a blind adaptive FRESH filter. Once the interference has

287Adaptive-FRESH Filtering

www.intechopen.com



30 Will-be-set-by-IN-TECH

Fig. 15. Block diagram of the interference rejection system.

been removed, the detection is performed on the residual, which is assumed to consist of only
the noise and the SOI.

7.1 The interference rejection system

This system is mainly based on an BAFRESH filter, following the scheme represented in
Fig. 15. This scheme is the same as the one represented in Fig. 7, but after rearranging it
so that the error signal is the output of the system, that is the input of the detection system.
Let the received signal be composed by the SOI, s(t), the interferences, u(t), and a stationary
white noise, r(t):

x(t) = s(t) + u(t) + r(t) (94)

where s(t), u(t), and r(t), are assumed to be independent from one another. If the
interferences were perfectly estimated, that is û(t) = u(t), the estimation error would only
consist of the SOI plus noise, ε(t) = s(t) + r(t). Thus, the input of the detector must be the
estimation error, ε(t), as indicated by Fig. 15.
The next step in the design of the FRESH filter is to choose a suitable set of frequency shifts.
Since the adaptive FRESH filters is blind, these cycle frequencies must belong uniquely to
the cyclic spectrum of the signal to be estimated, i.e. the interference. We shall follow the
strategy mentioned in Section 4 consisting in taking those cycle frequencies related with the
interferences which exhibit the highest spectral correlation level, with the exception of cycle
frequency zero for the branches not using the complex conjugate of the input. Since the cyclic
spectrum of the SOI is unknown, we can only assume that the chosen cycle frequencies do not
belong to its cyclic spectrum (which would be very infrequent in practice as the interference
and the SOI are transmitted by different sources).
Given the set of frequency shifts used, Γs, the adaptive FRESH filter will converge to the
optimum set of LTI filters, whose frequency response has been defined in (49). In our case, the
desired signal is the interference, which is the only signal correlated with the inputs of the LTI
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Fig. 16. Scheme for the whole interception system.

filters. As a result, the frequency response of the optimum set of LTI filters becomes:

WΓs
( f ) = [Sxx( f )]−1

S†
dx( f )

= [Sss( f ) + Suu( f ) + ηrIL]
−1

S†
uu( f )

(95)

where ηr is the noise Power Spectral Density (PSD), and IL is the identity matrix of size L × L.
In addition, the definition of the spectral correlation vector Suu( f ) is analogous to (50), while
the spectral autocorrelation matrices Sss( f ) and Suu( f ) are defined analogously to (51).

7.2 Intermediate whitening filter and FRESH filter training

Although the separation and detection problems have been considered independently, the
noise PSD at the output of the interference rejection system depends on the adaptive FRESH
filter and may change with time during the convergence of the adaptive algorithm. As a result,
it is advisable the use of an intermediate stage in order to effectively separate the detection
problem from the FRESH filter. A whitening filter previously to the detector (as indicated in
Fig. 16) can do this task, so that the detector can be designed for a white noise. The optimum
detector to be used depends on the specific SOI to be detected. The whitening filter is defined
as the inverse of the squared root of the noise PSD at the output of the separator. This output
consists of the white noise at the input plus the noise leakage at the output of the FRESH filter,
which can be expressed as a function of the FRESH filter vector. Therefore, the frequency
response of the whitening filter becomes:

Hw( f ) =
1√

1 + |WΓs
( f )|2

(96)

Moreover, using an adaptive algorithm requires some training time, during which the
detector decisions could be wrong. The scheme proposed in Fig. 16 consists of a branch for
training the interference rejection system which incorporates the adaptive FRESH filter, and
an independent non-adaptive FRESH filter which effectively performs the signal separation
task and is the one connected to the detector. The coefficients of the non-adaptive FRESH
filter are fixed once the adaptive one has converged. This requires some mechanism for
controlling the beginning and ending of a learning interval, in which the detector decisions are
considered wrong. Such a mechanism might be based on monitoring the power variations of
the interferences estimate and the SOI plus noise estimate, updating the non-adaptive FRESH
system when both powers stabilize.

7.3 Application

Finally, let us quantify the performance of the described interception system through a case
study whose scenario is represented in Fig. 17. In that scenario, the SOI is a Continuous-Wave
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Fig. 17. Scenario for the detection of a CW-LFM signal hidden by a DS-BPSK interference.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

frequency, (normalized)

P
o
w

e
r 

s
p
e
c
tr

a
l 
d
e
n
s
it
y
, 
(d

B
)

SOI (radar, CW−LFM)

Interference (DS−BPSK)

Noise

Fig. 18. PSD of noise, the CW-LFM signal (SOI) and the DS-BPSK interference (interference).
SNR and INR fixed at 0 dB.

Linear Frequency Modulated (CW-LFM) radar signal which is being transmitted by a hostile
equipment and, therefore, unknown. This signal is intentionally transmitted in the spectral
band of a known Direct-Sequence Binary Phase Shift Keying (DS-BPSK) spread-spectrum
communication signal, with the aim of hindering its detection. The SOI sweeps a total
bandwidth of BW = 20 MHz with a sweeping time Tp = 0.5 ms, while the DS-BPSK
interfering signal employs a chip rate 1/Tc = 10.23 Mcps. The PSDs of the SOI, the
interference and the noise are shown in Fig. 18.
The structure of the FRESH filter is designed based on a previous study of the performance of
the sub-optimal FRESH filters. As a result, the interference rejection system incorporates an
adaptive FRESH filter consisting of 5 branches, each one using a FIR filter of 1024 coefficients.
The frequency shifts of the FRESH filter correspond to the 5 cycle frequencies of the DS-BPSK
interference with the highest spectral correlation level, which are (Gardner et al., 1987):
{±1/Tc} for the input x(t), and {2 fc, 2 fc ± 1/Tc} for the complex conjugate of the input
x∗(t); where fc is the carrier frequency and Tc is the chip duration of the DS-BPSK interference.
The adaptive algorithm used is Fast-Block Least Mean Squares (FB-LMS) (Haykin, 2001), with
a convergence factor µ = 1.
Next, we present some simulation results on the interception system performance obtained
after the training interval has finished. Firstly, the improvement in the SIR obtained at the
output of the interference rejection system is represented in Fig. 19, as a function of the input
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Signal-to-Interference-plus-Noise Ratio (SINR), for several values of Interference-to-Noise
Ratio (INR). Two main results are revealed in Fig. 19:

1. The SIR improvement tends to zero as the SINR increases, because the SOI is powerful
enough to mask the interference which makes the FRESH filter fail to estimate the
interference. This is corroborated through Fig. 20, where the simulated INR at the output
of the interference rejection system is shown. For high enough input SINR, the ouput
INR matches the input INR, indicating that the FRESH filter cannot extract any of the
interference power. This allows to define a “useful region”, where the interference rejection
system obtains a significant SIR improvement. In our example, the useful region comprises
an input SINR≤ 0 dB.

2. The SIR improvement saturates for high input INR values, which is shown by the fact that
the SIR improvement for INR= 40 dB matches the curve obtained for INR= 30 dB. This is
a limitation is due to the adaptive algorithm and does not appear when the optimal FRESH
filter is used instead.

3. In addition, although it seems logical that the output INR increases with the input one,
Fig. 20 reveals that this is not true for low input SINR and INR. The reason is that the
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Fig. 21. Degradation of the PFA when the interference is present (with the interference
rejection system).

interference becomes masked by noise if the input INR is low enough (i.e. INR= 0 dB).
As the input INR increases, the interference rejection system increases its effectiveness, so
that the output INR decreases. That is why the output INR is lower for INR= 10 dB and
INR= 20 dB than for INR= 0 dB.

The output INR can provide an idea about the degradation of the probability of false alarm
(PFA) of the detector (the probability of detection when the SOI is not present). However,
each particular detector is affected in a different way. We shall illustrate this fact with two
different detectors. The first one is an energy detector (ED), which consists of comparing the
total energy to a detection threshold set to attain a desired PFA. The second one is a detector
based on atomic decomposition (AD), such as that proposed in (López Risueño et al., 2003).
This detector exhibits an excellent performance for LFM signals, as the SOI considered in our
case study. The AD-based detector can be thought as a bank of correlators or matched filters,
each one matched to a chirplet (a signal with Gaussian envelope and LFM), whose maximum
output is compared to a detection threshold. Both detectors process the signal by blocks,
taking a decision each 1024 samples.
Fig. 21 shows the degraded PFA of the whole interception system in the presence of the
interference, and when the detection threshold has been determined for an input consisting
of only noise. The curves clearly show the different dependence of the PFA of both detectors
on the input INR. The energy detector exhibits a higher sensitivity to the interference than
the AD-based one. Thus, the AD-based detector visibly degrades its PFA only for an input
INR= 40 dB and above. On the contrary, ED always exhibits a degraded PFA in the presence
of the interference due to the energy excess, which is proportional to the output INR shown
in Fig. 20.
Finally, we end this application example by showing the sensitivity improvement of the
interception system obtained thanks to the interference rejection system. The sensitivity is
defined as the SNR at the input of the interception system required to attain an objective
probability of detection (PD = 90%), for a given probability of false alarm (PFA = 10−6). Thus,
the detection threshold takes a different value depending on the input INR so that the PFA

holds for all the INR values. The simulation results are gathered in Tab. 2, with all values
expressed in dB. At each INR value, the sensitivities of both detectors, AD and ED, with and
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With interf. rej. system Without interf. rej. system Sensitivity improvement

INR AD ED AD ED AD ED

−∞ -12.1 -6.1 -12.1 -6.1 0.0 0.0

0 -9.6 -4.3 -4.0 -3.5 5.6 0.8

10 -9.0 -4.3 5.8 1.1 14.8 5.4

20 -9.2 -4.3 15.9 6.8 27.1 11.1

30 -8.3 -3.4 26.0 14.3 34.3 17.7

40 -4.1 -0.5 35.8 21.6 39.9 22.1

Table 2. Sensitivity (SNR, dB) for the CW-LFM signal as a function of the INR. PFA = 10−6,
PD = 90%.

without the interference rejection system, are shown. The sensitivity improvement obtained
by using the interference rejection system is also shown.
As can be seen, the improvement is very significant and proves the benefit of using the
interference rejection system. Moreover, the improvement is higher for increasing input INR.
However, there is still a sensitivity degradation as the INR increases due to an increase in the
detection threshold and/or a distortion produced by the interference rejection system to the
SOI because of the signal leakage at the FRESH output (the latter only applies to AD, since ED
is insensitive to the signal waveform). And, as expected, the AD-based detector outperforms
ED (López Risueño et al., 2003).

8. Summary

This chapter has described the theory of adaptive FRESH filtering. FRESH filters
represent a comprehensible implementation of LAPTV filters, which are the optimum
filters for estimating or extracting signal information when the signals are modelled as
almost-cyclostationary stochastic processes. When dealing with complex signals, both the
signal and its complex conjugate must be filtered, resulting in WLAPTV filters. The
knowledge required for the design optimal FRESH filters is rarely available beforehand in
practice, which leads to the incorporation of adaptive scheme. Since FRESH filters consist
of a set of LTI filters, classical algorithms can be applied by simply use the stationarized
versions of the inputs of these LTI filters, which are obtained by time-averaging their statistics.
Then, the optimal set of LTI filters is given by the multidimensional Wiener filter theory.
In addition, thanks to their properties of signal separation in the cycle frequency domain,
adaptive FRESH filters can operate blindly, that is without reference of the desired signal,
by simply using as frequency shifts the cycle frequencies belonging uniquely to the desired
signal cyclic spectrum. Furthermore, adaptive FRESH filters have the advantage of being able
to compensate small errors in their frequency shifts, which can be present in practice due to
non-ideal effects such as Doppler or the oscillators stability. In this case, the convergence rate
of the adaptive algorithm must be carefully chosen in order to simultaneously minimize the
gradient noise and the lag errors. The chapter is finally closed by presenting an application
example, in which an adaptive FRESH filter is used to suppress known interferences for an
unknown hidden signal interception system, demonstrating the potentials of adaptive FRESH
filters in this field of application.
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