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Promising Role of Engineered Gene 
Circuits in Gene Therapy 

Wei-dong Wang and Jinyi Lang 
Department of Radiation Oncology, Sichuan Cancer Hospital  

P.R. China 

1. Introduction 

Synthetic biology is concerned with applying the engineering paradigm of systems design to 
biological systems in order to produce predictable and robust systems with novel 
functionalities that do not exist in nature. The circuit-like connectivity of biological parts and 
their ability to collectively process logical operations was first appreciated nearly 50 years 
ago. This inspired attempts to describe biological regulation schemes with mathematical 
models and to apply circuit analogies from established frameworks in electrical 
engineering(McAdams & Arkin A,2000). Meanwhile, breakthroughs in genomic research 
and genetic engineering (e.g., recombinant DNA technology) were supplying the inventory 
and methods necessary to physically construct and assemble biomolecular parts. As a result, 
synthetic biology was born with the broad goal of engineering or “wiring” biological 
circuitry—be it genetic, protein, viral, pathway, or genomic—for manifesting logical forms 
of cellular control. Synthetic biology, equipped with the engineering-driven approaches of 
modularization, rationalization, and modeling, has progressed rapidly and generated an 
ever-increasing suite of genetic devices and biological modules. 
synthetic biology is seeking to use and expand the mechanisms that control biological 
organisms using engineering approaches. These approaches will be applied on all scales of 
biological complexity: from the basic units to novel interactions between these units to novel 
multi-component modules that generate complex logical behaviour, and even to completely 
or partially engineered cells(McAdams & Shapiro,1995). Bringing the engineering paradigm 
to biology will allow us to apply existing biological knowledge to biotechnological problems 
in a much more rational and systematic way than has previously been possible, and at the 
same time to expand the scope of what can be achieved this way. The introduction of design 
principles such as modularity of parts, standardization of parts and devices according to 
internationally recognized criteria, and the adaptation of available abstract design 
procedures to biological systems, coupled to novel technological breakthroughs that allow 
the decoupling of design and fabrication, will fundamentally change our current concepts of 
how to manipulate biological systems. In this sense, synthetic biology is not primarily a 
“discovery science”, but is ultimately about a new way of making things. By adapting 
natural biological mechanisms to the requirements of an engineering approach, the 
possibilities for re-assembling biological systems in a designed way will increase 
tremendously. While several of the fundamental scientific issues and current applied 
objectives of synthetic biology overlap with those in other, more mature fields, especially 
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biotechnology and systems biology, synthetic biology should be properly seen as a 
completely new discipline, which brings a systematic, application-driven engineering 
perspective to biology. Just as in chemistry about a century ago, biology now seems poised 
to enter an era where significant advances in understanding will derive from a fruitful 
dialogue between theory and experiment, from analytical and synthetic efforts, and from 
interdisciplinary interaction with the chemical, physical, engineering and computational 
sciences. The potential for interaction with nanotechnology is especially apparent and 
appealing. It is often said that biology is the only existing nanotechnology that really works. 
But if we want to exploit this ‘natural nanotechnology’ for applied, engineering objectives, 
we will ultimately need to be able to intervene and to modify it at the level that synthetic 
biology is exploring. It can be anticipated that the major change that the field of synthetic 
biology will bring is the synergistic integration of existing disciplines: not just biology and 
engineering, but also computer modelling, information technology, control theory, 
chemistry and nanotechnology. Ulitmately, it is likely that the analytical and synthetic 
approaches to biology, as well as the in vitro and in vivo approaches, will fully complement 
each other. 
Synthetic biology will revolutionize how we conceptualize and approach the engineering of 
biological systems. The vision and applications of this emerging field will influence many 
other scientific and engineering disciplines, as well as affect the next generation of cancer 
therapy. In this article, we discuss and analyze the recent advances in synthetic biology 
towards engineering complex living systems through novel assemblies of biological 
molecules. The discovery of mathematical logic in gene regulation in the 1960s (e.g. the lac 
operon; Monod and Jacob, 1961) and early achievements in genetic engineering that took 
place in the 1970s, such as recombinant DNA technology, paved the way for today’s 
synthetic biology. Synthetic biology extends the spirit of genetic engineering to focus on 
whole systems of genes and gene products. The focus on systems as opposed to individual 
genes or pathways is shared by the contemporaneous discipline of systems biology, which 
analyzes biological organisms in their entirety. Synthetic biologists design and construct 
complex artificial biological systems using many insights discovered by systems biologists 
and share their holistic perspective. It is useful to apply many existing standards for 
engineering from well-established fields, including software and electrical engineering, 
mechanical engineering, and civil engineering, to synthetic biology. Methods and criteria 
such as standardization, abstraction, modularity, predictability, reliability, and uniformity 
greatly increase the speed and tractability of design. However, care must be taken in directly 
adopting accepted methods and criteria to the engineering of biology. We must keep in 
mind what makes synthetic biology different from all previous engineering disciplines. The 
insight gained from fully appreciating these differences is critical for developing 
appropriate standards and methods. Building biological systems entails a unique set of 
design problems and solutions. Biological devices and modules are not independent objects, 
and are not built in the absence of a biological milieu. Biological devices and modules 
typically function within a cellular environment. When synthetic biologists engineer devices 
or modules, they do so using the resources and machinery of host cells, but in the process 
also modify the cells themselves. A major concern in this process is our present inability to 
fully predict the functions of even simple devices in engineered cells and construct systems 
that perform complex tasks with precision and reliability. The lack of predictive power 
stems from several sources of uncertainty, some of which signify the incompleteness of 
available information about inherent cellular characteristics. The effects of gene expression 
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noise, mutation, cell death, undefined and changing extracellular environments, and 
interactions with cellular context currently hinder us from engineering single cells with the 
confidence that we can engineer computers to do specific tasks. However, most applications 
or tasks we set to our synthetic biological systems are generally completed by a population 
of cells, not any single cell. In a synthetic system, predictability and reliability may be 
achieved in two ways: statistically by utilizing large numbers of independent cells or by 
synchronizing individual cells through intercellular communication to make each cell more 
predictable and reliable. More importantly, intercellular communication can coordinate 
tasks across heterogeneous cell populations to elicit highly sophisticated behavior(Khalil & 
Collins, 2010). Thus, it may be best to focus on multicellular systems to achieve overall 
reliability in performing complex tasks. 

2. Recent advancements in synthetic biology 

2.1 Engineering of artificial gene networks 
Significant efforts were recently undertaken in the design of artificial genetic networks in 

prokaryotic and eukaryotic systems. Here, different genetic elements or ‘parts’ are 

(ultimately) rationally combined to ‘devices’ to realize specific cellular behaviors that have 

frequently analogies to elements from electric circuits such as switches and oscillators. We 

will outline recent efforts in the development of artificial gene networks. 

2.1.1 Switches 

A switch lets the cell adopt one of two possible states, depending either on the presence or 

absence of a chemical inducer or on two separate external stimuli (toggle switch) (Becskei et 

al.,2001). The latter behavior can be easily designed from any two repressors that 

reciprocally inhibit the transcription of their genes (Gardner et al.,2000). Switching between 

states can be achieved by intermittently inactivating the repressor that maintains the current 

state (such as adding a chemical inducer or increasing the temperature). Essentially, this 

property conveys a cell with a memory of its previous cultivation history and thus 

represents an epigenetic toggle switch. The former behavior requires positive feedback in 

the regulatory processes, such as (1) the positive autoregulation of a positive regulator's gene 

transcription or (2) the concomitant upregulation of an operon by external inducer and of 

the gene that encodes the transporter protein for entrance of the inducer. Besides the 

artificial design of such systems, this behavior is rather common in a number of well-

characterized bacterial expression systems such as the bacterial lactose and arabinose 

systems (Atkinsonet al., 2003;Ozbudak et al.,2004;Vilar et al.,2003). 

In addition, the switches can be engineered with a hysteretic character, so that the system 

switches into the ‘ON’ state at a higher concentration of external signal than is required to 

switch back to the ‘OFF’ state. This requires that the concentration of activator or active 

repressor can be made a function of the history of the cell, e.g. by adding another regulatory 

layer on top of the positive feedback element. This can be a concentration-dependent 

inactivation of a repressor that competes with an activator. Depending on the previous state 

of the cell, a given concentration of active repressor interacts with either high or low 

concentrations of activators, leading to a differentiation in response depending on the 

history (Kramer & Fussenegger, 2005). 
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2.1.2 Complex networks 
An oscillator produces regular fluctuations in network elements such as reporter proteins. 
Oscillators have been realized in two ways: as ring oscillators (‘repressilators’) or as a 
combination of activation and repression elements. The ring oscillator consists of three 
repressor genes that are coupled to three corresponding promoters in such a way, that each 
repressor protein can turn off the synthesis of one other repressor protein. This design 
worked on single cell level, but not on culture-level, which probably has to do with the noise 
involved on gene expression level (Elowitz & Leibler,2000). However, by combining positive 
and negative regulation, it is possible to reduce the noise to such a degree that population-
synchronized oscillation behavior over three periods can be observed in a turbidostat. 
Interestingly, such oscillating systems can be extended to include metabolite concentrations 
(Fung et al.,2005). 
In order to execute ever more complex logical behavior, it will be important to be able to 
‘integrate’ more and more signals into determining one or more cellular functions. This is 
facilitated by the high level of modularity in the regulatory elements of eukaryotic systems. 
This modularity makes them particularly amenable to design and can be used to implement 
a wide variety of logical behaviors for two and three signal inputs while exploiting only a 
limited number of genetic elements (Kramer et al.,2004). 

2.1.3 Networks for intercellular communications 
Creating macroscopically observable artificial functional behavior in a cell population 
requires some kind of synchronization. Such synchronization can be enforced by adding 
chemical inducers or by letting the cells themselves produce a signal in response to a change 
in a culture property. One example for such a property is cell density which can be 
communicated by quorum sensing, for example via the luxR/luxI system of Vibrio fischeri or 
via artificially engineered systems (Bulter et al., 2004). 
The luxR/luxI system has been used to trigger a variety of population–density dependent 

responses, such as flipping of a toggle switch (Kobayashi et al., 2004) or programmed 

population control (You et al., 2004). The system has also been exploited to design spatial 

patterns of behavior that re-build aspects of multicellular systems: when producer cells send 

the autoinducer signal of the lux system via diffusion through a plate, cells at different 

distances from the senders experience differently steep gradients once the autoinducer 

reaches them. Alternatively, cells can be used to detect the differences in inducer 

concentration in resulting (quasi-)steady state. Networks can be designed which are able to 

detect these rather subtle differences in environmental conditions and which translate them 

into adequate cellular responses such as different pulses of reporter proteins or stable 

colorimetric patterns (Basu et al.,2004;Basu et al., 2005), introducing space as an additional 

design parameter into the synthetic biology realm. 

2.1.4 Issues related to the design of genetic circuits 
For the design of genetic networks, the availability of functional elements with specific 
properties (such as binding constants and degradation rates) that fit the design purpose is 
crucial. So far, we are only  at the beginning of being able to easily  measure, let alone 
program kinetic parameters, co-operativities or binding constants. Consequently, the design 
process remains–for the time being–an iterative process that still contains considerable 
elements of trial and error. Nevertheless, some work-around tools are available today in 
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order to, at least crudely, shift certain characteristics from wild-type values to values that 
allow a desired behavior to be implemented. These include variations in gene dosage via 
changes in plasmid replicon, the increase of protein degradation rates by fusion to suitable 
protease sensitive tag-sequences, variations in the strength of RBSs (Yokobayashi et al.,2002) 
or drawing on the large number of mutants that are available for a number of model systems 
(such as phage , the lac system or the tet system). Alternatively, parameters can be adapted 
to the desired behavior by directed evolution, if a suitable assay is available. However, it is 
not really clear how such directed evolution assays can be easily tailored to screen for 
relatively subtle differences in properties important for optimized design. In summary, a 
primary task for the immediate future is to gain access to complete system parameter sets, 
which can then serve as the starting point to produce parts with parameter values that span 
suitable ranges. 

2.2 Engineering of systems 
Synthetic biology is a very young discipline that follows a powerful technological vision. 
However, there are no examples available where the whole approach has been implemented. 
Still, in some cases specific aspects of synthetic biology have been of critical importance. We 
will discuss the following examples: the design of an E.coli capable of image processing, 
refactoring of the phage T7, the design of novel polyketide antibiotics and the 
manufacturing of precursors for the anti-malaria drug artemisinin. 
An original example for new applications that derives from the interface of engineering and 

life sciences, which came out of the iGEM student competition, is the image-processing 

E.coli. By designing proteins that couple light-detection to well-known E.coli regulatory 

circuits, first steps towards light-detecting pixel sizes of micrometer dimensions are possible 

(Levskaya et al., 2005). 

A more fundamental aspect is covered by the work on the phage T7, which tries to help to 

answer the question whether it is indeed possible to refactor significant portions of small 

genomes. In other words, can we indeed modify those genomes according to the 

requirements of ‘engineerability’ such as monofunctionality of a part of the sequence and 

organization of the DNA into functional segments. Refactoring 10 kb of the T7 genome, 

representing about a quarter of the total genome, still produces functional phages, though 

their efficiency in propagation is reduced (Chan et al., 2005). This is an important validation 

of the synthetic biology approach, even though on a small scale. It remains to be seen 

whether the same concepts can be applied to more complex systems such as microbes. 

Two examples for application of synthetic biology concepts come from the area of 

pharmaceutical production and involve primarily the opportunities offered by de novo DNA 

synthesis, such as the direct adaptation of codon usage, implementation of suitable 

regulatory circuitry and the possibility to modularize the DNA sequences by restriction sites 

to facilitate iterative optimizations. The first example involves the adaptation of polyketide 

synthesis to well studied E.coli production strains and the subsequent design of novel 

polyketides by semi-randomized recombination of polyketide synthase genes. These 

recombinations were easily enforced along the interfaces of the different functional modules 

that make up a synthase and resulted in a rather high  success rate of detecting novel 

polyketides (Menzella et al., 2005). 

Along similar lines, another project that very much catches the spirit of synthetic biology is 
the construction, from scratch, of a cheap terpenoid production pathway in E.coli leading to 
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artemisinic acid, a precursor to the anti-malaria drug artemisinin. This goal essentially 
requires the design of an entirely new pathway in a suitable production organism. The 
corresponding pathway elements can be recruited from bacteria (E.coli), yeast (Saccharomyces 
cerevisiae) and plant (Artemisa annua), redesigned and functionally expressed in bacteria or 
yeast, effectively paving the road to a low-cost production route to effective malaria 
treatment (Martin et al.,2003;Ro et al.,2006). 
Although the design of novel biological systems is only beginning, all ingredients of the 
engineering approach are visible: the role of de novo DNA synthesis, the design of well-
behaved parts on the DNA and protein level, the organization of parts into the next 
functional level of devices and the corresponding abstractions and the attempt to introduce 
standardization, even though for the time being only on a parts level. With the design of 
ever more complex systems, the need to emphasize these elements will undoubtedly 
increase. 

3. Design strategies of synthetic genetic circuits 

Synthetic biology encompasses the building of novel biological entities for useful purposes 
and the corresponding endeavors can be subdivided into two distinct types of tasks: systems 
design and systems fabrication. Here, we will discuss the essential elements of these two 
tasks with a special focus on the computational and informatics requirements. 
Fabrication deals with the transformation of design plans into actual physical instances. 
Today, this still involves a significant amount of cloning work, which should decrease in the 
future due to de novo DNA synthesis. The fabrication as such, is not expected to create a 
great demand for novel informatics tools. 
In contrast, systems design consisting of forward-engineering of biological parts, devices or 
systems strongly relies on computing and informatics tools that assist the design process. 
Ultimately, it would be desirable to have computer aided design tools—CAD tools for 
biological engineering—in analogy to the respective software tools in the areas of 
mechanical or civil engineering. Using such software, the synthetic biology design engineer 
would try to improve the behavior of a biological system in silico by optimizing design 
parameters targeting a selected objective function. Design variants would be tested 
computationally by means of simulations. 
Such design tools will be based on quantitative mechanistic models that reproduce 
biological behavior and–in order to be useful for forward-engineering design—would also 
have predictive power. In biology, we have not yet reached a level of understanding where 
such models can be developed on a large scale and consequently, true biological engineering 
is hardly possible until now (Endy & Brent, 2001). In fact, in most cases today, we are faced 
with highly uncertain or even unknown model topologies, mechanisms and parameters. The 
recent advances in the post-genomic research and especially in systems biology, however, 
provide hope that sooner or later we will be able to draw on a body of knowledge that 
allows for the envisioned directed engineering of biology (Endy & Brent, 2001). Ultimately, 
mathematical models developed for research purposes (e.g. in systems biology) will be 
employed as design models in synthetic biology. In contrast to the current lack of predictive 
models, tools for modeling and simulation exist in large numbers (Lemerle et al, 2005). 
We envision that in the long run we will require models and design software for the 
following tasks: (1) sequence–based (ab initio) prediction of structure, function and 
interactions of macromolecules, in particular proteins and mRNA, (2) prediction of the 
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dynamics of signaling and regulatory networks; and (3) prediction of the dynamics of 
metabolic networks. For each of these areas, we will shortly sketch the current status of 
development and also elaborate on future tasks. 

3.1 Design of functions and interactions of macromolecules 
We would like to predict—starting from a linear sequence of nucleotides or amino acids— 
2D (mRNA) and 3D structures of the respective macromolecules (RNA, proteins), as well as 
their function and their interaction parameters with other cellular components (DNA, 
metabolites, etc.). In other words, as outlined above we would like to have the possibility to 
modify sequences in a targeted manner to obtain, e.g. novel transcription factors (i.e. with 
altered binding constants or kinetics) or proteins with novel functions. 
However today, as an example de novo protein structure prediction from a linear amino 
acids sequence can only be achieved for small protein domains at significant computational 
costs (Bradley et al.,2005; Misura et al.,2006). Nevertheless, starting from known structures 
of ‘scaffold’ proteins, design methods are available, which can be used to rationally modify 
the proteins' structure and function, i.e. to build completely new active sites into proteins or 
to redesign binding specificities of proteins. However, such design processes still go through 
several cycles of iterative improvement involving design, analysis, redesign, etc. where 
computational tools such as FoldX (Schymkowitz et al.,2005) are typically employed. In 
other words, the design of tailored catalytic activities on artificial proteins seems to be 
within reach, while quantitative prediction of enzymatic activity and selectivity from 3D 
protein structures in general is not yet feasible. For further information on the current status 
in modeling of protein structures and interactions, the reader is referred to a recent review 
(Schueler-Furman et al.,2005). 
Based on structure models, molecular dynamics simulation have shown to be a versatile tool 

to investigate the dynamic behavior of complexes between DNA binding sites and 

respective DNA target sites (Marco et al., 2003;;Obika et al.,2003). These tools can also be 

employed to predict the effect of structural modulations on protein–ligand interactions in a 

way that would allow forward-engineering design of, e.g. DNA-binding specificity of 

transcription factors. 

3.2 Design of signaling and regulatory networks 
Artificial signaling and regulatory gene networks will need to be assembled for synthetic 

biology. Today, such circuits are still frequently assembled by intuition and optimized 

through several rounds of trial and error (Kærn et al.,2003) and the mathematical models are 

only developed once proper in vivo function has been demonstrated. Deterministic or 

stochastic models (or a combination of both) are then used to describe the observed dynamic 

behavior of the circuit. 

Ideal, however, would be models that allow deriving in silico suggestions for optimal design 
strategies or debugging, prior to implementation of the circuit in vivo (Sprinzak & Elowitz, 
2005). Such models should be able to capture the dynamic behavior of the gene networks. In 
cases where only small molecule numbers are involved (as in gene transcription or 
translation, where transcription factors and mRNA molecules only occur in low copy 
numbers), the models would also need to be able to reproduce the inherent stochasticity of 
such processes. This is imperative as it was shown that stochasticity in combination with 
certain system architectures can result in different system states (Pedraza & van 
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Oudenaarden,2005). A robust design of new devices and systems must exclude such 
eventualities. 
In summary, to enable the envisioned forward-engineering (model-based) design of 
signaling and regulatory circuits, improvements are required in the following areas: It is 
necessary (1) to obtain an improved quantitative understanding of regulatory and signaling 
processes; (2) to develop effective rules (Wall et al.,2003) and standards for characterizing 
modules and (3) to improve multiscale simulation algorithms as the existing ones are limited 
in a way that the participating reactions have to occur on a comparative time scale and the 
participating reaction species have to fulfill certain population size requirements. 

4. Genetic circuits and therapeutics 

4.1 Drug target identification 
Building up synthetic pathways and systems from individual parts is one way of identifying 
disease mechanisms and therapeutic targets. Another is to deploy synthetic biology devices 
to systematically probe the function of individual components of a natural pathway. To 
achieve post-transcriptional control over a target gene, the mRNA sequence of its 5′-UTR 
was designed to form a hairpin structure that sequesters the ribosomal binding site (RBS) 
and prevents ribosome access to it. Translational repression of this cis-repressed mRNA 
could then be alleviated by an independently regulated trans-activating RNA that targets 
the stem-loop for unfolding. Engineered riboregulators were used in a subsequent study to 
tightly regulate the expression of CcdB, a toxic bacterial protein that inhibits DNA gyrase, so 
as to gain a better understanding of the sequence of events leading to induced bacterial cell 
death(Dwyer,2007). These synthetic biology studies, in conjunction with systems biology 
studies of quinolones (antibiotics that inhibit gyrase), led to the discovery that all major 
classes of bactericidal antibiotics induce a common oxidative damage cellular death 
pathway(Kohanski,2008). This work provided new insights into how bacteria respond to 
lethal stimuli, and paved the way for the development of more effective antibacterial 
therapies. 
Once a faulty pathway component or target is identified, whole-cell screening assays can be 
designed using synthetic biology strategies for drug discovery. As a demonstration of this 
approach, Fussenegger and colleagues(Weber,2008)developed a synthetic platform for 
screening small molecules that could potentiate a Mycobacterium tuberculosis antibiotic. 
Ethionamide, currently the last line of defense in the treatment of multidrug-resistant 
tuberculosis, depends on activation by the M. tuberculosis enzyme EthA for efficacy. Due to 
transcriptional repression of ethA by the protein EthR, however, ethionamide-based therapy 
is often rendered ineffective. To address this problem, the researchers designed a synthetic 
mammalian gene circuit, featuring an EthR-based transactivator of a reporter gene, and 
used it to screen for and identify EthR inhibitors that could abrogate resistance to 
ethionamide. Importantly, because the system is a cell-based assay, it intrinsically enriches 
for inhibitors that are nontoxic and membrane-permeable to mammalian cells, which are 
key drug criteria as M. tuberculosis is an intracellular pathogen. This framework, in which 
drug discovery is applied to whole cells that have been engineered with circuits that 
highlight a pathogenic mechanism, could be extended to other diseases and phenotypes. 

4.2 Therapeutic treatment 
Synthetic biology devices have additionally been developed to serve as therapies 
themselves. Entire engineered viruses and organisms can be programmed to target specific 
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pathogenic agents and pathological mechanisms. In two separate studies(Lu,2009), for 
instance, engineered bacteriophages were deployed to combat antibiotic-resistant bacteria, 
by endowing them with genetic mechanisms that target and thwart bacteria’s antibiotic 
evasion techniques. The first study was prompted by the observation that biofilms, in which 
bacteria are encapsulated in an extracellular matrix, have inherent resistance to 
antimicrobial therapies and are implicated sources of persistent infections. To more 
effectively penetrate this protective environment, T7 phage was engineered to express the 
biofilm matrix-degrading enzyme dispersin B (DspB) upon infection (Lu,2007). The two-
pronged attack of phage-induced lysis fueling the creation and spread of matrix-degrading 
enzyme resulted in 99.997% removal of biofilm bacterial cells. 
It was hypothesized that inhibition of certain bacterial genetic programs could help current 
antibiotic therapies achieve more effective activity. In this case, bacteriophages were 
deliberately designed to be non-lethal so as not to elicit resistance mechanisms; instead, non­
lytic M13 phage was used to suppress the bacterial SOS DNA damage response by 
overexpression of its repressor, lexA3. The engineered bacteriophage significantly enhanced 
killing by three major classes of antibiotics in traditional cell culture and in E. coli-infected 
mice, potentiated killing of antibiotic-resistant bacteria, and importantly reduced the 
incidence of antibiotic-induced resistant cells. 
Synthetically engineered viruses and organisms that are able to sense and link their 
therapeutic activity to pathological cues may be useful in the treatment of cancer, where 
current therapies often indiscriminately attack tumors and normal tissues. Adenoviruses, for 
instance, were programmed to couple their replication to the state of the p53 pathway in 
human cells(Ramachandra,2001). Normal p53 production would result in inhibition of a 
critical viral replication component, whereas a defunct p53 pathway, which is characteristic 
of tumor cells, would allow viral replication and cell killing. In another demonstration of 
translational synthetic biology applied to cancer therapy, Voigt and colleagues()developed 
cancer-targeting bacteria and linked their ability to invade the cancer cells to specific 
environmental signals. Constitutive expression of the heterologous inv gene (from Yersinia 
pseudotuberculosis) can induce E. coli cells to invade both normal and cancer human cell lines. 
So, to preferentially invade cancer cells, the researchers placed inv under the control of 
transcriptional operons that are activated by environmental signals specific to the tumor 
microenvironment. These engineered bacteria could be made to carry or synthesize cancer 
therapies for the treatment of tumors. 
In addition to engineered therapeutic organisms, synthetic circuits and pathways can be 
used for the controlled delivery of drugs as well as for gene and metabolic therapy. In some 
cases, sophisticated, kinetic control over drug release in the body may yield therapeutic 
advantages and reduce undesired side effects. Most hormones in the body are released in 
time-dependent pulses. Glucocorticoid secretion, for instance, has a circadian and ultradian 
pattern of release, with important transcriptional consequences for glucocorticoid­
responsive cells(Anderson,2006). Faithfully mimicking these patterns in the administration 
of synthetic hormones to patients with glucocorticoid-responsive diseases, such as 
rheumatoid arthritis, may decrease known side effects and improve therapeutic response. 
Periodic synthesis and release of biologic drugs can be autonomously achieved with 
synthetic oscillator circuits or programmed time-delay circuits( Weber,2007) In other cases, 
one may wish to place a limit on the amount of drug released by programming the synthetic 
system to self-destruct after a defined number of cell cycles or drug release pulses. 
Gene therapy is beginning to make some promising advances in clinical areas where 
traditional drug therapy is ineffective, such as in the treatment of many hereditary and 
metabolic diseases. Synthetic circuits offer a more controlled approach to gene therapy, such 
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as the ability to dynamically silence, activate, and tune the expression of desired genes. In 
one such example, a genetic switch was developed in mammalian cells that couples 
transcriptional repressor proteins and an RNA interference (RNAi) module for tight, 
tunable, and reversible control over the expression of desired genes. This system would be 
particularly useful in gene silencing applications, as it was shown to yield > 99% repression 
of a target gene. Additionally, the construction of non-native pathways offers a unique and 
versatile approach to gene therapy, such as for the treatment of metabolic disorders. 
Operating at the interface of synthetic biology and metabolic engineering, for instance, Liao 
and colleagues(Dean,2009) recently introduced the glyoxylate shunt pathway into 
mammalian liver cells and mice to explore its effects on fatty acid metabolism and, more 
broadly, whole-body metabolism. Remarkably, the researchers found that when 
transplanted into mammals the shunt actually increased fatty acid oxidation, evidently by 
creating an alternative cycle. Furthermore, mice expressing the shunt showed resistance to 
diet-induced obesity when placed on a high-fat diet, with corresponding decreases in total 
fat mass, plasma triglycerides, and cholesterol levels. This work offers a new synthetic 
biology model for studying metabolic networks and disorders, and for developing 
treatments for the increasing problem of obesity. 

5. Challenges and future directions 

Constructing a functional synthetic circuit requires assembling diverse genetic elements and 
getting them to work together. In general, combining disparate components requires the 
tuning of biochemical parameters such as affinities or rate constants, which is often difficult 
to implement in biological circuits. Characterization of a component may be valid in one 
context (locus, plasmid, strain, environment, and so on), but not in others. How can one 
design an operating circuit given these limitations? Several strategies have been applied. 
First, the use of tunable elements, such as transcription factors derived from tetR(Lutz,1997), 
allows external control over some parameters. Second, one can screen libraries of mutated 
components, or apply directed evolution in the laboratory, to optimize parameters. A third 
strategy is to use robust circuit designs that are inherently insensitive to unknown or 
variable parameters. Such designs are particularly interesting because they may have been 
selected by evolution for the very same property(Barkai,1997). 
A related challenge is computational modelling of genetic circuits. Modelling is essential 
both for analysis of natural systems and also for design of synthetic ones. However, several 
problems complicate its application to cellular circuits. These include parameter sensitivity, 
the lack of effective rules to simplify complex circuits, and the difficulty of incorporating 
extrinsic noise. Because synthetic circuits are simpler and better characterized than their 
natural counterparts, they will probably offer ideal test systems to develop and refine 
models. The results should apply both to natural and synthetic circuits. 
What are the goals of the synthetic circuit paradigm outlined here? One is to better 
understand natural circuits by building minimal replicas of those circuits, observing their 
dynamics in vivo, and comparing them to one another and to their natural counterparts. 
The synthetic circuits presented above are highly simplified. However, as we gain 

confidence and expertise in our ability to build, model and analyse these circuits, we will be 

able to construct replicas of greater verisimilitude. Possible natural circuits that could be 

investigated this way include decision making in response to stress and DNA damage, as in 

the natural p53/mdm2 circuit(Vogelstein,2000), differentiation in response to extracellular 

signals, as in oocyte maturation(Xiong,2003), and regulated temporal oscillations, as in the 
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cell cycle and circadian clock. Circuits that use the intrinsically noisy nature of the cell to 

create probabilistic behaviours are particularly compelling examples. 
A second goal is to discover what other, non-natural, circuit designs are possible given 
realistic biological components, and which of those operate reliably in vivo. This will be 
achieved by building and characterizing a variety of alternative circuit designs in living 
cells. In this way, one may ask what advantages naturally evolved circuits have over 
synthetic ones. For example, the synthetic clock designs described earlier have not been 
discovered to occur in nature, suggesting that natural designs may confer better 
performance. At the same time, non-natural designs may prove useful for biotechnology 
applications. 
Perhaps the most intriguing problem is how a circuit operates in the context of a complete 
organism. There are no dotted lines inside the cell isolating circuits from one another. The 
ultimate test for this synthetic approach is to delete natural circuits and replace them with 
synthetic counterparts within organisms. This will require synthetic circuits to interface with 
the rest of the cell. For example, by replacing the Drosophila circadian clock with synthetic 
versions we could learn more about the interaction of the circadian module with other 
functional subsystems in the organism. Even the most optimistic synthetic biologist would 
expect such circuits to be less functional than their natural counterparts. However, perhaps 
at this stage one can learn more by putting together a simple, if inaccurate, pendulum clock 
than one can by disassembling the finest Swiss timepiece. 
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