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1. Introduction  

1.1 Background 

In ordinary channel equalizer and multi-antenna system, many types of detecting methods 
have been proposed to compensate the distorted signals or recover the original symbols of 
the desired user [1]-[3]. For channel equalization, transversal equalizers (TEs) and decision 
feedback equalizers (DFEs) are commonly used as a detector to compensate the distorted 
signals [2]. It is well-known that a DFE performs significantly better than a TE of equivalent 
complexity [2]. As to a multi-user-multi-antenna system, adaptive beamforming (BF) 
detectors have provided practical methods to recover the symbols of the desired user [3]. 
Many classical optimization algorithms, such as minimum mean-squared error (MMSE) [1]-
[4], minimum bit-error rate (MBER) [5]-[9], adaptive MMSE/MBER training methods [6], 
[10]-[12] and the bagging (BAG) adaptive training method [13], are proposed to adjust the 
parameters of the above mentioned classical detectors (i.e., TE, DFE and BF).  
Due to the optimal nonlinear classification characteristics in the observed space, Bayesian 
decision theory derived from maximum likelihood detection [15] has been extensively 
exploited to design the so-called Bayesian TE (BTE) [14]-[15], Bayesian DFE (BDFE) [16]-[17] 
and Bayesian BF (BBF) [18]-[19]. The bit-error rate (BER) or symbol-error rate (SER) results 
of Bayesian-based detectors are often referred to as the optimal solutions, and are extremely 
superior to those of MMSE, MBER, adaptive MMSE (such as least mean square algorithm 
[1]), adaptive MBER (such as linear-MBER algorithm [6]) or BAG-optimized detector. The 
BTE, BDFE and BBF can be realized by the radial basis functions (RBFs) [14], [17], [19]-[23]. 
Classically, the RBF TE, RBF DFE or RBF BF is trained with a clustering algorithm, such as k-
means [14], [17], [24] and rival penalized competitive learning (RPCL) [25]-[31]. These 
clustering techniques can help RBF detectors find the center vectors (also called center units 
or centers) associated with radial Gaussian functions.  

1.2 Motivation of FSCFNN equalization with decision feedback 

The number of radial Gaussian functions of a RBF TE, i.e., the number of hidden nodes or 
the number of RBF nodes, can be obtained from a prior knowledge. The mathematical 
operation with respect to the equalizer order and the channel order can readily determine 
the number of hidden nodes [14, 16, 20]. However, if the channel order or equalizer order 
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increases linearly, the number of hidden nodes in RBF TE grows exponentially, so do the 
computation and hardware complexity [20]. Trial-and-error method is an alternative way to 
determine the number of hidden nodes of RBF.  
Except the clustering RBF detectors, there are other types of nonlinear detectors, such as 
multilayer perceptrons (MLPs) [32]-[38], adaptive neuro fuzzy inference system (ANFIS) 
[39]-[41] and self-constructing recurrent fuzzy neural networks (SCRFNNs) [42]-[44]. 
Traditionally, MLP and ANFIS detectors are trained by the back-propagation (BP) learning 
[32], [34], [35], [38], [40]. However, due to the improper initial parameters of MLP and 
ANFIS detectors, the BP learning often results in an occurrence of local minima which can 
lead to bad performance [38]. Recently, evolution strategy (ES) has been also used to train 
the parameters of MLP and ANFIS detectors [36], [41]. Although the ES inherently is a 
global and parallel optimization learning algorithm, tremendous computational costs in the 
training process make it impractical in modern communication environments. In addition, 
the structures (i.e., the numbers of hidden nodes) of MLP and ANFIS detectors must be 
fixed and assigned in advance and determined by trial-and-error method. 
In 2005, the SCRFNN detector and its another version, i.e., self-constructing fuzzy neural 
network (SCFNN), have been applied to the channel equalization problem [43]-[44]. 
Specifically, the SCRFNN or SCFNN equalizers perform both self-constructing process and 
BP learning process simultaneously in the training procedure without the knowledge of 
channel characteristics. Initially, there are no hidden nodes (also called fuzzy rules 
hereinafter) in the SCRFNN or SCFNN structure. All of the nodes are flexibly generated 
online during the self-constructing process that not only helps automate structure 
modification (i.e., the number of hidden nodes is automatically determined by the self-
constructing algorithm instead of the trial-and-error method) but also locates good initial 
parameters for the subsequent BP algorithm. The BER or SER of the SCRFNN TE and 
SCFNN TE thus is extremely superior to that of the classical BP-trained MLP and ANFIS 
TEs, and is close to the optimal Bayesian solution. Moreover, the self-constructing process of 
SCRFNN and SCFNN can construct a more compact structure due to setting conditions to 
restrict the generation of a new hidden node, and hence SCRFNN and SCFNN TEs results in 
lower computational costs compared to traditional RBF and ANFIS TEs.  
Although the SCRFNN TE and SCFNN TE in [43-44] have provided a scheme to obtain 
satisfactory BER and SER performance with low computational complexity, it doesn’t take 
advantage of decision feedback signals to improve the detecting capability. In Section 2, a 
novel DFE structure incorporated with a fast SCFNN learning algorithm is presented. We 
term it as fast SCFNN (FSCFNN) DFE [58]. FSCFNN DFE is composed of several FSCFNN 
TEs, each of which corresponding to one feedback input vector. Because the feedback input 
vector occurs independently, only one FSCFNN TE is activated to decide the estimated 
symbol at each time instant. Without knowledge of channel characteristics, the 
improvement over the classical SCRFNN or SCFNN TE can be achieved by FSCFNN DFE in 
terms of BER, computational cost and hardware complexity. 
In modern communication channels, a time-varying fading caused by Doppler effect [33], 
[37], [49] and a frequency offset casued by Doppler effect and/or mismatch between the 
frequencies of the transmitter and receiver oscillators are usually unavoidable [45]. 
Moreover, a phase noise [45] also may exist due to distorted transmission environment 
and/or imperfect oscillators. Therefore, these distortions need to be compensated at the 
receiver to avoid a serious degradation. To the best of our knowledge, most of the work in 
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the area of nonlinear TE or DFE over the past few decades focuses on the time-invariant 
channels. Therefore, the simulations of the FSCFNN DFE and the other nonlinear equalizing 
methods will be investigated in Section 2.3 under the linear and nonlinear channels with 
time-invariant or time-varying environment. 

1.3 Motivation of adaptive RS-SCFNN beamformer 

As mentioned in Section 1.1, for multi-antenna systems, classical adaptive BFs are 
designed based on the MMSE or MBER algorithm [1], [3], [6], [8], [11], [19]. This classical 
MMSE or MBER beamforming design requires that the number of users supported is  
no more than the number of receiving antenna elements [19], [46]. If this condition is not 
met, the multi-antenna system is referred to as overloaded or rank-deficient. Moreover, 
BER performance of MMSE and MBER beamformers in the rank-deficient system will be 
very poor. Due to the nonlinear classification ability as mentioned in Section 1.1, the  
BBF realized by a RBF detector has shown a significant improvement over the MMSE and 
MBER ones, especially in the rank-deficient multi-antenna system [19], [47], [48]. Recently, 
a symmetric property of BBF [8] is exploited to design a novel symmetric RBF (SRBF)  
BF [47]-[48]. This SRBF BF can obtain better BER performance and simpler training 
procedure than the classical RBF one. Differing from the clustering method, the  
MBER method [47] based on a stochastic approximation of Parzen window density 
estimation also can be used to train the parameters of RBF as demonstrated in [47]. 
Unfortunately, RBF BF trained by an enhanced k-means clustering [48] or the MBER 
algorithm still needs large amounts of hidden nodes and training data to achieve 
satisfactory BER performance.  
To the best of our knowledge, all existing SCFNN detectors are designed for single-user 
single-antenna assisted systems. In Section 3, we thus propose to incorporate the SCFNN 
structure into multi-antenna assisted beamforming systems with the aid of a symmetric 
property of array input signal space. This novel BF is called symmetric SCFNN (S-
SCFNN) BF. The training procedure of this S-SCFNN also contains self-constructing and 
parameter training phases. Although S-SCFNN BF has better BER performance and lower 
BF complexity than the standard SCFNN one, the BF complexity is still huge at low 
signal-to-noise (SNR) ratios. Thus, a simple inhibition criterion is added to the self-
constructing training phase to greatly reduce the BF complexity, and this low-complexity 
S-SCFNN is called reduced S-SCFNN (RS-SCFNN). The simulation results have shown 
that the RS-SCFNN BF extremely outperforms the BFs incorporated with MMSE, MBER, 
SRBF and the classical SCFNN detectors in the rank-deficient multi-antenna assisted 
systems. Besides, the proposed SCFNN BF can flexibly and automatically determine 
different numbers of hidden nodes for various SNR environments, but, as discussed in 
Section 3.3, the RBF detector must assign hidden node’s numbers as a fix constant for 
various SNR environments before training. Although the RBF BF can also assign the 
various numbers of hidden nodes for different SNRs, it needs huge manpower to achieve 
this goal. 

2. Self-constructing fuzzy neural filtering for decision feedback equalizer  

Classical equalizers, such as a transversal equalizer (TE) and a decision feedback equalizer 
(DFE), usually employ linear filters to equalize distorted signals. It has been shown that 
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the mean square error (MSE) for a DFE is always smaller than that of a TE, especially 
when the channel has a deep spectral null in its bandwidth [2]. However, if the channel 
has severely nonlinear distortions, classical TE and DFE perform poorly. Generally 
speaking, the nonlinear equalization techniques proposed to address the nonlinear 
channel equalization problem are those presented in [14], [16], [17], [22], [32], [35], [39], 
[44], [54]. Chen et al. have derived a Bayesian DFE (BDFE) solution [16], which not only 
improves performance but also reduces computational cost compared to the Bayesian 
transversal equalizer (BTE). Based on the assumption that the channel order nh has been 
known, i.e., the channel order nh has been successfully estimated before detection process, 
a radial basis function (RBF) detection can realize the optimal BTE and BDFE solutions 
[14], [16]. However, as the channel order or/and the equalizer order increases, the 
computational cost and memory requirement will grow exponentially as mentioned in 
Section 1.2. 
A powerful nonlinear detecting technique called fuzzy neural network (FNN) can make 
effective use of both easy interpretability of fuzzy logics and superior learning ability of 
neural networks, hence it has been adopted for equalization problems, e.g. an adaptive 
neuro fuzzy inference system (ANFIS)-based equalizer [39] and a self-constructing recurrent 
FNN (SCRFNN)-based equalizer [44]. Multilayer perceptron (MLP)-based equalizers [32], 
[35] are another kind of detection. Both FNN and MLP equalizers do not have to know the 
channel characteristics including the channel order and channel coefficients. For ANFIS and 
MLP nonlinear equalizers, the structure size must be fixed by trial-and-error method in 
advance, and all parameters are tuned by a gradient descent method. As to SCRFNN 
equalizer, it can simultaneously tune both the structure size and the parameters during its 
online learning procedure. Although the SCRFNN equalizer has provided a scheme to 
automatically tune the structure size, it doesn’t derive an algorithm to improve the 
performance with the aid of decision feedback symbols. Thus, a novel adaptive filtering 
based on fast self-constructing neural network (FSCFNN) algorithm has been proposed with 
the aid of decision feedback symbols [58]. 

2.1 Equalization model with decision feedback 

A general DFE model in a digital communication system is displayed in Figure 2.1 [2]. A 
sequence, {s(n)}, extracted from a source of information is transmitted and the transmitted 
symbols are then corrupted by channel distortion and buried in additive white Gaussian 
noise (AWGN). Then, the channel with nonlinear distortion is modeled as  

 
0

ˆ( ) ( ( )) ( ) ( ) ( )
hn

i
i

r n g r n v n g h s n i v n


 
      

 
 , (2.1) 

where ( )g   is a nonlinear distortion, hi is the channel coefficient of the linear FIR channel 
ˆ( )r n  with length nh + 1 (nh is also called channel order), s(n) is the transmitted symbol at the 

time instant n, and v(n) is the AWGN with zero mean and variance 2
v . The standard DFE is 

characterized by the three integers Nf, Nb and d known as the feedforward order, feedback 
order, and decision delay, respectively. We define the feedforward input vector at the time 
instant n as the sequence of the noisy received signals {r(n)} inputting to the DFE, i.e., 
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Fig. 2.1 General equalization model with decision feedback 
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 sf(n) = [r(n),r(n-1),...,r(n-Nf+1)]T. (2.2) 

The feedback input vector that inputs into the DFE at the time instant n can be defined as 
the decision sequence, i.e., 

 sb(n) = [u(n),u(n-1),...,u(n-Nb+1)]T = [ ŝ (n-d-1), ŝ (n-d-2),..., ŝ (n-d-Nb)]T. (2.3) 

The output of the DFE is y(n) and it is passed through a decision device to determine the 
estimated symbol ŝ (n-d) of the desired symbol s(n-d).  
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2.2 Adaptive FSCFNN decision feedback equalizer 

A. Novel DFE design 

The FSCFNN DFE structure shown in Figure 2.2 [58] consists of feedforward section, 
feedback section and FSCFNN section. The feedforward and feedback sections contain the 
signal vectors sf(n) and sb(n), where the notations Nf and Nb have been defined in Section 2.1. 
We assume that the FSCFNN section contains Ns FSCFNN equalizers. The transmitted 
sequence {s(n)} is assumed to be an equiprobable and independent binary sequence taking 
+1 or –1 in this section. Thus, the estimated symbol can be easily determined by  

 1

2

1,  ( ) 0
ˆ( )

1,  ( ) 0

s if y n
s n d

s if y n

  
     

   (2.4) 

Usually, the feedback input vector sb(n) in the training mode is formed by the known 
training symbols, i.e., 

 sb(n) = [s(n-d-1),s(n-d-2),...,s(n-d-Nb)]T.   (2.5) 

Without loss of generality, we can select Nf = d + 1, where d is chosen by a designer. 
Increasing d may improve performance, but reducing d reduces equalizer complexity. In this 
section, we set d = 1. 
It is clear that the channel equalization process can be viewed as a classification problem, 
which seeks to classify observation vectors into one of the classes. Thus, we apply the principle 
of classification to designing the FSCFNN DFE. Suppose, at each time instant n, there are Nt 
transmitted symbols that will influence the decision output y(n) of FSCFNN DFE: 

 st(n) = [s(n),...,s(n-d-1),...,s(n-d-Nb),...,s(n-Nt+1)]T,  (2.6) 

where the value 1t bN d N    is determined by the channel order nh. Since we assume that 

the FSCFNN DFE doesn’t estimate the channel order nh in advance, the value Nt will be 
unknown. Obviously, the sequence st(n) at the time instant n contains the correct feedback 
input vector sb(n). Moreover, as st(n) sequentially going through a channel, the feedforward 

input vector sf(n) is then generated. Clearly, the set of st(n) can be partitioned into 2 bN  

subsets due to sb(n) involving 2 bN  feedback states, denoted as sb,j, j = 1 ~ 2 bN . Therefore, the 

set Rd = {sf(n)} associated with feedforward input vectors can be also divided into 2 bN  
subsets according to the feedback states: 

 ,1 2Nbd d jj
R R

 
  (2.7) 

where Rd,j = {sf(n)|sb(n)=sb,j}, . Since each feedback state sb,j occurs independently, the 
FSCFNN DFE uses 2 bN

sN   FSCFNN detectors to separately classify the Ns feedforward 

input subsets Rd,j into 2 classes. Thus, for the feedforward input vectors belonging to Rd,j, the 
jth FSCFNN detector corresponding to Rd,j will be exploited as shown in Figure 2.2 to 
further classify subset Rd,j into 2 subsets according to the value of s(n-d), i.e., 

 ( )
, ,1 2

i
d j d ji

R R
 

  (2.8) 
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where ( )
, { ( ) ( ( ) ) ( ( ) )}i

id jR n n s n d s    f b b, js s s , i = 1, 2. Thus, a feedfoward input vector 

with sb,j being its feedback state can be equalized by solely observing subset Rd,j 
corresponding to the jth FSCFNN detector.  

B. Learning of the FSCFNN with decision feedback 

If the FSCFNN DFE (Figure 2.2) receives a feedforward input vector sf(n) with  sb(n)=sb,j at n, 
the j-th FSCFNN detection will be activated as mentioned above. The structure of this j-th 
FSCFNN detection is shown in Figure 2.3. The output of the j-th FSCFNN detector is 
defined as 

 
( ) (3)

, ,1
( ) ( ) ( )jK n

j k j k jk
O n n O n


   (2.9) 
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Fig. 2.3 Structure of the j-th FSCFNN 

where Kj(n) is the number of rule in the j-th FSCFNN detector, wk,j(n) is the consequent 
weight of the k-th rule in the j-th FSCFNN detector, and mkp,j(n) and σkp,j(n) are the mean and 

standard deviation of the Gaussian membership function (3)
, ( )k jO n  corresponding to k-th rule 

in the j-th FSCFNN detector. Finally, the output value of FSCFNN DFE (Figure 2.2) at n is 
expressed as y(n) = Oj(n). 
Based on the self-constructing and parameter learning phases in SCRFNN structure [44], a 
fast learning version [58] has been proposed for FSCFNN DFE to further reduce the 
computational cost in the training period. Similarly, there are no fuzzy rules initially in each 
FSCFNN detector. As sb(n)=sb,j at n, the proposed fast self-constructing and parameter 
learning phases are performed simultaneously in the j-th FSCFNN structure. In the self-
constructing learning phase, we use two measures to judge whether to generate the hidden 
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node or not. The first is the measure of the system error ˆ( ) ( )s n d s n d      for considering 

the generalization performance of the overall network. The second is the measure of the 

maximum membership degree (3)
max ,max ( )k k jO n  . Consequently, for a feedforward input 

vector sf(n) with sb(n)=sb,j, the fast learning algorithm contains three possible scenarios to 
perform the self-constructing and parameter learning phases: 
a. 0   and max min  : It shows that the network obtains an incorrect estimated symbol 

and no fuzzy rule can geometrically accommodate the current feedforward input vector  
sf(n). Our strategy for this case is to try improving the entire performance of the current 
network by adding a fuzzy rule to cover the vector sf(n) , i.e., Kj(n+1) = Kj(n) + 1. The 
parameters associated with the new fuzzy rule in the antecedent part of the j-th 
FSCFNN are initialized the same as those of SCRFNN: 

 , ,( ) ( ),     ( )new j new jn n n   fm s σ I  (2.11) 

where σ is set as 0.5 in this chapter.  
b. 0   and max min  : This means that the network obtains an incorrect estimated 

symbol but at least one fuzzy rule can accommodate the vector sf(n). Thus the 
parameter learning can be used here to improve the performance of the network and no 
fuzzy rule should be added. 

c. 0   This means that the network has obtained a correct estimated symbol. Thus, it is 
unnecessary to add a rule, but the parameter learning is still performed to optimize the 
parameters. 

As to the parameter learning used in the above scenarios (a)-(c), any kind of gradient 
descent algorithms can be used to update the parameters.  

2.3 Simulation results 

The performance of the FSCFNN DFE will be examined in time-invariant and time-
varying channels in this sub-section. Table 2.1 shows the transfer functions of the 
simulated time-invariant channels. For comparisons, SCRFNN [44], ANFIS DFE with 16 
rules [39], RBF DFE [16] and BDFE [16], [17] are added in the experiments. The parameters 
Nf = 2 and Nb = 2 are chosen for the equalizers with decision feedback. The SCRFNN 
equalizer with 2 taps is performed without decision feedback as mentioned above. The 
RBF DFE with the k-means algorithm works under the assumption of the perfect 
knowledge of the channel order [16], [20]. The performance is determined by taking an 
average of 1000 individual runs, each of which involves a different random sequence for 
training and testing. The testing period for each individual run has a length of 1000. The 
size of training data will be discussed later. 
 

Channel Transfer function 

Channel A [21] 
H(z) = 0.348z0 + 0.870z-1 + 0.348z-2

HA(z) = H(z) + 0.2H2(z) 

Channel B [14] [37] HB(z) = 0.348z0 + 0.870z-1 + 0.348z-2

Table 2.1 Transfer functions of the simulated channels 
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A. Time-invariant channel  

Several comparisons are made with various methods for the nonlinear time-invariant 
channel A. Figure 2.4 shows the BER performance and average numbers of fuzzy rules 
needed in computation for FSCFNN DFE under various values min  in a different length of 
training. Clearly, the results of BER performance are similar if min 0.05  , but the numbers 
of rules are increased as min  grows. Moreover, it shows that the needed training data size 
for FSCFNN DFE is about 300. Figure 2.5 demonstrates the BER performance and average 
numbers of rules for various methods. The SCRFNN with min 0.00003   is used in this 
plot. The FSCFNN DFEs with min 0.5   and min 0.05   are respectively denoted as 
FSCFNN DFE(A) and FSCFNN DFE(B) in this plot. Obviously, the FSCFNN DFEs are 
superior to the other methods. Because we want to obtain satisfactory BER performance, 
both 400 training data size for various methods and min 0.05   for FSCFNN DFE will be set 
in the following simulations.  
 

 

          
Fig. 2.4 Performance of FSCFNN DFE for various values min  with a different length of 

training in the time-invariant channel A as SNR = 18 dB: (a) BER (b) Numbers of fuzzy rules 

Figure 2.6 illustrates the performance of various methods at different SNRs. Note that the 
BERs in SNR = 20 dB are gained by averaging 10000 runs for accurate consideration. 
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Without knowledge of the channel, FSCFNN DFE improves the BER performance close to 
optimal BDFE solutions in satisfactory low numbers of rules.  
Figures 2.7 & 2.8 show examples of the fuzzy rules generated by SCRFNN equalizer and 
FSCFNN DFE as SNR = 18 dB. The channel states and decision boundaries of the optimal 
solution are also plotted. The j-th FSCFNN detector can geometrically cluster the 
feedforward input vectors associated with sb(n)=sb,j, and in Figure 2.8, only 2 fuzzy rules in 
each FSCFNN are generated. Because the SCRFNN equalizer needs to cluster the whole 
input vectors, 4 fuzzy rules are created to attain this purpose (Figure 2.7). Therefore, 
FSCFNN DFE requires lower computational cost than SCRFNN in the learning or 
equalization period. In Figure 2.8, the optimal decision boundaries for four types of 
feedforward input vector subsets Rd,j are almost linear, but the optimal decision boundary in 
SCRFNN is nonlinear. It also implies that classifying the distorted received signals into 2 
classes in FSCFNN DFE is easier than that in SCRFNN equalizer. This is the main reason 
that the BER performance of FSCFNN DFE is superior to that of the classical SCRFNN 
equalizer.  

B. Time-varying channel 

The FSCFNN DFE is tested on time-varying channel environments. The following linear 
multipath time-varying channel model is used: 

 r(n) = h1(n)s(n) + h2(n)s(n-1) + h3(n)s(n-2) + v(n) (2.15) 

where hi(n) represents the time-varying channel coefficients. We use a second-order low-
pass digital Butterworth filter with cutoff frequency fd to generate a time-varying channel 
[49], [55], where the value fd determines the relative bandwidth (fade rate) of the channel 
time variation. The input to the Butterworth filter is a white Gaussian sequence with 
standard deviation ξ = 0.1. Then, a colored Gaussian output sequence is generated by this 
Butterworth filter, and is regarded as a time-varying channel coefficient. These time-varying 
coefficients can be further processed by centering the h1(n) at 0.348, h2(n) at 0.87 and h3(n) at 
0.348. The linear time-varying channel B then is made.  
 
 

 
 

Fig. 2.5 Performance of various methods with a different length of training in the time-
invariant channel A as SNR = 18 dB: (a) BER (b) Numbers of fuzzy rules 
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Fig. 2.6 Performance of various methods for different SNRs in the time-invariant channel A: 
(a) BER (b) Numbers of fuzzy rules  

 

 
Fig. 2.7 Fuzzy rules generated by trained SCRFNN (ellipse), channel states (small circles) 
and optimal decision boundary (line) in the time-invariant channel A as SNR = 18dB 

Figure 2.9 shows the performance of various methods for different fd in time-varying 
channel B. Because the fade rate fd in a real world is usually no larger than 0.1, thus we run 
the simulations from fd = 0.02 (slowly time-varying) to fd = 0.18 (fast time-varying). The 
FSCFNN DFEs with min 0.95   and min 0.05   are, respectively, denoted as FSCFNN 
DFE(A) and FSCFNN DFE(B) here. Besides, the values min  in SCRFNN(A) and 
SCRFNN(B) are set as 0.00003 and 0.003, respectively. When the value of min  is large 
enough, the BER performance of FSCFNN DFE for various time-varying environments may 
be satisfactory. Also, numbers of rules in FSCFNN DFE are increased as min  grows. 
Because the FSCFNN DFE(B) has better performance in both time-varying channels B and C 
than the classical equalizers, the value min 0.05   is used in the following simulations of 
this paper. 
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Fig. 2.8 Fuzzy rules generated by trained FSCFNN DFE (ellipse), channel states (small 
circles) and optimal decision boundaries (lines) for four feedback input vectors in the time-
invariant channel A as SNR = 18dB 

Figure 2.10 shows the performance of various methods for different SNRs in time-varying 
channel B. The SCRFNN equalizer with min 0.003   is used here for obtaining satisfactory 

performance. Note that the BER results as SNR = 18 dB in Figure 2.10(a) are gained by 
averaging 10000 runs for accurate consideration. The BER performance of FSCFNN DFE is 
slightly better than that of RBF DFE. However, the RBF DFE is assumed that the perfect 
knowledge of the channel order is acquired in advance for simulations. Similarly, numbers 
of rules needed in computation for FSCFNN DFE are the best.  
 
 

 
 

Fig. 2.9 Performance of various methods for different fd in the time-varying channel B as 
SNR = 16 dB: (a) BER (b) Numbers of rules 
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Fig. 2.10 Performance of various methods for different SNRs as fd = 0.1 in the time-varying 
channel B (a) BER (b) Numbers of rules 

3. Self-constructing fuzzy neural filtering for multi-antenna systems  

Adaptive beamforming technology [3], [6], [8], [11], [18], [19], [46]-[48], [56] has been widely 
applied in smart antenna systems that can increase user’s capacity and coverage in modern 
communication products. In this section, a powerful reduced symmetric self-constructing 
fuzzy neural network (RS-SCFNN) beamformer is presented for multi-antenna assisted 
systems. A novel training algorithm for the RS-SCFNN beamformer is proposed based on 
clustering of array input vectors and an adaptive minimum bit-error rate (MBER) method. 
An inherent symmetric property of the array input signal space is exploited to make training 
procedure of RS-SCFNN more efficient than that of standard SCFNN. In addition, the 
required amount of fuzzy rules can be greatly reduced in the RS-SCFNN structure. 
Simulation results demonstrate that RS-SCFNN beamformer provides superior performance 
to the classical linear ones and the other nonlinear ones, including symmetric radial basis 
function (SRBF), SCFNN and S-SCFNN, especially when supporting a large amount of users 
in the rank-deficient multi-antenna assisted system. 

3.1 Multi-antenna array model 

A uniformly spaced linear array is studied with L identical isotropic elements in this section, 
and the distance between the elements is represented by d. The plane waves impinge on the 
array in a θ angle in relation to the normal to the array and the difference of distance along 
one of the two adjacent ways is dsinθ. Note that the multi-antenna array model is completely 
the same as that in [6], [19], [46], [47], [57]. It is assumed that the system supports M users, 
and each user transmits a modulated signal on the same carrier frequency of ω = 2πf. Then, 
the complex-valued signals received by the L-element antenna array are given by 

 
1

( ) ( )exp( ( )) ( )
M

l i i l i l
i

x n A b n j t v n 


   (3.1) 

where 1 l L  , ( ) ( ) ( )R I
l l lx n x n jx n   is the complex-valued array input signal of the lth 

linear array element, n denotes the bit instance, the ith user’s signal bi(n) is assumed to be a 
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binary signal taking from the set {±1} with equal probability, 2
iA  denotes the signal power 

of user i, ( ) [( 1) sin ]l i it l d c    [57] is the relative time delay at element l for user i, θi is the 

direction of arrival (DOA) for user i, c is speed of light and ( )lv n  is the complex-valued 

white Gaussian noise having a zero mean and a variance of 22 v . Without loss of generality, 

user 1 is assumed to be a desired user and the rest of the users are interfering users. The 
desired user’s SNR is defined as 2 2

1 2 vSNR A  . We can rewrite (3.1) in a vector form: 

 ( ) ( ) ( )n n n x Pb v , (3.2) 

Where 1( ) [ ( ),..., ( )]TLn x n x nx , 1( ) [ ( ),..., ( )]TLn v n v nv , the system matrix P is given by 

1 1 2 2[ , ,..., ]M MA A As s s  with the i-th user’s steering vector 

1 2[exp( ( )),exp( ( )),...,exp( ( ))]Ti i i L ij t j t j t     s  (i.e., the spatial transfer function between 

the i-th emitting source and the array), and the transmitted bit vector is 

1( ) [ ( ),..., ( )]TMn b n b nb . The purpose of an adaptive beamformer is to reconstruct the 

desired user’s signal b1(n) based on the array input vector x(n).  

3.2 Adaptive beamformer based on SCFNN-related detection 

A. Adaptive SCFNN beamformer 

Because the detection process in any digital communication systems can be viewed as a 
classification problem, which seeks to classify the observed vectors into one of the classes. 
Thus, the SCFNN-based classifiers shown in Section 2 can also be applied to multi-antenna 
assisted beamforming systems, and the SCFNN beamformer can classify the array input 
signal space χ = {x(n)} into two classes, i.e., χ(+)={x(n)|b1(n)=+1} and χ(-)={x(n)|b1(n)=-1}. At 
the n-th time instant, the adaptive beamformer’s output based on a standard SCFNN is then 
expressed by  

 s
1

( ( )) ( )
K

k k
k

y n w G n


x , (3.3) 

where K is the number of fuzzy rules, wk is the real-valued consequent weight of the k-th 
fuzzy rule, and Gk(n) is the Gaussian membership function (GMF) of the k-th fuzzy rule, 
which is associated with the current array input vector x(n): 

 
2 2

2 2
1

( ( ) ) ( ( ) )
( ) exp

2( ) 2( )

R R I IL
l kl l kl

k R I
l kl kl

x n c x n c
G n

 

            
  (3.4) 

 ≡ G(ck, σk; x(n))  

where R I
kl kl klc c jc   and R I

kl kl klj    , respectively, are the complex-valued center and 

complex-valued width of the k-th fuzzy rule for the l-th array input signal, and we define 
the center vector and width vector of the k-th fuzzy rule as ck ≡ [ck1,...,ckL]T and σk ≡ [σk1,..., 
σkL]T. The major difference between the equation (4.4) and a standard RBF [19] is that the 
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ellipsoid GMFs are designed for the former, but the radial GMFs are used for the latter. To 
accommodate all geometric locations of x(n) belonging to χ by little geometric clusters 
corresponding to GMFs (i.e., classify all observed vectors x(n) with a small number K), the 
widths of the SCFNN classifier will be thus designed to be trainable to attain this purpose. 

The estimation of b1(n) is obtained by 1 s
ˆ ( ) sgn{ ( )}b n y n .  

As demonstrated in Section 2.2, the learning algorithm of a standard SCFNN detection 
involves two phases: self-constructing learning and parameter learning. Given a series of 
training data (x(n), b1(n)), n = 0, 1, 2, …, the SCFNN training algorithm is performed  
at each time instant n. Note that there are no fuzzy rules in adaptive SCFNN beamformer 
initially, too. In the self-constructing learning phase, the maximum membership  
degree ߤ୫ୟ୶ = Maxଵஸ௞ஸ௄ܩ௞ሺ݊ሻ is also adopted to judge whether to generate a fuzzy rule  
or not, and the parameters of the fuzzy rule generated are then initialized  
properly. Consequently, the growth criterion that must be met before a new fuzzy rule is 
added is: 

 
minmax    (3.5) 

where 
min  is a pre-specified threshold (0 <

min < 1). This growth criterion implies that the 

geometric clusters corresponding to the existing fuzzy rules are far from the geometric 
location of the current array input vector x(n). Hence, a new fuzzy rule should be generated 
to cover x(n), i.e., K ← K + 1. Once a new fuzzy rule is added, its initial geometric cluster is 
assigned accordingly:  

௡௘௪ࢉ  = ࢞ሺ݊ሻ and ߪ௡௘௪,௟ = ͳ ,ߪ ≤ ݈ ≤  (3.6) ,ܮ

where σ is an empirical pre-specified value and set as 1+j1 in this section. By setting ࢉ௡௘௪ as 
x(n), the current vector x(n) can be surely covered by this new fuzzy rule, and this design 
also satisfies the basic strategy of SCFNN, i.e., aiming to accommodate all geometric 
locations of the observed vectors. When the growth criterion defined in (3.5) doesn’t be met 
at n, i.e., ߤ୫ୟ୶ >  ୫୧୬, no fuzzy rule should be added and the parameter learning phase isߤ
performed to optimize the parameters of SCFNN beamformer, i.e., ܿ௞௟, ߪ௞௟ and ݓ௞. 
Traditionally, MMSE-based gradient descent methods are used for optimizing the 
parameters of a nonlinear detection [35], [38], [43], [44]. However, minimizing the MSE does 
not necessarily produce a low BER [5]-[9], [47] and hence an adaptive MBER-based gradient 
descent method recently has been proposed for a nonlinear structure [47]. In this chapter, 
we slightly modify the adaptive MBER method for the proposed SCFNN-related 
beamformers, which is summarized as follows. First, the decision variable ݖሺ݊ሻ = ܾଵሺ݊ሻ  ሺ݊ሻ can be adaptivelyݖ ୗ൫࢞ሺ݊ሻ൯ is defined [47] and the probability density function ofݕ∙
estimated by [47] 

,ݖ෤ሺ݌  ݊ሻ = ଵ√ଶగఘ eି[೥ష್భሺ೙ሻ೤౏൫࢞ሺ೙ሻ൯]మమഐమ , (3.7) 

where ߩ is the chosen kernel width [47]. Then the estimated error probability of an SCFNN-
related beamformer at the time instant n can be given by [47] 

 ாܲሺ݊ሻ = ׬ ,ݖ෤ሺ݌ ݊ሻdݖ଴ିஶ . (3.8) 
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The objective of the standard MBER method is to minimize ாܲሺ݊ሻ subject to the SCFNN-
related beamformer’s parameters. Namely, all of parameters of SCFNN are adapted by 
MBER-based gradient descent method. Because the criterion ߤ୫ୟ୶ >  ୫୧୬ implies that theߤ
array input vector x(n) should be a member of the geometric cluster corresponding to ܩ௤ሺ݊ሻ, 
where ݍ = argMaxଵஸ௞ஸ௄ܩ௞ሺ݊ሻ, we propose to only optimize the parameters corresponding 
to the q-th fuzzy rule during MBER-based parameter training phase. By adopting this 
method, the time cost can be significantly reduced. Consequently, this modified MBER 
method (called C-MBER hereinafter for convenience) optimizes the parameters of the 
proposed SCFNN beamformer by the updating amount in (3.9)-(3.11): 

௤ݓ∆  = ߛ− డ௉ಶሺ௡ሻడ௪೜ =  ௤ሺ݊ሻ (3.9)ܩሺ݊ሻߦߛ

 ∆ܿ௤௟௓ = ߙ− డ௉ಶሺ௡ሻడ௖೜೗ೋ = ௤ሺ݊ሻܩ௤ݓሺ݊ሻߦߙ ௫೗ೋሺ௡ሻି௖೜೗ೋሺఙ೜೗ೋ ሻమ  (3.10) 

௤௟௓ߪ∆  = ߚ− డ௉ಶሺ௡ሻడఙ೜೗ೋ = ௤ሺ݊ሻܩ௤ݓሺ݊ሻߦߚ ሺ௫೗ೋሺ௡ሻି௖೜೗ೋ ሻమሺఙ೜೗ೋ ሻయ  (3.11) 

with  

ሺ݊ሻߦ  = డ௉ಶሺ௡ሻడ௬౏൫࢞ሺ௡ሻ൯ = ିଵ√ଶగఘ eି[೤౏൫࢞ሺ೙ሻ൯]మమഐమ ∙ ܾଵሺ݊ሻ (3.12) 

where ܼ ∈ {ܴ,   .are learning rates ߛ and ߚ ,ߙ ,{ܫ

B. Adaptive S-SCFNN beamformer 

In this sub-section, an inherent symmetry of the array input signal space is investigated and 
a novel S-SCFNN detection is designed based on this symmetry. First, let us denote ௕ܰ = ʹெିଵ legitimate sequences of ࢈ሺ݊ሻ with ܾଵሺ݊ሻ = +ͳ as ࢈௠ሺାሻ, 1≤ ݉ ≤ ௕ܰ, and denote ʹெିଵ legitimate sequences of ࢈ሺ݊ሻ with ܾଵሺ݊ሻ = −ͳ as ࢈௠ሺିሻ = ≥௠ሺାሻ, 1࢈− ݉ ≤ ௕ܰ. Clearly, 
both of signal spaces ߯ሺାሻ and ߯ሺିሻ can be partitioned into ௕ܰ subspaces:  

 ߯ሺାሻ = ⋃ ߯௠ሺାሻଵஸ௠ஸே್  and ߯ሺିሻ = ⋃ ߯௠ሺିሻଵஸ௠ஸே್ , (3.13) 

where ߯௠ሺାሻ = {࢞ሺ݊ሻ|࢈ሺ݊ሻ = ௠ሺାሻ} and ߯௠ሺିሻ࢈ = {࢞ሺ݊ሻ|࢈ሺ݊ሻ = ௠ሺିሻ}. It can be easily seen that ߯௠ሺାሻ࢈ = {࢞ሺ݊ሻ = ௠ሺାሻ࢈ࡼ + ࢜ሺ݊ሻ} ∈ ߯ሺାሻ and −߯௠ሺାሻ ≡ ቄ࢞ሺ݊ሻ = ௠ሺାሻሻ࢈−ሺࡼ − ࢜ሺ݊ሻ = ௠ሺିሻ࢈ࡼ +࢜ሺ݊ሻቅ = ߯௠ሺିሻ ∈ ߯ሺିሻ. Therefore, the two spaces ߯ሺାሻ and ߯ሺିሻ are distributed symmetrically, 

namely, for any subspace ߯௠ሺିሻ ∈ ߯ሺିሻ the subspace ߯௠ሺାሻ ∈ ߯ሺାሻ satisfies ߯௠ሺିሻ = −߯௠ሺାሻ.  
The basic idea of SCFNN learning is to accommodate all array input vectors ࢞ሺ݊ሻ ∈ 	߯ by 
adjusting the geometric clusters corresponding to ܩ௞ሺ݊ሻ, ݇ = ͳ,…  Since the signal spaces ߯ሺାሻ and ߯ሺିሻ are distributed symmetrically in the multi-antenna beamforming system, we .ܭ,
propose to create symmetric geometric clusters to accommodate all of ࢞ሺ݊ሻ ∈ 	߯. Thus, the 
output of the proposed S-SCFNN beamformer is defined by 

ୗ൫࢞ሺ݊ሻ൯ݕ  = ∑ ௞ାሺ݊ሻܩ௞ሺݓ − ௞ିܩ ሺ݊ሻሻ௄௞ୀଵ  (3.14) 

with  
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௞ାሺ݊ሻܩ = ௞ࢉሺܩ , ࣌௞; ࢞ሺ݊ሻሻ and ܩ௞ି ሺ݊ሻ = ௞ࢉ−ሺܩ , ࣌௞; ࢞ሺ݊ሻሻ, (3.15) 

where the geometric clusters corresponding to the two GMFs ܩ௞ାሺ݊ሻ and ܩ௞ି ሺ݊ሻ are 
symmetric with each other. Moreover, all of geometric clusters corresponding to 
membership functions ܩ௞ାሺ݊ሻ, ݇ = ͳ,… ,  are assumed to be capable of accommodating the ,ܭ
vectors ࢞ሺ݊ሻ ∈ ߯ሺାሻ, and naturally all of geometric clusters corresponding to ܩ௞ି ሺ݊ሻ, ݇ =ͳ,… can accommodate the vectors ࢞ሺ݊ሻ ,ܭ, ∈ ߯ሺିሻ.  
The learning procedure of SCFNN beamformer presented in the last section is modified here 
to make it suitable for the S-SCFNN beamformer. Similarly, there are no fuzzy rules initially 
in adaptive S-SCFNN beamformer. Because only the center vectors ࢉ௞ ∈ ߯ሺାሻ, ݇ = ͳ~ܭ, are 
needed in the S-SCFNN beamformer as defined in (3.14)-(3.15), we can focus on observing 
the array input vectors ࢞ሺ݊ሻ ∈ ߯ሺାሻ during learning. Thus, the vector ࢞ሺ݊ሻ ∈ ߯ሺିሻ with ܾଵሺ݊ሻ = −ͳ can be modified as −࢞ሺ݊ሻ ∈ ߯ሺାሻ before training: 

 ෝ࢞ሺ݊ሻ = ൜ ࢞ሺ݊ሻ,			݂݅	ܾଵሺ݊ሻ = ͳ−࢞ሺ݊ሻ,			݂݅	ܾଵሺ݊ሻ = 	−ͳ. (3.16) 

In the self-constructing learning phase, the maximum membership degree is also adopted. 
Because the k-th fuzzy rule of S-SCFNN detector is strongly related with the geometric 
clusters corresponding to both ܩ௞ାሺ݊ሻ and ܩ௞ି ሺ݊ሻ, the output value of {ܩ௞ାሺ݊ሻ − ௞ିܩ ሺ݊ሻ} is 
regarded as the membership degree that the current array input vector belongs to the k-th 
fuzzy rule. Thus the maximum membership degree is defined as 

୫ୟ୶ߤ  = Maxଵஸ௞ஸ௄൛ܩ൫ܿ௞ , ;௞ߪ ොሺ݊ሻ൯ݔ − ൫−ܿ௞ܩ , ;௞ߪ  ොሺ݊ሻ൯ൟ.  (3.17)ݔ

Consequently, the growth criterion that must be met before a new fuzzy rule is added is: ߤ୫ୟ୶ ≤  ୫୧୬ is as defined in (3.5). This criterion implies that the existing fuzzyߤ ୫୧୬, whereߤ
rules cannot simultaneously satisfy the following two conditions:  
(a) At least one of geometric clusters of ܩ௞ାሺ݊ሻ is close to the geometric location of xොሺnሻ. 
(b) The geometric cluster of ܩ௞ି ሺ݊ሻ should be relatively far from the geometric location of ෝ࢞ሺ݊ሻ compared to that of ܩ௞ାሺ݊ሻ. 
Hence, a new fuzzy rule should be generated to accommodate ෝ࢞ሺ݊ሻ, i.e., ܭ ← ܭ + ͳ. Then, its 
initial symmetric clusters are assigned by  

௡௘௪ࢉ  = ෝ࢞ሺ݊ሻ and ߪ௡௘௪,௟ = ͳ ,ߪ ≤ ݈ ≤  (3.18) ,ܮ

where ߪ is specified as in the last section.  
When the growth criterion doesn’t be met at n, no fuzzy rule should be added and the C-
MBER method is performed to optimize the parameters of the S-SCFNN beamformer. The 
estimated error probability of S-SCFNN beamformer is the same as (3.8). Consequently, the 
updating amount of the S-SCFNN beamformer’s parameters is derived as done in (3.9)- (3.12): 

௤ݓ∆  = ௤ାሺ݊ሻܩሺ݊ሻ൫ߦߛ + ௤ିܩ ሺ݊ሻ൯ (3.19) 

 ∆ܿ௤௟௓ = ௤ାሺ݊ሻܩ௤ሺݓሺ݊ሻߦߙ ௫೗ೋሺ௡ሻି௖೜೗ೋሺఙ೜೗ೋ ሻమ + ௤ିܩ ሺ݊ሻ ௫೗ೋሺ௡ሻା௖೜೗ೋሺఙ೜೗ೋ ሻమ ሻ (3.20) 

௤௟௓ߪ∆  = ௤ାሺ݊ሻܩ௤ሺݓሺ݊ሻߦߚ ሺ௫೗ೋሺ௡ሻି௖೜೗ೋ ሻమሺఙ೜೗ೋ ሻయ − ௤ିܩ ሺ݊ሻ ሺ௫೗ೋሺ௡ሻା௖೜೗ೋ ሻమሺఙ೜೗ೋ ሻయ ሻ, (3.21) 
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where 

ݍ  = argMaxଵஸ௞ஸ௄൛ܩ൫ࢉ௞ , ࣌௞; ෝ࢞ሺ݊ሻ൯ − ,௞ࢉ−൫ܩ ࣌௞; ෝ࢞ሺ݊ሻ൯ൟ. (3.22) 

C. Adaptive RS-SCFNN beamformer 

Because SCFNN or S-SCFNN learning procedure would generate too many fuzzy rules at 
low SNRs in applications, we further propose a reduced S-SCFNN (RS-SCFNN) beamformer 
here. The RS-SCFNN beamformer’s output is completely the same as the S-SCFNN one, i.e., 
(3.14)-(3.15).  
Like the S-SCFNN learning procedure, there are no fuzzy rules initially in the RS-SCFNN 
beamformer, and we focus on observing the vectors ࢞ሺ݊ሻ ∈ ߯ሺାሻ during learning. The 
learning procedure also contains the self-constructing and parameter learning phases. It can 
be easily seen from (3.13) that the reasonable number of the Gaussian clusters inside the 
subspace ߯ሺାሻ is ௕ܰ = ʹெିଵ, so, actually, it is enough to accommodate all the geometric 
locations of ࢞ሺ݊ሻ ∈ ߯ሺାሻ by creating ௕ܰ geometric Gaussian clusters, i.e., the maximum 
number of K should be ʹெିଵ. In the application of multi-antenna assisted systems, the user’s 
number M supported usually is regarded as a known number [20]-[21]. Therefore, a simple 
inhibition criterion ܭ ≤ ௕ܰ can be added in the self-constructing learning phase. Then, the 
criteria that must be met before a new fuzzy rule is added are: 

୫ୟ୶ߤ  ≤ ܭ ୫୧୬ andߤ ≤ ܰ (3.23) 

where ߤ୫ୟ୶ and ߤ୫୧୬ are as defined in the SCFNN or S-SCFNN learning, and the integer N 
is pre-assigned to be no larger than ௕ܰ. With the aid of the latter criterion in (3.23), the 
number of fuzzy rules generated during learning can be greatly reduced at low SNRs 
compared with that of the S-SCFNN beamformer. The initial cluster setting of a new fuzzy 
rule and the parameter learning phase are the same as described in (3.18)-(3.22).  
The center vectors ࢉ௞ of the adaptive SRBF beamformer in the literature have been trained by 
several algorithms, such as classical k-means clustering, improved enchanced k-means 
clustering [48] and MBER method [47]. However, a serious slow convergence easily occurs in 
these classical clustering due to the improper initialization. Moreover, if the number of the 
center vectors is really huge, the classical algorithms will even need a longer training sequence 
to achieve convergence. Compared to the adaptive SRBF beamformer, the proposed RS-
SCFNN beamformer has a faster convergence capability. By using the criterion ߤ୫ୟ୶ <  ୫୧୬ߤ
during the self-constructing learning phase, the initial location of the new center vector ࢉ௡௘௪ = ෝ࢞ሺ݊ሻ can be far from the locations of the other existing center vectors ࢉ௞. This feature 
avoids two or more center vectors initially located around the same ideal center.  
Although in this section we design the adaptive RS-SCFNN beamformer under the BPSK 
beamforming system, its extension to high-order quadrature amplitude modulation (QAM) 
schemes is also achievable. For example, for the 4-QAM modulation, the array input signal 
space ߯ can be partitioned into the four subsets ߯ሺ±ଵ±௝ሻ depending on the value of ܾଵሺ݊ሻ as 
the above derivation. Besides, for the four subspaces ߯ሺ±ଵ±௝ሻ, the following symmetric 
relationship can be easily verified by using the same derivation in S-SCFNN learning: ߯ሺିଵା௝ሻ = +݆ ∙ ߯ሺାଵା௝ሻ, ߯ሺିଵି௝ሻ = −ͳ ∙ ߯ሺାଵା௝ሻ and ߯ሺାଵି௝ሻ = −݆ ∙ ߯ሺାଵା௝ሻ. Then, the idea of 
creating symmetric geometric clusters to accommodate all ࢞ሺ݊ሻ ∈ 	߯ can be exploited to 
modify the 4-QAM FNN detector in [41] [44]. The derivation for the high-order QAM RS-
SCFNN beamformer is much more complex and is beyond the scope of this work.  
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3.3 Simulation results 

In this sub-section, a rank-deficient multi-antenna assisted beamforming systems is used to 
demonstrate the efficiency of the proposed adaptive RS-SCFNN beamformer. The 
beamforming systems considered is summarized in Table 3.1. As done in [1], [6], [11], [18], 
[19], [47], [48], DOAs for each user are fixed, and the distance between linear array elements 
is ݀ = ߣ ʹ⁄ . The simulated narrowband channels are ܣ௜ = ͳ + ݆Ͳ as done in [19], [47]. The 
threshold ߤ୫୧୬ for various SCFNN related beamformers is set as 0.06 in the three systems. 
For comparisons, the linear MMSE [1], linear adaptive MBER [8], adaptive SRBF [47] and 
optimal Bayesian solution [19] are added in the simulations. The MBER learning rates for 
different nonlinear adaptive beamformers are listed in Table 3.2, and are used in the 
following simulations. These MBER learning rates were found on conditions of 1000 training 
data and 8-dB SNR, and are the best choices satisfying the three systems for each nonlinear 
adaptive beamformer. Note that SCFNN, S-SCFNN and RS-SCFNN are trained by the C-
MBER method during parameter learning phase, and SRBF is trained by the MBER method 
[10]. The RS-SCFNN-M in Table 3.2 denotes RS-SCFNN trained with the standard MBER 
method. The MBER learning rate for linear beamformer [6] is set as 0.1 in the simulations. 
The simulation results are obtained by averaging 104 individual runs, each of which 
involves a different random sequence for training and testing. The testing data size is 103, 
and the training data size will be given later. 
 

Simulated system
M = 6, L = 4 

User i 1 2 3 4 5 6 

DOA ߠ௜ 0° 10° -17° 15° 20° -15°

Table 3.1 Multi-antenna assisted beamforming system simulated in Section 3.3 

 

Beamformers ߙ ߚ ߛ ߩ
SCFNN 0.25 0.01 0.005 0.7

S-SCFNN 2.5 0.55 0.5 0.25

RS-SCFNN 2.5 0.55 0.5 0.25

RS-SCFNN-M 0.3 0.25 0.05 0.2

SRBF 0.3 0.3 0.3 0.2

Table 3.2 MBER learning rates for different nonlinear adaptive beamformers used in  
Section 3.3 

Due to the fact of ܰ ≤ ௕ܰ = ʹ଺ିଵ = ͵ʹ, we choose ܰ = ʹ͵ and ܰ = ʹ8 for RS-SCFNN 
beamformers in the simulations. The chosen training data size for all adaptive beamformers 
is 400 in the simulated System A. Figure 3.1 depicts the BER performance for adaptive 
SCFNN related beamformers. Figure 3.2 shows the average numbers of fuzzy rules for 
adaptive SCFNN related beamformers. Since adaptive S-SCFNN beamformer only observes 
half the array input signal space ߯ during training, S-SCFNN can generate half as many 
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fuzzy rules as SCFNN. Namely, the S-SCFNN beamformer only needs to train half as many 
parameters (ࢉ௞, ࣌௞ and ࢝௞) as the SCFNN one. As a result, the parameters of S-SCFNN 
beamformer can quickly converge, and thus the SCFNN exploiting symmetry has better 
BER performance than the standard SCFNN. When SNR is larger than 2 dB, the average 
numbers of fuzzy rules for S-SCFNN and RS-SCFNN beamformers are almost the same. 
Thus they also have similar BER performance at SNR = 4 ~ 8 dB. However, the numbers of 
fuzzy rules for S-SCFNN beamformer are sharply increased at low SNRs. With tiny sacrifice 
for BER performance, the numbers of fuzzy rules for RS-SCFNN can be effectively limited 
within the number N as mentioned in Section 3.2. In order to check the performance of C-
MBER and MBER methods, the RS-SCFNN-M beamformer is also plotted. The results 
indicate that the RS-SCFNN with C-MBER has the similar performance to the RS-SCFNN 
with MBER (RS-SCFNN-M). Note that the C-MBER method only needs to train parameters 
associated with one of fuzzy rules as mentioned in Section 3.2, but the standard MBER 
method [47] have to train parameters associated with all of fuzzy rules. 
 

 
Fig. 3.1 BER performance for adaptive SCFNN related beamformers  

 

 
Fig. 3.2 Numbers of hidden nodes for adaptive SCFNN related beamformers  
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Fig. 3.3 BER performance for various adaptive beamformers  
 

 
Fig. 3.4 Numbers of hidden nodes for adaptive SRBF and RS-SCFNN beamformers  
 

 
Fig. 3.5 Convergence rates for different adaptive beamformers at SNR = 6 dB 
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The number of rules for SRBF beamformer is fixed before training and specified by ʹெିଵ = ͵ʹ 
as done in [47]. Then the BER performance for various kinds of adaptive beamformers is 
illustrated in Figure 3.3, and the average numbers of rules for various nonlinear adaptive 
beamformers are plotted in Fig. 3.4. In such rank-deficient system and low amount of training 
data, the proposed RS-SCFNN beamformers can provide excellent BER performance 
compared to the classical linear and nonlinear ones. As shown in Figure 3.4, the numbers of 
rules for adaptive RS-SCFNN beamformer can be determined flexibly at different SNRs, but 
those for adaptive SRBF one must be fixed to a constant at every SNR. Of course, the SRBF 
beamformer also can assign different numbers of hidden nodes for various SNRs, but it will 
need huge manpower to achieve this purpose. The relatively large numbers of rules and bad 
initial parameters for SRBF easily lead to a slow convergence or poor BER results. However, 
the proposed RS-SCFNN beamformer can set good initial parameters as specified in Section 
3.2 with little fuzzy rules, so the RS-SCFNN has the BER results close to Bayesian solutions. 
The BER convergence rates for different beamformers are demonstrated in Figure 3.5. We can 
see that the proposed RS-SCFNN beamformer can obtain satisfactory performance close to 
Bayesian solutions if the training data size up to 300. 

4. Conclusion  

This chapter provides different versions of SCFNN-based detectors for various system models 
to improve the performance of classical nonlinear detectors. For improving the classical RBF, 
FNN and SCRFNN equalizers in both time-invariant and time-varying channels, a novel 
FSCFNN DFE has been demonstrated in Section 2. Specifically, FSCFNN DFE is composed of 
several FSCFNN detectors, each of which corresponds to one feedback input vectors. The fast 
learning processes, i.e., self-constructing and parameter learning, are adopted in FSCFNN DFE 
to make it suitable in time-varying environments. The fast learning algorithm of FSCFNN DFE 
has set conditions on the increase demand of fuzzy rules during the self-constructing 
algorithm and FSCFNN DFE only activates only one FSCFNN detector at each time instant. 
Therefore, the computational complexity of FSCFNN DFE is less than that of traditional 
equalizers. In multi-antenna systems, adaptive beamformers based on SCFNN detectors are 
also presented in Section 3. By adopting the symmetric property of array input signal space, 
the RS-SCFNN learning algorithm can be easier than the standard SCFNN one. From the 
simulations, we can see that the SCFNN-based adaptive beamformers can flexibly and 
automatically determine structure size themselves for various SNRs. Therefore, we conclude 
that the adaptive RS-SCFNN beamformer is potentially a better scheme than the SRBF and 
SCFNN ones. Because the competitors of SCFNN-based detectors, such as RBF and FNN, have 
been successfully applied to the space-time equalization, turbo equalization, DOA estimation, 
high-level QAM systems, OOK optical communications and CDMA or OFDM communication 
systems in the literature (IEEE/IET Journals etc.), the future work for SCFNN detectors could 
be the extension to the above mentioned systems or the improvement of SCFNN-based 
detectors based on the issues of determination of threshold 

min  and the method for 
simplifying the complexity. 
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