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1. Introduction 

Adaptive filtering algorithms have been widely applied to solve many problems in digital 
communication systems [1- 3]. So far, the Least Mean Square (LMS) and its normalized 
version (NLMS) adaptive algorithms have been the most commonly adopted approaches 
owing to the clarity of the mean-square-error cost function in terms of statistical concept and 
the simplicity for computation. It is known that the NLMS algorithm gives better 
convergence characteristics than the LMS because it uses a variable step-size parameter in 
which the variation is achieved due to the division, at each iteration, of the fixed step size by 
the input power. However, a critical issue associated with both algorithms is the choice of 
the step-size parameter that is the trade-off between the steady-state misadjustment and the 
speed of adaptation. Recent studies have thus presented the idea of variable step-size NLMS 
algorithm to remedy this issue [4-7]. Also, many other adaptive algorithms [8, 9] have been 
defined and studied to improve the adaptation performance. In this work, the proposed 
approach of randomizing the NLMS algorithm’s step-size  has been introduced in the 
adaptation process of both channel equalisation and system identification,  and tested over a 
defined communication channels. The proposed random step-size approach yields an 
algorithm with good convergence rate and steady state stability. 
The objective of this chapter is analyzing and comparing the proposed random step-size 
NLMS and the standard NLMS algorithms that were implemented in the adaptation process 
of two fundamental applications of adaptive filters, namely adaptive channel equalization 
and adaptive system identification. In particular, we focus our attention on the behavior of 
Mean Square Error (MSE) of the proposed and the standard NLMS algorithms in the two 
mentioned applications. From the MSE performances we can determine the speed of 
convergence and the steady state noise floor level. The key idea in this chapter is that a new 

and simple approach to adjust the step-size (µ) of the standard NLMS adaptive algorithm 

has been implemented and tested. The value of µ is totally controlled by the use of a 
Pseudorandom Noise (PRN) uniform distribution that is defined by values from 0 to 1. 
Randomizing the step-size eliminates much of the trade-off between residual error and 
convergence speed compared with the fixed step-size. In this case, the adaptive filter will 
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change its coefficients according to the NLMS algorithm in which its step-size is controlled 
by the PRN to pseudo randomize the step size. Also this chapter covers the most popular 
advances in adaptive filtering which include adaptive algorithms, adaptive channel 
equalization, and adaptive system identification. 
In this chapter, the concept of using random step-size approach in the adaptation process of 
the NLMS adaptive algorithm will be introduced and investigated. The investigation 
includes calculating and plotting the MSE performance of the proposed algorithm in system 
identification and channel equalization and compares the computer simulation results with 
that of the standard NLMS algorithm.  
The organization of this chapter is as follows: In Section 2 an overview of adaptive filters 
and their applications is demonstrated. Section 3 describes the standard NLMS and the 
proposed random step size NLMS algorithms. In Sections 4 the performance analysis of 
adaptive channel equalization and adaptive system identification are given. Finally the 
conclusion and the list of references are given in Sections 5 and 6, respectively. 

2. Overview of adaptive filters and applications 

An adaptive filter generally consists of two distinct parts: a filter, whose structure is 
designed to perform a desired processing function, and an adaptive algorithm for adjusting 
the coefficients of that filter. The ability of an adaptive filter to operate satisfactory in an 
unknown environment and track time variations of input statistics make the adaptive filter a 
powerful device for signal processing and control applications [1].  
Adaptive filters are self learn. As the signal into the filter continues, the adaptive filter 
coefficients adjust themselves to achieve the desired result, such as identifying an unknown 
filter or cancelling noise in the input signal. Figure 1 represents the adaptive filter, comprising 
the adaptive filter and the adaptive weight control mechanism. An adaptive Finite Impulse 
Response (FIR) filter or Infinite Impulse Response (IIR) filter designs itself based on the 
characteristics of the input signal to the filter and a signal which represent the desired behavior 
of the filter on its input. Designing the filter does not require any other frequency response 
information or specification. To define the self learning process the filter uses, you select the 
adaptive algorithm used to reduce the error between the output signal y(k) and the desired 
signal d(k). When the least mean square performance criteria for e(k) has achieved its minimum 
value through the iterations of the adapting algorithm, the adaptive filter is finished and its 
coefficients have converged to a solution. Now the output from the adaptive filter matches 
closely the desired signal d(k). When the input data characteristics changes, sometimes called 
the filter environment, the filter adapts to the new environment by generating a new set of 
coefficients for the new data. Notice that when e(k) goes to zero and remains there you achieve 
perfect adaptation; the ideal result but not likely in the real world.  
The ability of an adaptive filter to operate satisfactorily in an unknown environment and 
track time variations of input statistics make the adaptive filter a powerful device for signal 
processing and control applications [12]. In fact, adaptive filters have been successfully 
applied in such diverse fields as communications, radar, sonar, seismology, and biomedical 
engineering. Although these applications are quite different in nature, however, they have 
one basic common aspect: an input vector and a desired response are used to compute an 
estimation error, which is in turn used to control the values of a set of adjustable filter 
coefficients. The fundamental difference between the various applications of adaptive 
filtering arises in the way in which the desired response is extract. 
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In many applications requiring filtering, the necessary frequency response may not be 
known beforehand, or it may vary with time. (for example; suppression of engine 
harmonics in a car stereo). In such applications, an adaptive filter which can automatically 
design itself and which can track system variations in time is extremely useful. Adaptive 
filters are used extensively in a wide variety of applications, particularly in 
telecommunications. Despite that adaptive filters have been successfully applied in many 
communications and signal processing fields including adaptive system identification, 
adaptive channel equalization, adaptive interference (Noise) cancellation, and adaptive 
echo cancellation, the focus here is on their applications in adaptive channel equalisation 
and adaptive system identification.  

3. Adaptive algorithms 

Adaptive filter algorithms have been used in many signal processing applications [1]. One 

of the adaptive filter algorithms is the normalized least mean square (NLMS), which is the 

most popular one because it is very simple but robust. NLMS is better than LMS because the 

weight vector of NLMS can change automatically, while that of LMS cannot [2]. A critical 

issue associated with all algorithms is the choice of the step-size parameter that is the trade-

off between the steady-state misadjustment and the speed of adaptation. A recent study has 

presented the idea of variable step-size LMS algorithm to remedy this issue [4]. 
Nevertheless, many other adaptive algorithms based upon non-mean-square cost function 

can also be defined to improve the adaptation performance. For example, the use of the 

error to the power Four has been investigated [8] and the Least-Mean-Fourth adaptive 

algorithm (LMF) results. Also, the use of the switching algorithm in adaptive channel 

equalization has also been studied [9].  

General targets of an adaptive filter are rate of convergence and misadjustment. The fast rate 

of convergence allows the algorithm to adapt rapidly to a stationary environment of 

unknown statistics, but quantitative measure by which the final value of mean-square error 

(MSE) is averaged over an ensemble of adaptive filters, deviates from the minimum MSE 

more severely as the rate of convergence becomes faster, which means that their trade-off 

problem exists. 

3.1 NLMS algorithm 

The least mean square (LMS) algorithm has been widely used for adaptive filters due to its 

simplicity and numerical robustness. On the other hand, NLMS algorithm is known that it 

gives better convergence characteristics than the LMS, because the NLMS uses a variable 

step-size parameter in which, in each iteration,  a step-size fixed parameter is divided by the 

input power. Depending on the value of the fixed step-size parameter, however, the LMS 

and NLMS algorithms result in a trade-off between the convergence speed and the mean 

square error (MSE) after convergence [5]. 

3.1.1 Adaptive filter 

A general form of the adaptive filter is shown in Figure 1, where an input signal u(n) 
produces an output signal y(n), then the output signal y(n) is subtracted from the desired 
response d(n) to produce an error signal e(n). The input signal u(n) and error signal e(n) are 
combined together into an adaptive weight-control mechanism. The weight controller 
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applies a weight adjustment to the transversal filter so as to minimize MSE value [11]. This 
process is repeated for a number of iterations until the filter reaches to a steady-state. In 
summary, the purpose of the adaptive system is to filter the input signal u(n) so that it 
resembles the desired signal input d(n). The filter could be any type but the most widely 
used is the N tap FIR filter because of its simplicity and stability.  
 

 

Fig. 1. Block diagram of adaptive transversal filter 

3.1.2 Algorithm’s operation 

The weight vector of an adaptive filter should be changed in a minimal manner, subject to a 
constraint imposed on the updated filter’s output. The NLMS adaptive filter is a 
manifestation of the principal of minimal disturbance from one iteration to the next [10]. To 
describe the meaning of NLMS as an equation, let w(n) be the old weight vector of the filter 
at iteration n and w(n+1) is its updated weight vector at iteration n+1. We may then 
formulate the criterion for designing the NLMS filter as that of constrained optimization: the 
input vector u(n) and desired response d(n) determine the updated tap-weight vector w(n+1) 
so as to minimize the squared Euclidean norm of the change as: 

 ( 1) ( 1) ( )w n w n w nδ + = + −  (1) 

Subject to the constraint 

 ( ) ( 1) ( )Hd n w n u n= +  
(2)

 

The method of the lagrange multiplier is used to solve this problem as: 

 
1

( 1) ( ) ( )
2

w n w n u nλ+ = +  

(3)

 

The unknown multiplier, λ, can be obtained by substituting (3) into (2): 

 
2

2 ( )

( )

e n

u n
λ =  

(4)

 

Transversal Filter 

Adaptive Weight 
Control Mechanism 

u(n) 
y(n) 

e(n) 

d(n
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Where e(n) is the error signal and is given by: 

 ( ) ( ) ( ) ( )He n d n w n u n= −  (5) 

Then, combining (3) and (4) to formulate the optimal value of the incremental change, 
δw(n+1), we obtain: 

 
2

( 1) ( ) ( ) ( )
( )

w n w n u n e n
u n

µ
+ − =  (6) 

Equation (6) can be written as: 

 
2

( 1) ( ) ( ) ( )
( )

w n w n u n e n
u n

µ

α
+ = +

+
 (7) 

Where the constant α  is added to the denominator to avoid that w(n+1) cannot be bounded 

when the tap-input vector u(n) is too small. 

3.1.3 Step-size 

The stability of the NLMS algorithm depends on the value of its step-size, and thus its 
optimization criterion should be found [12]. The desired response has been set as follows: 

 ( ) ( ) ( ) ( )Hd n w n u n v n= +  (8) 

Where v(n) is an unknown disturbance. An estimate of the unknown parameter w is 
calculated from the tap-weight vector w(n). The weight-error vector is given below: 

 
( ) ( )n w w nε = −  (9) 

Substituting (9) into (7) yields: 

 

2
( 1) ( ) ( ) ( )

( )
n n u n e n

u n

µ
ε ε+ = −

 

(10) 

To study the stability performance of adaptive filters, the mean-square deviation may be 
identified [11]. 

 
2

( ) [ ( ) ]n E nξ ε=
 

(11) 

Where E denotes expectation. Substituting (10) into (11) yields: 

 

2
2

2 2

( ) ( ) ( )
( 1) ( ) 2 Re

( ) ( )

ue n n e n
n n E E

u n u n
ξ ξ µ µ

        + − = −  
        



 

(12) 

where ( )u n  is the undisturbed error signal defined by: 

 ( ) ( ) ( )H
u n n u nε=  (13) 

The bounded range of the normalized step-size parameter can be found from (12) as: 
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{ }2

2 2

Re ( ) ( ) / ( )
0 2

( ) / ( )

uE n e n u n

E e n u n
µ

 
 

< <
 
 


 (14) 

For the case of real-valued data, the following equation can be used: 

 
2 2

( ) ( ) ( )uE n E u n nξ   =   
  (15) 

Substituting (15) into (14) yields: 

 

2

2

( ) ( )
0 2

( )

E u n n

E e n

ξ
µ

 
 < <
 
 

 (16) 

or   

 0 2 optµ µ< <  (17) 

where 
2

( )E e n 
 

 is the estimation of the error signal power, 
2

( )E u n 
 

 is the estimation of 

the input signal power, ( )nξ  is the estimation of the mean-square deviation, and optµ  is the 

optimal step-size parameter. 

3.2 The random step-size algorithm 
Using the proposed idea of randomizing the step size, the step-size for the NLMS algorithm 
is changed into a variable one, where the fixed step size is multiplied by PN (pseudo 
random number generator) being a selection from random numbers of uniform distribution 
[0 1] at each iteration time. Formulating the Pseudo-random NLMS algorithm results: 

 
2

[ ]
[ 1] [ ] ( ) ( )

|| [ ]||

PN n
w n w n e n u n

u n

µ

α
+ = +

+
 (18) 

Where w(n) is the previous weight of the filter and w(n+1) is the new weight.  
The step-size µ directly affects how quickly the adaptive filter will converge toward the 
unknown system. If µ is very small, then the coefficients change only a small amount at each 
update, and the filter converges slowly. With a larger step-size, more gradient information is 
included in each update, and the filter converges more quickly; however, when the step-size 
is too large, the coefficients may change too quickly and the filter will diverge. (It is possible 
in some cases to determine analytically the largest value of µ ensuring convergence). In 
summary, within that margin given in (17), the larger µ the faster the convergence rate is but 
less stability around the minimum value. On the other hand, the smaller µ the slower the 
convergence rate but will be more stable around the optimum value.  

4. Performance analysis  

4.1 Adaptive channel equalization 
Adaptive channel equalization in digital communication systems is perhaps the most 
heavily exploited area of application for adaptive filtering algorithms. Adaptive filtering 
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algorithms have been widely applied to solve the problem of channel equalization in digital 
communication systems. This is because, firstly, the adaptation of tap weights of an 
equalizer is necessary to perform channel equalization tasks successfully and secondly, the 
development of an adaptive algorithm that allows fast weight modification, while 
improving the estimation performance of the equalizer, will enhance the capability of such 
equalization systems in real applications.  

4.1.1 System model 

The block diagram of the considered system is shown in Figure 2 below: 
 

 

Fig. 2. The block diagram of the considered system 

The input signal is Binary phase shift keying which has two phases (0 and π) so the signal is 
limited between 1 and -1. The general equation for a sum of weighted time delayed 
Telephone channel impulse responses can be written as  

 H(z) = h0+h1z-1+h2z-2+….hnz-n (19) 

Two types of channels are considered here, the minimum phase (CH-1) and the non-
minimum phase (CH-2) channels, which are given, respectively, below: 

 H(z) = 1.0 + 0.5z-1 (20) 

 H(z) = 0.5 + z-1 (21)  

The discrete time model for the adaptive channel equalization considered in this paper is 

depicted in Figure 3.  

 

 

Fig. 3. The block diagram of the adaptive channel equalization 

Signal 
Input Signal 

AWGN 

Telephone
Channel Equalizer+ Slicer

Output  

Adaptive Filter

Adaptive 
Algorithm 

u(n) 
y(n) 

e(n) 

d(n)
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In a transversal adaptive filter, the input vector Un and the weight vector Wn at the time of 
nth iteration are defined as follows: 

 1 1[ , ,..., ]Tn n n n MU u u u− − +=  (22) 

 0 1 1[ , ,..., ]Tn MW w w w −=  (23) 

Where un is the filter input and wi, (i=0, 1, …, M-1) is the weight vector which corresponds 
to the filter length. The filter output is obtained as follows: 

 T
n n ny W U=  (24) 

The error signal e(k), involved in the adaptive process, is defined by 

 e(k)  = d (k) – y (k) (25) 

 = d (k) -  wH(k) u (k) (26) 

Where w(k) is the tap-weight vector of the adaptive filter assumed to have a transversal 

structure. 

4.2 Adaptive system identification 

This section introduces adaptive filters through the application of system identification 

using the NLMS and the random step-size NLMS algorithms. The adaptive filter adjusts its 

coefficients to minimize the mean-square error between its output and that of an unknown 

system. The objective is to change (adapt) the coefficients of an FIR filter to match as closely 

as possible the response of an unknown system. 

4.2.1 System model 

Consider the system identification problem illustrated in Figure 4. The Figure shows the 

discrete time model for the FIR system identification. One common application is to use 

adaptive filters to identify an unknown system, such as the response of an unknown 

communications channel. An unknown FIR system with N-point impulse response vector 

w(n) has an input sequence {u(n)} and an output sequence {d(n)}. The input signal is binary 

phase shift keying (BPSK) which has two phases (0 andπ) so the signal is limited between 1 

and -1. The general formula for a sum of weighted time delayed channel impulse response 

can be written as:  

 H(z) = h0+h1z-1+h2z-2+….hnz-n (27) 

The desired response d(n), providing a frame of reference for the adaptive filter, is defined 

by: 

  d(n) = WH(n) U(n) + v(n) (28) 

Where U(n) is the input vector, which is common to both the unknown system and the 

adaptive filter and v(n) is the Additive White Gaussian Noise (AWGN) with zero mean and 

variance σ2. First the error signal, e (n), is computed which measures the difference between 
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the output of the adaptive filter and the output of the unknown system. On the basis of  

this measure, the adaptive filter will change its coefficients in an attempt to reduce the  

error. 

Hence the error signal, e(n), involved in the adaptive process, is defined by: 

   e(n) = d(n) – y(n) (29) 

 = WH(n) U(n) + v(n) -  W^H(n) U(n) (30) 

where W^(n) is the tap-weight vector of the adaptive filter assumed to have a transversal 
structure.  
 

 

Fig. 4. System identification model using linear transversal adaptive filter 

Clearly, when e(n) is very small, the adaptive filter response is close to the response of the 
unknown system. Application of the Wiener filter to this problem involves constructing 
an estimate y(n) of the observed output d(n) by passing the observed input sequence u(n) 
through a system modeling filter with impulse response vector w(n). The impulse 
response of the system model is chosen to minimize the MSE. It is assumed that  
the adaptive filter has the same number of taps as the unknown system represented by 
w(n). 

4.3 Computer simulation results 
4.3.1 Adaptive channel equalization 

This section presents the computer simulations results of the performance of the non-linear 
transversal equalizer adapted by NLMS algorithm and the proposed pseudo-randomized 
NLMS algorithm [13]. The system was tested over both minimum phase and non-minimum 
phase channels, which are defined, respectively, as follows: 

 H1(z) = 1.0 + 0.5z-1 (31) 

 H2(z) = 0.5 + z-1  (32)  

The digital signal transmitted through the channel was bipolar BPSK with values of ± 1 

and the channel was corrupted by AWGN with SNR = 30dB. The order of the filter was 

v(n) 

e(n) 

d(n)

 

w(n) 

        w^(n)

u(n) 

y(n)

     Σ 

  Σ 
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set to 12 for both minimum phase, H1(z), and non-minimum phase, H2(z), channels.  

The step size for the NLMS algorithm was chosen from (0.01) to (0.1) and the number of 

transmitted bits equals to 2500 bits. The comparison between the two algorithms,  

the standard NLMS and the pseudo random step size NLMS, is done by first choosing  

the best step size that gives fast convergence and then uses this step size for the 

comparison.  

Figure 5, shown below, shows that the step size with a value of 0.05 gives the  

fast convergence rate over the minimum phase channel (CH-1) while over the  

non-minimum phase channel (CH-2) the step size with a value of 0.01 gives the fast 

convergence rate. The comparison also looks at the effects of decreasing the SNR from 25 

dB to 5 dB. While Figures 6 – 8, shown below, show the performances of the mean square 

error against the number of iterations for various values of signal-to-noise ratios using 

non-linear transversal equalizer over the minimum phase channel. From these figures it is 

clear that the speed of convergence has approximately the same convergence rate for both 

algorithms but the ground noise floor level decreases when the SNR decreases in the case 

of using the random step-size NLMS algorithm. The same conclusion has been noticed in 

the case of using the non-minimum phase channel that defined in (32) above. This is due 

to that the step-size parameter of the proposed random NLMS algorithm is designed 

based on utilizing the random distribution which made the error sequence accelerates the 

level of the noise floor to a much lower value compared to that of the standard NLMS 

algorithm with a fixed step-size value. Results for CH-2 are not included here due to 

space limitation. 

 
 

 
 

Fig. 5. MSE performances of the NLMS for various step-sizes over CH-1 
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Fig. 6. MSE performances of the two algorithms for SNR=15dB over CH-1 

 

 
 

Fig. 7. MSE performances of the two algorithms for SNR=10 dB over CH-1 
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Fig. 8. MSE performances of the two algorithms for SNR=5 dB over CH-1 

4.3.2 Adaptive system identification 

This section presents the computer simulations results of the performance of fixed and 
random step-size NLMS algorithms used in system identification [14]. The following two 
equations represent the coefficient vector of the unknown system (to be identified by the 
adaptive filter) and its transfer function, respectively.  

 W*T  = [0.1, 0.3, 0.5, 0.3, 0.1] (33) 

 1 2 3 4( ) 0.1 0.3 0.5 0.3 0.1H z z z z z− − − −= + + + +  (34) 

The unknown system output is disturbed by an uncorrelated zero-mean white Gaussian 

noise. The digital message applied to the channel is in random bipolar with the values of ± 1. 

The channel output is corrupted by a white Gaussian noise with zero mean and a variance 

of 0.01. The performance is determined by taking an average of 100 independent 

experimental simulations to demonstrate the mean-square error (MSE) performance of the 

proposed algorithm. The signal to noise ratio is set to 20 dB. Finally, the simulated systems 

have been implemented using Matlab codes. Figs. 9 & 10 show the MSE performances of the 

NLMS algorithm for various fixed step-sizes.  

On the other hand Figs. 11-13, compare the MSE performances of the NLMS algorithm in 

the cases of fixed step-sizes of 0.5, 0.9, and 1.3 against the random step-size NLMS 

algorithm. It is clearly shown that the MSE performance of the NLMS algorithm using 

random step-size approach outperforms the fixed step-size algorithm’s performance, 

especially with large step-sizes.  
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Fig. 9. MSE performance of the NLMS algorithm for various step-sizes (mu) 

 

 
Fig. 10. MSE performance of the NLMS algorithm for various step-sizes (mu) 
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Fig. 11. MSE performances of fixed and random step-size NLMS algorithms 

 
 

 
Fig. 12. MSE performances for fixed and random  step-size NLMS algorithms 
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Fig. 13. MSE performances for fixed and random step-size NLMS algorithms 

5. Conclusion 

The proposed idea of using random step-size approach in the adaptation of the NLMS 

algorithm has been implemented and tested in the adaptation process of both channel 

equalization and system identification. The tests measure the MSE performance of using 

both the standard NLMS and the random step-size NLMS algorithms in the above 

mentioned applications. An extensive investigation, to determine the NLMS algorithm’s 

best fixed step size, has been carried out over the defined channels. And a comparison 

between the performances of using the NLMS with a fixed step-size and a pseudo random 

step-size approaches has been carried out which shows the trade off between the 

convergence speed and the noise floor level.  

It can be concluded, in the case of adaptive channel equalization, that the performance of 

using the random step-size outperforms the performance of the fixed step-size by achieving 

much lower ground noise floor, especially at low signal-to-noise ratios while maintaining a 

similar convergence rate.  

In the case of adaptive system identification, the performance of using the random step-size 

outperforms the performance of that of fixed step-size NLMS adaptive algorithm and 

achieved lower ground noise floor, especially at larger step-sizes. 

The values of the step-size parameter of the proposed random NLMS algorithm are based 
on utilizing the random uniform distribution which made the error sequence accelerates the 
MSE’s level of the noise floor to a much lower value compared to that of the standard NLMS 
algorithm with a fixed step-size value. 
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