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1. Introduction 

The use of gene therapy is a promising process for the prevention, treatment and cure of 
diseases such as cancer and acquired inmudeficiency syndrome (AIDS); increasing a 
considerable interest during the last decade (Prather et al., 2003). This process requires 
considerable amounts of plasmid DNA (pDNA) that should be homogeneous with respect 
to structural form and DNA sequence (O´Kennedy et al., 2003). 
It was shown that naked DNA injected into muscle tissue is expressed in vivo; also the 
introduction of immunogenic sequences can result in animal vaccination against the 
encoded peptide (Vogel & Sarver 1995). In general, DNA-based vaccines are considered 
very safe due, in part, to the lack of genetic integration, and to the absence of specific 
immune response to the plasmid itself (Robinson, 2000), making its property very attractive. 
This approach was successfully tested for vaccination against several viral infections such 
as: West Nile virus vaccine licensed in 2005 by the USDA; in horses; is currently in phase II 
trial in humans; and the H5N1 influenza DNA vaccine currently undergoing phase I clinical 
trials (Phue, 2008). 
When the concept of a DNA vaccine first popped onto the scene in the early 1990s, it seemed 
too simple, too easy and too bizarre to be true. Regardless the considerable scientific effort 
over the past few years, no gene-therapy  product has yet reached the market, at the 
moment. Only several clinical trials have been carried out and thousands of people have 
received (pDNA) without serious adverse effects (Prazeres et al., 1999). By virtue of the 
developments made recently in biotechnology and molecular medicine, the speculation of 
20 years ago that gene technology would become a powerful tool to cure disease directly, 
has become reality (Schleef, 1999) and the market of one of these products would exceed 
US$45 billion. 
The trend toward testing DNA vaccines as part of combination trials can be seen in both the 
large vaccine producers like Merck, Aventis Pasteur and Wyeth as well as in smaller 
research companies (Powell, 2004). Although the processes of production for many gene-
therapy vectors have been developed in pharmaceutical companies, the information of 
large-scale pDNA production is scarce and usually not available to the scientific community 
(Xu et al., 2005). 
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54 Gene Therapy - Developments and Future Perspectives 

FDA added “Therapeutic plasmid DNA vector” to the list of well-characterized 
biotechnology product and gene therapy has been moved rapidly from laboratory scale to 
clinical trials. As a matter of urgency, it is essential to develop new protocols to obtain high-
quality plasmids with high yields. The understanding, optimization and validation of steps, 
from pDNA design and host strain selection to mass-cultivation and purification, are crucial 
if this novel vaccine technology will become commercially successful (Prather et al., 2003). 
Innovative methodologies and new engineering tools are needed to expand the window of 
opportunity for process design. The advantages of the procedure described over existing 
technology to produce pharmaceutical grade pDNA for gene therapy include a high cell 
density culture, improved plasmid purity and the elimination of undesirable process 
additives such as toxic organic extractants and animal derived components or raw materials. 
By employing this simple, scalable and applicable approach we concluded successfully 
clinical trial (phase I); and currently is in Phase II using the pIDKE2 plasmid; which is the 
main component CIGB’s candidate vaccine against Hepatitis C virus. The principal topics of 
this chapter are: Fermentation process including design of high-cell-density culture, 
Downstream process using tangential flow filtration and chromatography, which are widely 
accepted methods for pDNA purification and act as orthogonal techniques platform, Scale­
up of bioprocess, Quality control of pDNA manufacturing and finally regulatory aspects. 

2. Fermentation process to produce plasmid DNA 

For the production of large quantities of pDNA an efficient fermentation process needs to be 
established. The fermentation conditions for optimization of pDNA production in 
Escherichia coli (E. coli) could be fundamental however experimental data are limited. 
Although the available information is limited in comparison with the extensive recombinant 
protein production literature, some general rules and methodologies pertaining to the 
production of pDNA by cultivation of E. coli are beginning to emerge (Prather et al., 2003). 
A number of recent reports discuss the fermentation strategies used for production of 
pDNA, but have not addressed the effect of fermentation conditions on the quality of the 
resulting pDNA. Few studies have been carried out focusing on the quality of plasmid 
product at the end of the fermentation stage. Because the location of pDNA is intracellular, 
productivity is proportional to the final cell-density and the specific productivity (amount of 
pDNA per unit cell mass) too (Yakhchali et al, 2007). Typically, 0.5 – 1 g pDNA per Kg of 
wet weight biomass is obtained from cultivation media using high copy number plasmid. 
Therefore the choice of fermentation protocol will be critical in minimizing process 
contaminants that need to be removed during downstream processing (O´Kennedy et al., 
2003). 
Generally, these simple processes are based on the growth of E. coli in either shake flasks or 
small laboratory fermentors, usually employing simple media formulation such as Luria 
Bertani (LB) or Terrific Broth (TB). These processes yield low cell mass, which support 
modest volumetric plasmid yields that are only sufficient for studies employing limited 
number of small animals (Prather et al., 2003). 
Strategies aimed at increasing plasmid amplification in fermentation include the use of 
temperature shock, while achievable on a small scale, may be difficult to implement on a 
large scale. The use of fermentation devices is necessary too, so over the whole propagation 
of growth at least the following parameters are monitored and documented: temperature, 
pH, pO2, agitation speed, and the use of some solution like: antifoam, acid, base and in 
some cases feeding solution. 
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55 Scalable Technology to Produce Pharmaceutical Grade Plasmid DNA for Gene Therapy 

On the other hand the use of low specific growth rates (µ) is unifying principle in high-
quality, high-yield fermentations for pDNA production. Chen et al. 1997 indicated that the 
pDNA yield is related to the specific growth rate of bacteria during the fermentation. In 
addition, other authors suggest that the plasmid yields obtained from culture were highest 
into stationary phase. High specific growth rates are associated with acetate production, 
plasmid instability and lower percentages of supercoiled plasmid overall (Xu et al., 2005). 
The FDA recognizes that open-circle, linear and nicked forms may be fewer effectives 
therapeutically than supercoiled DNA. Those other forms can be very difficult to separate 
from the supercoiled plasmid during purification. Therefore, fermentation processes should 
also be optimized to produce a high percentage of supercoiled plasmid (Carnes, 2005). Large 
scale E. coli fermentation systems for plasmid DNA production have been developed and 
the success of this process will be dependent on the interactions between the host organism, 
the recombinant plasmid vector, its copy number, the gene size and the growth 
environment. 

2.1 Host strain 
The first consideration in designing an efficient process should be host cell line selection. 
Host selection requires that the source of the microbial strain must be characterized and free 
of any adventitious agents, as well as be genotypically and phenotypically well 
characterized (Prather et al., 2003). Plasmids represent less than 0.5% of the wet biomass and 
endotoxins and other impurities must be completely removed so the characteristics of the 
microbial host affect the quality of the purified DNA. 
Plasmid production should be in an E. coli K12 strain considered non-pathogenic. E. coli is 
usually chosen today as the production host, with its concomitant benefits and drawbacks. 
The benefits include a high DNA yield and well-established procedures for down-stream 
processing of the plasmid. However, as  a gram-negative bacterium contains highly 
immunogenic endotoxin or lipopolysaccharides (LPS) in its outer membrane (Glenting, et al, 
2005). Popular hosts such as DH5 derivates and XL1 Blue are suitable for plasmid 
production. Judicious selection of the host strain is also important because this can be 
minimize the amounts of impurities that needs to be removed by, for example avoiding 
strains that produce large amounts of carbohydrate such as HB101 (Prazeres et al., 1999).  In 
our experience DH10B have been found to be consistently higher producing pDNA. 

2.2 Culture medium 
Medium composition and cultivation conditions play an important role by controlling 
amount of biomass, plasmid copy number and stability. It was reported that the media 
composition affected cell specific growth rate, and thus influenced in plasmid copy number. 
Therefore, the effects of medium components on cell growth and plasmid productivity 
should be evaluated (Xu et al., 2005). 
Media composition can dramatically affect yield and consequently the overall cost of 
production. Media for plasmid production should support high nucleotide pools in cells 
and supply energy for replication while minimize other cell activity (Carnes, 2005). Through 
the type and concentration of ingredients used, cultivation medium composition directly 
dictates the amounts of biomass produced; is therefore likely to influence plasmid 
volumetric yield (Prather et al., 2003). 
Typically, the nutritional requirements are satisfied by either minimal or complex media. 
The first option contains known quantities of essential nutritional components including 
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56 Gene Therapy - Developments and Future Perspectives 

carbon source, nitrogen source and salts and excludes components known to be inhibitory 
to bacterial growth. Complex media formulations often contain ingredients like yeast extract 
and peptones that may allow for a higher cell density. Fermentation processes using 
minimal media are highly reproducible and support higher plasmid copy number (Carnes, 
2005). Although standard media can be used for plasmid production, some authors 
recommend the development of media adapted to the specific plasmid-host system involved 
in order to increase productivity (Prazeres et al., 1999). Media that supported similar specific 
growth rates between plasmid-bearing and plasmid-free cells also supported high plasmid 
stability. 
Design of balanced medium is based on  bacterial energy requirements and elemental 
composition (Carnes, 2005). A carbon source provides energy and biomass and is usually 
the limiting nutrient in fed-batch culture. Glucose is the conventional choice as a carbon 
source because it is inexpensive and very efficiently metabolized. However, high glucose 
levels have demonstrated to cause undesirable acetate production due to metabolic 
overflow. The application of glycerol avoids repression of intermediate metabolites and 
accumulations of inhibitive organic acids to some extent. Therefore, the effect of glycerol 
addition in culture and feed medium on pDNA production in E. coli should be also 
examined. 
On the other hand the selection of nitrogen source and the determination of its 
concentration are critical to the optimization of plasmid production in recombinant cell 
fermentation. A nitrogen source and trace metals elements are required for bacterial growth, 
metabolism and enzymatic reactions. The bacterial requirement for nitrogen can be satisfied 
by inorganic and organic source. From the development of high density cell culture point of 
view, organic complex supply of nitrogen from components, such as yeast extract, is 
essential because it is more effective to support high plasmid yield. Minerals are necessary 
too for bacterial growth, metabolism and enzymatic reactions. For example it was reported 
that Magnesium sulphate is often the source of both magnesium and sulphur; and high 
concentrations are beneficial for the production of homogeneous supercoil plasmid 
monomers. Therefore, the effects of medium components on cell growth and plasmid 
productivity should be evaluated to solve the trade-off between higher copy number and 
reduced specific growth rate (Xu et al., 2005). 

2.3 High cell density culture 
A further feature of fermentation technology for large scale plasmid production is the 
performance of high-density culture to obtain large amounts of biomass. Fed-batch 

fermentation provides higher biomass yields than batch fermentation because substrate is 
supplied at such rate, that it is nearly completely consumed; so delivers nutrients over an 
extended period of time (Carnes, 2005). Both batch and fed-batch technologies have been 
successfully employed for plasmid over-production by E. coli. Batch cultivation, although 
logistically simple, is severely limited with respect to achieving elevated biomass (Prather et 
al., 2003). 
Nutritional requirements and cellular composition of E. coli are well defined. This 
information that has been reported in literature can be advantageously used in the design of 
culture media formulation (Table 1) (Carnes, 2005). High cell density (HCD) fermentation 
requires a balanced medium supplying adequate amounts of nutrients needed for energy, 
biomass and cell maintenance; and commonly contains carbon and nitrogen sources, various 
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57 Scalable Technology to Produce Pharmaceutical Grade Plasmid DNA for Gene Therapy 

salts and trace metals. HCD process has many inherent advantages, specifically reduces the 
time required in a fermenter in either a contract manufacturing facility or in captive space. 

Element Dry Weight Percentage 

Carbon 50-53 
Hydrogen 7 
Nitrogen 12-15 
Phosphorous 2-3 
Sulfur 0.2-1.0 
Potassium 1.0-4.5 
Sodium 0.5-1.0 
Calcium 0.01-1.10 
Magnesium 0.1-0.5 
Chloride 0.5 
Iron 0.02-0.2 

Table 1. Elemental component of bacteria. 

In fed-batch fermentation cells are inoculated into an initial volume of medium that contains 

all nonlimiting nutrients and an initial concentration of the limiting substrate. These 

processes start with a batch phase, namely phase of biomass build up where the cells grow 

exponentially (Carnes, 2005) follow by a phase of slow growth, achieved via fed-batch 

technology, where plasmid amplification takes place. Several researches have observed that 

plasmid copy number increases during both, the late exponential and early stationary 

phases of growth (Prather et al., 2003). These kinds of cultivations lead to significantly 

higher biomass yields avoiding the loss of product. The amount of product per cell (or per 

cell weight) in particular strongly influences the downstream processing scale and therefore, 

defines another important part of the production costs (Schleef, 1999). 

Several feeding strategies have been developed, either automated feedback controlled (e.g., 

DO-stat, pH-stat, metabolic activity, biomass concentration and substrate concentration) or 

predetermined (e.g., constant, linear stepwise or exponential feeding). The feeding of 

nutrients, usually glucose, has been extensively researched and incorporates a range of 

approaches that span from simple to much elaborated, with each presenting its own 

advantages and disadvantages. One of the most effective feeding strategies is exponential 

feeding. This method allows a culture to grow at a predetermined specific rate < µmax 

without the need of feedback control. Feeding regimens based on feed rate increase, either 

simple or following sophisticated algorithms aimed at maintaining a more constant 

environment thus have been successfully implemented maintaining a desired growth rate 

(Prather et al., 2003). 
However, HCD technique has its draw backs and growth inhibitory by products, such as 

acetate formed. Acetate formation can be reduced or prevent by altering the fermentation 

medium or optimization of feeding strategies during fed-batch fermentation. According to 

our literature survey, the effect of acetate on pDNA production in HCD culture has been 

little investigated (Yakhchali et al, 2007). It has been reported that a minimum acetic acid 

accumulation and a high plasmid copy number could be obtained when the specific growth 

rate is about 0.1 h-1. 
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58 Gene Therapy - Developments and Future Perspectives 

Using all this approach, we designed a fed-batch culture medium according to bacterial 
element composition to obtain the recombinant host E. coli DH10B bearing pIDKE2. This 
plasmid is the first 650 aa of the Hepatitis C Viral (HCV) polyproteins for DNA 
immunization expression from the 1b-Cuban isolate genotype (Dueñas et al., 2007). The 
results show that cell density increased during exponential phase at around 20-21 hrs, to the 
stationary phase at around 22- 25 hrs, and cell density decreased at 26 hrs. The highest cell 
mass (29 ± 1.7 g dry cell l-1), plasmid yield (154 ± 2.8 mg pDNA l-1) and specific pDNA yield 
(0.44 ± 0.02 mg pDNA g-1 dry cell weight) were obtained at 24 hours of culture. So we 
suggest stop the culture in this moment (Ruiz et al, 2009). 
The behaviour of E. coli (DH10B) in this fed-batch fermentation process (red bar in Figure 1) 
was common because the average of volumetric yield (154± 2.8 mg pDNA l-1) is in the state 
average of the art (142 mg pDNA l-1). With this culture procedure larger amounts of plasmid 
pIDKE2 can be obtained in DH10B cells. Several researchers have reported the behaviour of 
plasmid volumetric yield (mg/L) for different fermentation strategy (Figure 1) (Diogo, 2000, 
2001; Durland, 1999; Lahijani, 1996; Shmidt, 2001, 2003; Wang, 2001). As it is shown, plasmid 
production under non optimized laboratory conditions invariably leads to very low 
volumetric titters (5-70 mg/L) and DNA production processes that employ simple batch 
cultivation technology yield relatively low biomass and correlatively support low plasmid 

volumetric yields too (<100 mg/L). However, increasing medium strength, by either adding 
additional nutrients, employing richer formulation or sophisticated feeding strategy (orange 
bar), support higher volumetric yield without compromising plasmid quality. 

Fig. 1. Plasmid volumetric yields, from several references with different fermentation 
strategies. 

A combination of plasmid and host-strain selection with optimization of fed-batch 
fermentation can result in yields as high as 260 mg/L (Carnes, 2005). Therefore HCD 
fermentation techniques for culturing E. coli has been developed to improve productivity 
and to obtain high cell density. 

2.4 Scale up 
When a molecular biologist thinks of a “large scale” pDNA production, the range of 10­
100mg of DNA usually comes to mind. However, at a pharmaceutical production-scale, 
pDNA requirements may exceed 50g per batch. In extreme case, many kilograms of pDNA 
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per year will be needed to fill the ultimate marketing demand for DNA vaccines currently in 
clinical trials (Prather et al., 2003). The transfer from research scale technology to 
manufacturing scale requires management of the upscaling process. Such upscaling is not 
just a simple multiplication of relevant factors, but instead requires highest competence, 
time investment and incurs cost. 
Effective scale-up is essential for successful bioprocessing. Much fermentation processes 
were successfully scale-up on the basis of a constant volumetric oxygen transfer coefficient 
(KLa) and power consumption per unit volume (P/V); so they are widely used. However 
when a particular scale-up strategy is carried out maintaining a specific set of parameters 
constant, other parameters can not be controlled and may change substantially in 
unexpected ways (Schleef, 1999). 
Current scale-up methods assume that the environment conditions are homogeneously 
distributed within the large-scale fermentation, as in the small-scale fermentor, however, 
this is not true. There are so many factors, like hydrodynamics factors, height and geometric 
configuration of the reactor that would affect the environment of the fluid in the large-scale 
reactors. The use of traditional empirical methods lead to an increase in mixing and 
circulation times at large scale. In addition high oxygen demands and high viscosity can 
cause concentration gradients in oxygen, shear and pH; that can have a significant impact 
on fermentation yield. Therefore, the choice of scale-up criteria in not an easy task, given the 
potential sensitive and diverse response of cells to each of the transport phenomena 
influenced by impeller design, system geometry, scale, fluid properties, and operating 
parameters. 
The primary scale-up criterion of process should be selected based upon the transport 
property most critical to the performance of the process. If oxygen transfer is the limiting 
factor, then scale up by equal P/V will be essential. This method is adopted for many 
authors using larger-scale fermentors, such as these below 1000L capacity (Pollard et al., 
2007). Moreover, the suitability of scaled-up methods is usually confirmed by experimental 
results. Scale-up of plasmid pIDKE2 production from 5L fermentor to 50L pilot scale 
fermentor was carried out successfully using constant P/V in a fed batch process illustrated 
in epigraph 2.3. Final biomass concentration and specific pDNA yield were increased in 
comparison with cultures grown on a standard laboratory medium (TB) on batch mode as 
we can see in Figure 2. 

100 

80 

60 

40 

20 

0 
Wet weight (g/L) mg AND/ L 

5L Batch 5L Fed batch 50L Fedbatch 

Fig. 2. Effects of culture strategy and scale on pDNA production and cell growth. 
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The results show that there is no difference in fermentation between small and large 
bioreactors carried out in fed-batch condition. Besides in both cases the cell growth and 
volumetric plasmid yield were higher than batch production (Figure 2). So this fermentation 
process is very easy to scale up and has been used to provide plasmid yield that are 
becoming acceptable from a manufacturing viewpoint. The productivity of this process is 
much higher than the previous works which may be suitable for large scale production of 
DNA vaccine. 

3. Downstream process 

Low concentrations of pDNA (0 - 3% dry weight) depending on size and number of plasmid 
copies in cells of E. coli involve an economic challenge in the development of an efficient 
technology for the production of large quantities of plasmids DNA (pDNA) for therapeutic 
purposes. The pDNA are macromolecules with hydrodynamic diameter between 150 - 600 
nm depending on the molar mass which can be between 3 to 200 MDa; while the 
chromosomal DNA (cDNA) has a molar mass of 2700 MDa, having similar properties. So, it 
becomes difficult to separate from pDNA. 
There are reports that describe two basic stages: the first one includes the construction and 
appropriate expression vector, and the choice of host strain, followed by selection and 
optimization of fermentation conditions. The second one is related with the plasmid 
isolation and subsequent steps for purification. The purification strategy properly selects 
and integrates the operation steps; at the beginning carries out cell disruption and after that 
the clarification and concentration, with the aim to eliminate impurities and cellular debris; 
simultaneously develop concentration and preparation for further purification of the 
plasmid. The second step is designed using chromatographic media thus separate pDNA of 
impurities related to the structure, such as linear and open circular plasmid, chromosomal 
DNA, RNA, endotoxins and proteins remaining (Limonta et al., 2008). 

3.1 Cell disruption by alkaline lysis 
The rupture of cells for the release of pDNA is the first and probably the most critical and 
problematic of all unit operations during the purification processes. The maximum amount 
of supercoiled plasmid should be obtained to ensure a high performance process. The 
chemical lysis of the cell was first reported by Birnboim and Doly (Birboim et al., 1979); 
achieved by breaking the cell wall and membrane with a buffer which contains sodium 
hydroxide and sodium dodecil sulphate detergent, then begins the release of intracellular 
products, subsequently is added potassium salt in order to get, as precipitated, cell debris 
and proteins. The cell disruptions protocols vary taking into account the salt concentration, 
the sample volume, pH, temperature and time of each step individually. 
Several factors may influence the release of plasmid. These include the number of copies of 
the vector, the host cell, growing conditions and environment. It is valid to note that the 
duration of this step can affect the yield and purity of the final product. Levy and colleagues 
(Levy et al., 1999) found that laminar flows were required to break the plasmid and 
according to their size would take a longer or shorter time the rupture of the cell. 
In the alkaline environment the molar mass of cromosomal DNA is denatured, while in a  
pH range of 12.0 to 12.5 the pDNA double chain remains intact. This pH range is considered 
appropriate. If the pH of the medium is very low, the cDNA won’t be completely denatured, 
and can cause subsequent purification affectations. On the other hand, high pH levels 
(higher than 13) cause effects on the structure of pDNA by denaturing irreversibly. 
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The rupture of the cell occurs as the components are mixed, due to the solubilisation of the 
cell membrane in alkaline solution containing SDS. This process takes 20 to 40 s to complete, 
depending on the mixing conditions. Studies have shown that the amount recovered by cells 
used in the breaking step, depends significantly on the volume of solution used for the 
treatment of cells (Meacle et al., 2003). 
The homogenization of the sample plays an important role, mixing should be accomplished 
with sufficient intensity to achieve an appropriate level of distribution of chemical reagents. 
The homogenization is difficult due to changes in the rheological properties of the solution. 
In the second stage of the rupture process known as neutralization, the pH of the mixture is 
reduced abruptly broken by the addition of potassium acetate. The change in the physical-
chemical conditions of the cDNA causes flocculation and precipitation of a complex of 
proteins, SDS and other species of high molar mass and RNA. Achieve the optimization of 
the process of rupture is important for further recovered from pDNA that must be purified 
in the following stages. 

3.2 Plasmid recovery 
At the end of the break alkaline forming a precipitate containing cell debris, denatured 
proteins and nucleic acids, which must be eliminated, using a unit operation in solid-liquid 
separation, either by centrifugation, filtration or the combination of these operations with 
the precipitation. The centrifuge with fixed angle rotor operation is commonly used at 
laboratory scale. However, it is not suitable for large scale production of pDNA. Industrial 
centrifuges typically operate with a continuous power flow. The centrifugal acceleration of 
fluid shears and consequently causes the rupture of the material precipitated and the pDNA 
molecules. 
Dead-end filtration is a convenient choice at large-scale operation in the production process 
of the plasmid. Over 67% of recovered with a purity of 46% of this total was obtained after 
cutting 99% of the precipitate formed at the end of the break alkaline with filter pore 
diameter of 5 microns (Prazeres et al., 2004). Another choice at large-scale operation is 
tangential flow filtration. Once the pellet is separated, the clarified alkaline lysate containing 
the plasmid can be concentrated removing the impurities. However, neither dead end 
filtration nor tangential flow filtration remove all the RNA without the uses of critical 
reagents such as animal-derived compounds (e.g., enzymes), or salts. The use of this unit 
operation would help to reduce the filtration pressure, in order to avoid precipitate shear 
and stripping of the chromosomal DNA fragments. 
The use of precipitation for the purification of pDNA is reported with the use of natural and 
chemical precipitants such as calcium chloride salt, after the step of breaking made alkaline 
to achieve selective precipitation of the cDNA and RNA, obtained as a result, reduction of 
50 to 70% of RNA and cDNA, respectively, and the loss of 10% of pDNA. There are also 
reports of use of other agents which leads to a reduction in volume by concentration and 
removal of nucleic acids of low molar mass using agents such as isopropanol, polyethylene 
glycol (PEG) or cetyl trimethylammonium bromide (CTAB) (Lander, 2002; Ribeiro, 2002). 
Precipitation with ethanol and isopropanol is favourable laboratory scale but not at large 
scale; it implies a high investment cost. However, the precipitation with the cationic 
detergent CTAB provides good selectivity and elimination of the cDNA. The use of CTAB 
and PEG is considered advantageous option for precipitation, but in none of the cases cited 
by 100% eliminates RNA. 
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Ultrafiltration and microfiltration are also considered as an option in the first steps of 
purification. The use of tangential flow ultrafiltration polyethersulfone membrane pore 
diameter between 100 and 500 kDa, can eliminate 70% of RNA and 90% protein (Butler, 
2001). Bussey reported the use of tangential flow ultrafiltration for purification of pDNA 
(Bussey, 1998). He proposes the use of membranes with a pore diameter between 300-500 
kDa, the 500 kDa membranes were used for plasmids ranges between 15-50 kb. 
The liquid - liquid extraction is another operation that can be used also for the intermediate 
step of purification using the aqueous two-phase systems (ATPS). So far they have been 
reported for the purification of pDNA, two-phase systems formed by PEG and salt polymer 
K2HPO4 (Ribeiro, 2002), where yields are reported 39, 42 and 100% molar mass PEG 300, 
600 or 1000 respectively. The two-phase aqueous systems are easily scaled without a 
noticeable change in the nature and process efficiency, enabling high yields, a continuous 
process and reducing operational costs in relation to the costs of other conventional 
operations. These systems are very useful in the biotechnology industry as K2HPO4 salt is 
very cheap compared to other polymers such as dextran. 
Biopharmaceuticals produced from pDNA purity levels required for this component over 
90% and is usually achieved by the inclusion in the purification step by the combination of 
two or three chromatographic processes. The main objective is to separate the pDNA of 
impurities (in terms of composition and structure). Chromatographic operations described 
in the literature for the purification of plasmids include properties such as: plasmid size, 
charge, hydrophobicity, conformation and accessibility to a specific molecular group. 
Among the most common techniques for obtaining pDNA are: ion exchange 
chromatography (IEX), the hydrophobic interaction chromatography (HIC), affinity 
chromatography and exclusion chromatography molecular mass (SEC) (Stadler et al., 2004). 

3.3 Purification process development for plasmid DNA gene therapy 
Historically, highly purified pDNA recovery is accomplished through the use of cesium 
chloride / ethidium bromide (CsCL/EtBr) buoyant density gradient separation. This 
method allows the separation of pDNA by buoyant density into purified bands of different 
forms: supercoiled plasmid (sc), open circular (oc), linear (l) and multimeric (m).While it 
yields highly purified plasmid, this approach is not scalable because of personnel safety 
issues and the hazardous waste considerations associated with the use of cesium chloride 
and ethidium bromide. In addition the use of ultracentrifugation is also a major impediment 
to the scale up of this technology.  
On the other hand, simple unit operations and the avoidance of critical reagents such as 
animal-derived compounds (e.g., enzymes), detergents and organic solvents significantly 
reduce the effort for validation and for precautions regarding patient and operator safety. 
The employment of these process solutions at large scales requires safety measures such as 
the design of explosion-proof facilities or use of appropriate protection. It is strictly 
recommended to spend sufficient time and efforts in upscale-related process development 
according to  GMP. This may end up in a different approach when compared with ‘kit’  
protocols in which convenience and simple robustness play the most important role. 
Depending on the final application as a therapeutic (single-shot high-dose, or long-term 
low-dose treatment) or for diagnostics, the specific demands may require individual 
solutions. Given the complexity of the starting material, certainly any single purification 
step will not be enough to fulfil the demands of the regulatory authorities. Nevertheless, the 
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aim is to end up with a robust and preferably generic protocol, which is applicable to a 
variety of plasmids of different sizes (regardless of individual precautions related to stability 
and sensitivity to shear forces). When developing a multi-step large-scale pDNA 
Purification process, the design will aim to begin with fast volume reduction. This can be 
achieved by ultrafiltration or any (chromatographic) capture step, in which recovery (>90%) 
is more important than maximal capacity. 
Currently published processes for pDNA purification include precipitation and extraction of 
pDNA by organic solvents, ultrafiltration, and predominantly liquid chromatographic 
techniques which are the most widely used for this purpose. Most of the available processes 
for pDNA purification are time-consuming and not scalable. Furthermore, due to the 
application of materials that are not certified for application in humans or due to the 
application of enzymes of avian or bovine origin and of toxic reagents such as phenol, CsCl, 
CsBr, etc., these processes do not meet the appropriate guidelines of the regulatory 
authorities. 
Our pDNA purification process is based on alkaline lysis, tangential flow filtration and size 
exclusion chromatography for extensive removal of RNA as primary downstream steps. 
Chromatography is considered as the method with highest resolution, therefore being 
essential for producing pDNA suited for therapeutic applications. It has to be considered 
that the large pDNA molecules adsorb only at the outer surface of particulate supports. 
Consequently capacities are usually on the order of hundreds of micrograms of plasmid per 
millilitre of chromatographic support (Limonta et al., 2010). We used a reverse phase 
POROS R1 50 matrix which has a dynamic binding capacity between 5 and 1.5 mg pDNA 
per mL support this matrix is used to purify the pDNA from the remaining impurities, 
particularly due to its ability to reduce the endotoxin burden to levels below the 
specifications. Volume reduction of the resulting stream is achieved by tangential flow 
filtration prior to the final size exclusion chromatography which is used as a polishing step 
to remove the undesired pDNA isoforms, host proteins and to exchange the buffer for an 
adequate formulation. 
The proposed process reach a 95 % of pDNA, the final genomic DNA content is lower than 5 
ng per dose, RNA is not detectable by agarose gel electrophoresis, and protein content is 
lower than 5 μg per dose and the endotoxin content 0.6 EU per kg body weight. The results 
demonstrate that process fulfil all regulatory requirements and delivers a pharmaceutical 
grade pDNA This process does not use or generates significant amounts hazardous 
materials and no special safety requirements are envisaged. Thus, environmental or safety 
associated costs are kept to minimum. The reagents used do not pose any special regulatory 
concern since they are non toxic, non mutagenic and non flammable. 

4. Quality control 

4.1 Overview 
In the US therapeutic gene products are regulated by the FDA Centre for Biologics 
Evaluation and Research (CBER). In Europe this task is performed by the European Agency 
for Evaluation of Medical Products (EMEA). The recommendations made by these and 
others international agencies provide specific quality-control and safety criteria for each 
therapeutic gene product, reflecting the intended use of the product compliance with Good 
Laboratory Practice (GLP) and current Good Manufacturing Practice (cGMP). A guiding 
principle for production of biological products implies to build quality into the product 
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during the process but not to test quality. That is why, it is important to develop 
appropriated and validated analytical methods for all phases of a GMP process. Quality 
testings have to be applied since the very beginning to raw material and further established 
in process and for the purified bulk plasmid. They all must comply with acceptance criteria, 
regarding identity, purity, potency and safety of the final product. 

4.2 MCB and WCB 
The Master Cell Bank (MCB) and Working Cell Bank (WCB) are required to ensure each 
manufacturing run. Quality control methods must be developed to confirm the identity and 
stability of bacterial host cell and pDNA contained in a MCB and WCB used for the 
production of pDNA. Cell bank should also be analyzed for cell viability, plasmid copy 
number, the presence of plasmid-free cells, adventitious agent and viral contaminations. 
Identity test for pDNA should include analysis of diagnostic restriction enzyme digestion 
patterns and the full DNA sequence of plasmid. These analyses are typically performed 
using pDNA isolated from cultures derives from the WCB. Restriction enzyme analysis 
typically involves digestion of the plasmid with a predefined set of restriction enzymes 
followed by analysis by an agarose gel electrophoresis analysis and staining with ethidium 
bromide. 

4.3 Control of production process 
Likewise for viral vectors the raw materials used in the production process should be 
characterized. Furthermore, the production process should be controlled by in-process 
controls. For plasmid vectors these include the control of the amount of plasmid prior to 
culture harvesting, the amount and form of plasmid after extraction step and the absence of 
endotoxins in the plasmid pool after extraction step. Specific regulations have been 
established to provide guidance in the use of vectors in clinical trials for the application and 
marketing authorization in the production and quality control. Regulatory guidance is given 
to the environmental protection areas of the patient and not to environmental protein in 
Europe and in the USA that include: Regulation in Europe, in the Netherlands, in the USA, 
Good Manufacturing Practice facilities and guidelines that have been established 
respectively by the Committee for Proprietary Medical Product (CPMP) of the EMEA and 
CBER of the FDA for the production and control of gene therapeutics and DNA vaccines. 

4.3.1 In-process controls 
In-process control is required that methods be developed to assay product yield and purity 
at critical step in the manufacturing process. Bacterial contaminates such as genomic DNA, 
RNA, protein and endotoxin should be monitored. The amount and purity of plasmid 
should be controlled prior to culture harvesting and purification steps. The control of the 
mass of plasmid into the cells prior to culture harvesting is especially important. The 
monitoring of the pDNA fermentation processes is a key issue in process development, 
validation and for product approval. Therefore, the reliable analytical methods for the 
quantification of pDNA from an impure plasmid solution are especially important. 
We established a method in which is use the conventional agarose gel electrophoresis for 
quantification of pDNA pIDKE2. This method consisted in the application of pDNA 
(pIDKE2) on the range from 113 to 900 ng and defined volumes of the three replicas of the 
pDNA isolated from 10 mg of bacterial cell pellet by alkaline–treatment procedure assay. 
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The electronic photograph of the gel is analyzed by image analysis software (software 1D­
Manager ver. 2.0) and the plasmid isoform peaks areas for each line were summed (Total 
Area plasmid). The linear regression between the plasmid mass and the total area plasmid 
for calibration curve were determined and plasmid mass in each replica was estimated by 
using the standard calibration curve and taking account the applied volume of the sample. 
Mean plasmid mass on the sample (between three replicas) was determined with a variation 
coefficient that should not be superior to 15 %. 

Each replica Each replica Each replica Standards pIDKE2  
High range Mid range Low range 900, 450, 225, 113 ng  

Fig. 3. Electrophoresis agarose gel. Three replicas of sample in the high (lines 1-3), mid (lines 
4-6) and low (lines 7-9) range and calibration curve 900, 450, 225 and 113 ng (lines 10-13). 

The validation of this method showed that independently of the fact that the applied mass 
of plasmid is in high, mid and low range, the plasmid mass determinate in the sample were 
similar (variation coefficient should not be superior to 15 %). A lineal relationship between 
plasmid amounts versus total plasmid areas was obtained. Three different assays with three 
replicas of the pDNA standards pIDKE2 calibration curve were run obtaining a 

determination coefficient (R2) greater than 0.98 (P≤0.01 in ANOVA regression and P≥0.05 in 
ANOVA lack off fit). 
Figure 3 shown one assay, this analytical method proved to be specific, linear, precise and 
accurate in the interval of studied amounts. For the approval of one lot of Wet Biomass, the 
relation should be more than 0.6 mg of pDNA/gram of Wet Biomass. 

4.3.2 Pure bulk plasmid 
Quality control testing of pure bulk plasmid must be capable of determining plasmid 
identity, purity, sterility, potency and safety. Guidelines by the ICH ensure that all tests and 
analytical protocols should be validated in terms of accuracy, specificity, detection limit, 
quantification limits, linearity and precision. Guidelines are provided by regulatory agencies 
for product characterization and in-process controls. Furthermore, analytical methods and 
product specifications for pDNA are described exhaustively in literature (Horn et al., 1995; 
Middaugh et al., 1998; Schorr et al., 1995). 
In general, identification of a plasmid can be performed by size, sequence or expressed gene 
of the plasmid. The size can be performed by restriction enzyme mapping. The restriction 
fragments can be separated by agarose gel electrophoresis, capillary electrophoresis or 
HPLC. Capillary electrophoretic separation of restriction fragments is superior to gel 
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separation in resolving power, analysis time and quantification (Weiss et al., 1995). The 
sequence can be performed by sequencing the whole plasmid. Its insert can be performed by 
automates sequencing method and can be used to check the identity of the plasmid. Chip 
technology is a promising new technology that allows a confirmation of a sequence of 
several kilobases. The currently available sequencing methods cannot identify small 

quantities of a mutated site (<10 %) present in a plasmid preparation (Maschke et al., 1993) 
In the final product could be present process-related impurities (genomic DNA, RNA, host 
proteins and endotoxins) and product-related impurities (open circular (oc), linear DNA 
isoforms, denatured and multimeric forms) that should be controlled. Contamination of 
biologics with genomic DNA has always been a mayor Quality Assurance concern due to 
the possibility of insertional mutagenesis into the recipient genome. Regulatory standards 
will require level of host cell genomic DNA below 10 µg/mg pDNA (Horn et al., 1995). The 
host cell DNA contamination can be quantified by Southern blot techniques with a probe 
specific for host cell gDNA (Levy et al., 2000a), application of the polymerase chain reaction 
(PCR), real-time PCR (Lahijani et al., 1998; Smith et al., 1999) that assess very low levels of 
gDNA in the final product. Another technique is agarose-gel electrophoresis, in which 
gDNA levels should be undetectable. The level of RNA is kept below or undetectable on a 
0.8 % agarose gel or by analytical anion-exchange chromatography (Horn et al., 1995). The 
content of proteins in final plasmid preparations is kept below 10 ng/dose (Sofer & Hagel, 
1997); it should be undetectable by bicinchoninic acid (BCA) assay or silver-stained gel. 
A specification should exist for the minimum amount of plasmid in the supercoiled form. 
Regulations may require > 80-90% of the plasmid to be in the supercoiled form. 
Homogeneity of the plasmid and the different isoforms of pDNA are determined by gel 
electrophoresis. The proportion of supecoiled and open circular pDNA can be quantified by 
densitometry scanning of an agarose-gel electrophoresis, capillary electrophoresis or 
chromatographic techniques. 
Denatured supercoiled plasmid runs at the same speed as supercoiled plasmid in agarose 
gels. This form can be discriminated by HPLC using anion exchange chromatography. The 
denatured supercoiled plasmid elutes shortly after the main plasmid peak (Schluep et al., 
1998). Another method that can be used is the fluorescence-based method SCFluo (Levy et 
al., 2000b), which is based on the reversible denaturation of sc DNA and the high specificity 
of the PicoGreen fluorochome for doble-stranded DNA. 
It is known that the efficacy of binding of ethidium bromide to supercoiled DNA is different 
from the efficacy of binding ethidium bromide to closed circular, open circular or lineal 
DNA (Bauer & Vinograd, 1968). Therefore, it’s necessary to determine the relationship 
between fluorescence and relative band intensity for different configurations of DNA. The 
linear and open circular material fluoresced with equal intensity and the specific 
fluorescence of these species is 1.36 ± 0.02 time greater than that supercoiled DNA. A simple 
and rapid technique to quantify the proportion of supercoiled circular DNA is SCFluo (Levy 
et al., 2000a), which is a fluorimetric method that is based on the reversible denaturated of 
scDNA and the high specificity of the PicoGreen fluorochrome for double–stranted DNA. 
Endotoxins (lipopolysaccharides) are mayor components of the outer cell wall of gram-
negative bacteria and can copurify with the pDNA, which can cause side effects if 
administered to the recipient. They should be less than 0.1 endotoxin unit (EU)/µg pDNA 
(Horn et al., 1995) and can be measured by gel-clot assay of aqueous extracts obtained from 
circulating Limulus polyphemus (horseshoe crab) amoebocytes lysate (‘LAL assay’). DNA-
concentration (dose) in the product can be measured by spectrophotometer analysis to 260 
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nm. This value is reliable if the A260/A280 ratio will be between 1.75 and 1.85, which means 
that the DNA product is free from the protein contamination. 

Test Limits pIDKE2 results

 Appearance Clear, colorless solution Clear, colorless solution

 Identity 5541 pb 5541 pb

 Restriction sites Consistent with Map Consistent with Map

 Biological Activity > 25 % seroconversion against 
Co.120 and E2.680 

26.6 % vs Co.120 
and 33.3 % vs E2.680

 Sterility No growth-14 days 
in rich media 

No growth-14 days 
in rich media

 Endotoxin ﾔ 5 EU /  kg body weight 0.6 EU/ kg body weight 

 General Safety absence of toxic effects Pass the test

 Purity pDNA ≥ 90 % 95 %

 RNA No visualized on 
0.8 % Agarose Gel 

No visualized on 
0.8 % Agarose Gel 

pDNA concentration 1.5 – 2.5 mg/mL 1.71 mg/mL 

E. coli DNA ﾔ 5 ng  / dose ﾔ 5 ng  / dose

 Host Protein ﾔ 5 µg / dose 1.4 µg / dose 

pH 6.7 ± 0.2 6.71 

Table 2. Testing results of release purified pIDKE2 compared to specification limits. 

In the specific case of the production of pIDKE2 plasmid, analytical methods were followed 

according to the criteria recommended by the FDA.  In table 2 is show a summary of  the  

analytical specifications and final results (Limonta et al., 2008). Limits are according to the 

specifications of bacterial cell lysates and accepted levels of impurities for the final products 

described on the Guidance for industry “Considerations for pDNA Vaccines for infectious 

disease indications.”  

The results demonstrated that this process meets all regulatory requirements and delivers 

pharmaceutical grade pDNA. Vaccination with this plasmid (pIDKE2) in HCV chronically-

infected individuals was safe, well tolerated and did not impair the ability to respond to 

non-HCV antigens (Castellanos et al., 2010). 
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6. Conclusions 

The large-scale plasmid production for gene therapy presents very specific problems as the 
reproducibility of process. Solutions for these problems and others will undoubtedly have 
an impact on the economics, efficacy and safety of non-viral approaches to gene therapy. As 
advances continue in the field of DNA vaccines, factories capable of producing kilograms of 
pDNA per year must be design. 
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The choice of a manufacturing route is dictated by the balance between improvements in 
yield and purity of supercoiled pDNA achieved through the application of new 
technologies. The Biopharmaceutical industry is a highly regulated sector and to get into a 
regulatory approval for a new process or product is a major consideration. The 
recommendations made by some international agencies such as FDA and EMEA provide 
specific quality-control and safety criteria for each therapeutic gene product. The clinical 
application of gene therapy and DNA immunization will depend not only on efficacy but 
also on safety and the ease with which the technology may be adapted for large scale 
pharmaceutical production. 
The advantages of the procedure described over the existing technology to produce 
pharmaceutical grade pDNA for gene therapy include a high cell density culture, improved 
plasmid purity and the elimination of undesirable process additives such as toxic organic 
extractants and animal derived enzymes. By employing this simple, scalable and applicable 
approach we concluded successfully a phase I clinical trial (Castellanos et al., 2010; Limonta 
et al., 2010) currently is in Phase II using the pIDKE2 plasmid; which is the principal 
component of a candidate vaccine against the Hepatitis C virus. 

7. References 

Bauer, W. & Vinograd, J. (1968). The interaction of closed circular DNA with intercalative 
dyes. J. Mol. Biol. Vol 33, pp. 141–171. 

Birboim, H. & Doly, J. (1979). A rapid alkaline extraction procedure for screening 
recombinant pDNA. Nucleic acid, Vol7, pp. 1513-1523. 

Bussey, I. (1998). Methods for purifying nucleic acids. International Patent Aplication WO 
98/05673. 

Butler, E. (2001) Purification of pDNA, US Patent 6,313,285. 
Carnes, A. (2005). Fermentation Design for the Manufacture of therapeutic pDNA. BioProcess 

International, pp. 2-7. 
Castellanos, Z.; Dorta, Z.; Veliz, G.; Vega, H.; Lorenzo, I.; Ojeda, S.; Dueñas, S.; Alvarez, L.; 

Martínez, G.; Ferrer, E.; Limonta, M.; Linares, M.; Ruiz, O.; Acevedo, B.; Torres, D.; 
Márquez, G.; Herrera, L. & Arús E. (2010). Immunization with a DNA vaccine 
candidate in chronic hepatitis C patients is safe, well tolerated and does not impair 
immune response induction after anti-hepatitis B vaccination. J Gene Med., Vol12, 
No. 1, pp.107-116. 

Chen, W. (1999). Automated High Yield fermentation of pDNA in Escherichia coli. US 
Patent 5,955,323. American Home Products Corporation, Madison NJ. 

Chen, W.; Graham, C. & Ciccarelli, R. (1997). Automated fed-batch fermentation with feed­
back controls based on dissolved oxygen (DO) and pH for production of DNA 
vaccines. J Ind Microbiol Biotechnol, Vol18, pp.43–48. 

Diogo, M.; Queiroz, J.; Monteiro, G.; Martins, S.; Ferreira, G. & Prazeres, D. (2000). 
Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic 
interaction chromatography. Biotechnol Bioeng, Vol68, No. 5, pp.576–83. 

Diogo, M.; Ribeiro, S.; Queiroz, J.; Montiero, G.; Tordo, N. & Perrin, P. (2001). Production, 
purification and analysis of an experimental DNA vaccine against rabies. J Gene 
Med, Vol3, pp.577–584. 

Dueñas, S.; Alvarez, L.; Musacchio, A.; Acosta, N.; Falcón, V.; Martínez, G.; Amador, Y.; 
Guerra, I.; Alvarez, J.; Pérez, A.; Linares, M.; Limonta, M.; Ruiz, O.; Bacardí, D.; 
Viña, A.; Morales, J.; Torres, D.; Márquez, G.; Marante, J.; de la Rosa, M.; Vega, M.; 
Aguilar, J.; Soria, Y.; Pichardo, D.; Martínez, E.; Muzio, V.; Vázquez, M.; Acevedo, 

www.intechopen.com



 

 

 

 

 
 

 
 

  

 
 

  

  

 

 

  

   

  

  
 

 
 

 
 

 

 
 

 

69 Scalable Technology to Produce Pharmaceutical Grade Plasmid DNA for Gene Therapy 

B.; Guillén, G.; Cosme, K.; Quintana, M.; López, P. & Herrera, L. (2007). New 
alternatives for the development of vaccine preparations: contributions to the 
knowledge on the interaction of recombinant protein viral antigens with nucleic 
acids. Biotecnología Aplicada, Vol24, No. 3-4, pp. 311-314. 

Durland, R. & Eastman, E. (1998). Manufacturing and Quality Control of plasmid based 
gene expression systems. Adv Drug Deliver, Vol30, No. 1, pp. 33-48. 

Glenting, J. & Wessels, S. (2005). Ensuring safety of DNA vaccines. Microbial Cell Factories, 
Vol 4, No. 26, pp. 1-5. 

Horn, N.; Meek, J.; Budahazi, G. & Marquet, M. (1995). Cancer gene therapy using pDNA: 
purification of DNA for human clinical trials. Hum Gene Therapy, Vol6, pp.565–73. 

Lahijani, R. (1996). High-Yield production of pBR322- derived plasmids intended for human 
gene therapy by employing a temperature controllable point mutation. Hum Gene 
therapy, Vol 7, No. 16, pp. 1971-1980. 

Lahijani R, Duhon M, Lusby E, Betita H & Marquet M. (1998). Quantization of host cell DNA 
contaminate in pharmaceutical-grade pDNA using competitive polymerase chain 
reaction and enzyme-linked immunosorbent assay. Hum Gene Ther, Vol9, No.8, 
pp.1173-1180. 

Lander, R. (2002). Fractional precipitation of pDNA from lysate by CTAB. Biotechnol. Bioeng., 
Vol79, pp. 776-784. 

Levy, M.; Ciccolini, S.; Yim, T.; Tsai, N. Titchener, P.; Shamlou, A. & Dunnill, P. (1999). The 
effects of material properties and fluid flow intensity on pDNA recovering during 
cell lysis. Chem. Eng. Sci., Vol54, No.14, pp. 3171-3172. 

Levy, M.; Collins, J.; Tsai. J.; Shamlou, P.; Ward, J. & Dunnill P. (2000). Removal of 
contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade 
pDNA processing. J Biotechnol, Vol 76, No 2-3, pp. 197-205. 

Levy, M.; Lotfian, P.; O’Kennedy, R.; Lo-Yim, M. & Shamlou, P. (2000). Quantitation of 
supercoiled circular content in pDNA solution using a fluorescence-based method. 
Nucleic Acids Res, Vol 28, No. 12, pp. E57. 

Limonta, M.; Márquez, G.; Rey, I..; Pupo, M.; Ruiz, O.; Amador-Cañizares, Y. & Dueñas-
Carrera, S. (2008). PDNA Recovery using size-exclusion and perfusion 
Chromatography. BioPharmInternational,  Vol21,  No 9, pp. 38-47, ISSN 1542-166X. 

Limonta, M.; Márquez, G.; Pupo, M. & Ruiz, O. (2010). The Purification of pDNA for clinical 
trials using membrane chromatography. Bipharm International. Vol23, No.2, 46-54, 
ISSN 1542-166X. 

Maschke, H.; Frenz, J.; Belenkii, A.; Karger, B. & Hancock, W. (1993). Ultrasensitive plasmid 
mapping by high performance capillary electrophoresis. Electroforesis, Vol 14, No. 5­
6, pp. 509-514. 

Meacle, F.; Lander, R.; Shamlou, A. & Titchener, P. (2004). Impact of Engineering flow 
conditions on pDNA yield and purity in chemical cell lysis operations. 
Biotechnology and Bioengineering, Vol87, No. 3, pp. 293-302. 

Middaugh, C.; Evans, R.; Montgomery, D. & Casimiro, D. (1998). Analysis of pDNA from a 
pharmaceutical perspective. J Pharm Sci , Vol87, No. 2, pp. 130-146. 

O´Kennedy, R.; Ward, J. & Keshavarz, E. (2003). Effects of fermentation strategy on the 
characteristic of pDNA production. Biotecnol. Appl. Biochem, Vol37, pp. 83-90. 

Phue, J.; Jun, S.; Trinh,L.; & Shiloach, J. (2008). Modified Escherichia coli B (BL21), a superior 
producer of pDNA compared with Escherichia coli K (DH5α). Biotechnology and 
Bioengineering, Vol 101, No. 4, pp. 831-836. 

Pollard, D.; Kirschner, T.; Hunt, G.; Tong. T; Stieber, R. & Salmon, P. (2007). Scale up of a 
viscous fungal fermentation: Aplication of scale-up criteria with regime analysis 

www.intechopen.com



 

 

  

 
 

  

 

 
 

 
 

   

  

 

 
 

  
 

 

  
 

 
 

 
 
 

 
 

 

 
 

70 Gene Therapy - Developments and Future Perspectives 

and operating boundary conditions. Biotechnology and Bioengineering, Vol 96, No. 2, 
pp. 307-317. 

Powell, K. (2004). DNA vaccines-back in the saddle again?. Nature Biotechnology, Vol22, No. 
7, pp. 799-801. 

Prather, K.; Sagar, S.; Murphy, J. & Chartrain, M. (2003). Industrial scale production of 
pDNA for vaccine and gene therapy: plasmid design, production and purification. 
Enzyme and Microbial Technology, Vol33, pp. 865-883. 

Prazeres, D.; Ferreira, G.; Monteiro, G.; Cooney, Ch. & Cabral, J. (1999). Large-scale production 
of pharmaceutical-grade pDNA for gene therapy. TIBTECH, Vol.17, pp. 69-174.  

Prazeres, D.; & Ferreira, G. (2004). Design of flowsheets for the recovery and purification of 
plasmid for gene therapy and DNA vaccination. Chemical Engineering and 
Processing, Vol 43, pp.615-630. 

Ribeiro, S. (2002). Isolation of pDNA from cell lysates by aqueous two-phase systems. 
Biotechnol. Bioeng., Vol78, pp. 376-384. 

Robinson, H. (2000). DNA vaccines. Clin Microbial Newslett, Vol23, pp. 17-22. 
Ruiz, O.; Pérez, M.; Pupo, M.; Limonta, M.; Torres, D.; Martínez, S.; Macias, K.; Diaz, M.; 

Proenza, Y.; Valdés, J. & Martínez, E. (2009). High cell density culture to produce 
pDNA for gene therapy in E. coli. Biopharm International, Vol22, No. 7, pp. 40-45, 
ISSN 1542-166X. 

Schleef, M. (1999). Volume5a: Recombinant Proteins, Monoclonal antibodies and 
Therapeutic Gene. Biotechnology, pp. 445-469. WILEY-VHC, ISBN 3-527-28315-3. 

Schluep, T. & Cooney, C. (1998) Purification of plasmid by triplex affinity interaction. 
Nucleic Acids Res, Vol26, No. 19, pp. 4524-4528. 

Schmidt, T.; Friehs, K.; Schleef, M.; Voss, C. & Flaschel, E. (2001). In-process analysis of 
plasmid copy number for fermentation control. Pacesetter, Vol5, No. 1, pp.4–6. 

Schmidt, T. (2003). Method for the isolation of pDNA. USPatent 6,664,,078 B1. Qiagen GimbH, 
Hilden, DE. 

Schorr, J.; Moritz, P.; Seddon, T. & Schleef, M. (1995). Plasmid DNA for human gene therapy 
and DNA vaccines. Production and quality assurance. Ann N Y Acad Sci, Vol 772, 
pp. 271-273. 

Smith, G.; Helf, M.; Nesbet, C.; Betita, H.; Meek, J. & Ferre, F. (1999). Fast and accurate 
method for quantitating E. coli host-cell DNA contamination in pDNA 
preparations. Biotechniques, Vol 23, No. 3, pp. 518-522, 524, 526. 

Sofer & Hagel. (1997). Handbook of process chromatography, a guide to optimization, scale­
up and validation. (1 ed.) Academic press. 

Stadler, J.; Lemmens, R. & Nyhammar, T. (2004). Plasmid DNA purification. The Journal of 
Gene Medicine, Vol6. 

Vogel, F. & Sarver, H. (1995). Nucleic acid vaccines. Clin. Microbiol. Rev., Vol8, pp. 406-410. 
Wang, Z.; Le, G.; Shi, Y. & Wegrzyn, G. (2001). Medium design for pDNA production based 

on stoichiometric model. Process. Biochem, Vol36, pp.1085–1093. 
Weis, G.; Garner, M.; Yarmola, E.; Bocek, P. & Chrambach, A. (1995). A comparison of 

resolution of DNA fragment between agarose gel and capillary zone 
electrophoresis in agarose solutions. Electrophoresis, Vol16, No. 8, pp. 1345-1353. 

Xu, Z.; Shen, W.; Chen, H. & Cen, P. (2005). Effects of medium composition on the 
production of pDNA vector potentially for human gene therapy. Journal of Zheijang 
University SCIENCE, Vol6B, No. 5, pp. 396-400, ISSN 1009-3095. 

Yakhchali, B.; Karami, A.; Aflski, E. & Ahmadi, A. (2007). PDNA production for genetic 
inmunization in Fed-batch fermentation with feed back controls based on dissolved 
oxygen (DO) ahd pH. Journal of Sciences, Vol 18, No. 2, pp. 129-133, ISSN 1016-1104. 

www.intechopen.com



Gene Therapy - Developments and Future Perspectives

Edited by Prof. Chunsheng Kang

ISBN 978-953-307-617-1

Hard cover, 356 pages

Publisher InTech

Published online 22, June, 2011

Published in print edition June, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The aim of this book is to cover key aspects of existing problems in the field of development and future

perspectives in gene therapy. Contributions consist of basic and translational research, as well as clinical

experiences, and they outline functional mechanisms, predictive approaches, patient-related studies and

upcoming challenges in this stimulating but also controversial field of gene therapy research. This source will

make our doctors become comfortable with the common problems of gene therapy and inspire others to delve

a bit more deeply into a topic of interest.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Odalys Ruiz, Miladys Limonta, Jorge Valdés, Martha Pupo and Eduardo Martnez (2011). Scalable Technology

to Produce Pharmaceutical Grade Plasmid DNA for Gene Therapy, Gene Therapy - Developments and Future

Perspectives, Prof. Chunsheng Kang (Ed.), ISBN: 978-953-307-617-1, InTech, Available from:

http://www.intechopen.com/books/gene-therapy-developments-and-future-perspectives/scalable-technology-

to-produce-pharmaceutical-grade-plasmid-dna-for-gene-therapy



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


