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1. Introduction 

Electric motors are nowadays widely used in all kind of industrial applications due to their 
robustness and ease of control through inverters. Therefore, any effort, with the aim of 
improving condition monitoring techniques applied to them, will result in a reduction of 
overall production costs by means of productive lines stoppage reduction, and increment of 
the industrial efficiency. In this context, the most used electric machine in the industry is the 
Induction Motor (IM), due to its simplicity and reduced cost. The analysis of the origin of 
IMs failures exhibits that the bearings are the major source of fault (Singh et al., 2003), and 
even a common cause of degradation in other kinds of motors as Permanent Magnet 
Synchronous Machines. An IM failures percentage distribution, according to previous 
studies (O’Donell, 1986), is shown in figure 1, in order to highlight the bearings monitoring 
importance. 
 

 

Fig. 1. IM failures percentage distribution. 

Focusing in bearings defects, these have been typically categorized as distributed or local. 
Distributed defects include mainly surface roughness, waviness and misaligned races. 
Localized defects, however, include cracks, pits and spalls basically. 
A great deal of studies concentrate their efforts in localized defects detection, because these 
defects are generally related with concrete fault indicators in the acquired signals, meanly 
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characteristics faults harmonics in machine vibrations. However, the issue related with the 
capability to detect both, localized and generalized bearings faults, is an important issue that 
should be attended (Cusido et al., 2009). Generalized degradation is difficult to detect 
because the lack of consistent characteristic fault harmonics in the spectral decomposition of 
any acquired signal. Therefore, it is difficult to inspect deeply motor bearings by analysing 
only some specific fault harmonics due to fault signal complexity (Obaid et al., 2003), and in 
the case of asynchronous motors the slip factor introduces additional difficulty. This fact 
makes necessary the diagnosis support of additional signal analysis (Frosini et al., 2008). The 
current trends in condition monitoring are related with the fusion of different features, 
which provide the possibility to merge fault indicators from different physical magnitudes 
(Cusido et al. 2010). This data fusion improves the diagnostic reliability, because fault 
indicators that are not descriptive enough themselves can contribute to detect faults in 
relation with others, especially if the features are extracted from different physical 
magnitudes, which enhance the monitoring capabilities. However, it is necessary to find the 
best and most useful fault indicators, and merge them by some kind of inference tool. 
In this chapter, additional bearings fault features are introduced to be merged with 
traditional vibrations fault indicators. Hence, features from machine vibration, stator 
currents, stator common mode currents and acoustic emissions, are presented and related 
with bearing faults. With all these fault indicators diagnosis different systems based on 
multidimensional features fusion can be implemented. The bearing diagnosis capability and 
reliability are easily increased making possible the bearing fault detection even if the fault is 
localized or generalized. Regarding the inference tools for features fusion, it can be chosen a 
wide variety of methods such as statistical rules, expert systems or artificial intelligent 
techniques among others. In this chapter, two different inference tools are presented in 
order to generate two different diagnosis systems: Look-up tables, representing one of the 
easiest ways to merge information, and Fuzzy logic as a next step towards advanced 
diagnosis systems based on artificial intelligence. 

2. Basic theory 

A brief introduction of each proposed physical magnitude for bearings fault detection is 
presented next, with special attention to the specific bearings fault indicators. 

2.1 Vibration analysis 

Vibration analysis is one of the most extended condition monitoring techniques. Despite 
being a reliable, well studied robust technique, it requires that the motor under test has a 
vibration transducer installed. The measurements should be taken on the bearings, bearing 
support housing, or other structural parts that significantly respond to the dynamic forces 
and characterize the overall vibration of the machine. Therefore, the major disadvantage of 
vibration monitoring is that requires access to the machine, and specific accelerometers 
housing over the machine is sometimes required. For accurate measurements, sensors 
should be mounted tightly on the machine, and expertise is required in the mounting, 
condition that makes its online application expensive. Sometimes, other techniques without 
this kind of restriction are preferred or required. 
The single-point bearing defects imply certain characteristic fault frequencies which will 
appear in the machine vibrations. The frequencies are predictable and depend on which 
surface of the bearings contains the fault. There is one characteristic fault frequency 
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associated with each of the four parts of the bearing. Vibration frequency components 
related to each of the four basic fault frequencies; (1) Fundamental train frequency, (2) Ball-
spin frequency, (3) Ball pass outer race and (4) Ball pass inner race, can be calculated using 
the following expressions (Bellini et al., 2008): 

ܨܶܨ  = ଵଶ ௥݂ ቀ1 − ௉೏஻೏ቁ (1) 

ܨܵܤ  = ଵଶ ௉೏஻೏ ௥݂ ൤1 − ቀ஻೏௉೏  ቁଶ൨ (2)∅ݏ݋ܿ

ܱܨܲܤ  = ௡ଶ ௥݂ ቀ1 − ஻೏௉೏  ቁ (3)∅ݏ݋ܿ

ܫܨܲܤ  = ௡ଶ ௥݂ ቀ1 + ஻೏௉೏  ቁ (4)∅ݏ݋ܿ

with: 
n: Number of bearing balls 
fr: Rotor speed 
Bd: Ball diameter 
Pd: Bearing Pitch diameter 

: Contact angle of the ball on the race 
 

 

Fig. 2. Main bearing design parameters, Bd: ball diameter, Pd: pitch diameter, : contact angle. 

Regarding the roughness bearings defects, there is a wide variety of causes from 
contamination of the lubricant to the shaft currents or misalignment. The generalized 
roughness faults produce unpredictable broadband effects in the machines vibration 
spectrum, but it seems to be feasible the detection by means of the temporal vibration signal 
Root Mean Square (RMS) analysis. As some works and standards (Riley et al., 1999; Cabanas 
et al., 1996) set out, a RMS vibration value evaluation of the motor also provides a good 
indicator for motor health, allowing machine overall fault diagnosis. 

2.2 Stator currents 

A Motor Current Signature Analysis (MCSA) represents by the stator currents acquisition an 
interesting alternative method with its own particularities and benefits (Cusido et al., 2007a); 
the most interesting of them is to avoid accessing inside the motor making it easy to perform 
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its online fault analysis (Cusido et al. 2007b). It has been demonstrated (Schoen et al., 1995) that 
the characteristic bearing fault frequencies in vibration can be reflected on stator currents. As a 
result of motor airgap length variations due to bearings defect, flux density is influenced and 
then an additional magnetic flux appears. This magnetic flux, and its variations associated to 
rotor turning, creates additional components that can be found in the stator currents spectra 
(Cusido et al., 2005). Using this method it has been widely demonstrated in the literature (El 
Hachemi Benbouzid, 2000) that different faults like eccentricity, rotor asymmetry, stator 
winding failures, broken bars and bearings damage can be diagnosed. The relationship 
between the vibration frequencies and the current frequencies for bearing faults can be 
described by equation (5). Therefore, by means of (5), it is possible to analyze the specific fault 
harmonics in order to find abnormalities in their amplitude values. 

 ௕݂௚ = | ௘݂ ±݉ ∗ ௩݂| (5) 

with: 
fbg: Electrical fault characteristic frequency 
m:  Integer 
fe: Electrical supply frequency 
fv: Vibration fault characteristic frequency {(1), (2), (3) or (4)} 
It is well established that for bearing single-point defects, the characteristic stator current 

fault frequencies are good fault indicators. Even so, it was discovered in several studies, that 

for many in situ generated bearing faults, those characteristics fault frequencies are not 

observable and may not exist at all in stator current (Stack et al., 2004.). But it is 

demonstrated also that these same bearings faults have an effect over the motor eccentricity 

(Basak et al., 2006), and these characteristics stator current faults frequencies are easily 

detectable as sidebands over the fundamental motor current frequency. Therefore, the 

evaluation of the bearings characteristics stator current faults frequencies is useful for 

diagnosis proposes, because it can diagnose directly the bearing fault. But as a second 

diagnosis step, the analysis of stator current fundamental sidebands, in order to detect 

eccentricity, can be useful also for bearing diagnosis. However, it is necessary other fault 

indicators in order to classify correctly between eccentricity fault caused by bearing fault or 

eccentricity fault caused by other faults in the motor. 

Regarding generalized bearing defects, previous works have shown the existing correlation 
between vibration and currents RMS values (Riley et al., 1999). Although it is a complex 
function that relates both magnitudes, this work tries to check the RMS currents reliability in 
order to perform the motor status diagnose. 

2.3 High frequency common-mode pulses 

One of the biggest culprits for bearings failure are common-mode circulating currents (CMC). 
The CMC are generated due to the inverter used to manage motors, because the inverter 
creates common mode voltage as figure 3 shows. Each high dv/dt over the inverter 
modulation implies a proportional current, which is propagated over the motor trough 
different paths to the ground in order to turn back to the inverter (Muetze and Binder, 2007a). 
The CMC travels around the motor (and load if it is not electrically isolated), due to the 
capacitive effect that two conductive materials separated by means of some isolating 
material (dielectric) can create. For instance, the capacitive effect produced between the coil 
group and the chassis separated with air gaps in an induction motor. 
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Fig. 3. Common mode voltage generated with PWM modulation. 

The capacitances created inside the motor have a very low value, so the motor intrinsically 
gets filter the low frequency currents, but the high frequency currents see low impedance 
paths (Binder and Muetze, 2008.). Some current travel over the shaft, that in an electrical 
sense, find the bearing rail, lubricant and bearing ball capacitive coupling. The high 
frequency CMC pulses current that contain an important amplitude value, provoke a 
discharge over the capacitive coupling. This phenomenon is called EDM (Electric Discharge 
Machining) (Kar and Mohanty, 2008). The CMC influences on the bearings degradation due 
to the effect that every CMC discharge provoke over the lubricant that recover the bearing, 
because the continually application of these discharges implies lubricant degradation. This 
effect increases the contact between the bearings with the rail accelerating the final bearings 
degradation. 
As it is shown in figure 4a, circulating currents could follow different paths to the ground 
through the stator windings or rotor. One important path of the circulating currents is 
through the bearings (Muetze and Binder, 2007b). The electrical scheme of parasitic 
capacitive couplings is shown also in figure 4b. This scheme represents the CMC path from 
inverter to bearings. As it has been explained previously, the inverter generates common 
mode voltage (Vmc) and at the same time, generates common mode current (Imc) which is 
propagated trough the wire (LC), motor (Lm) and through the coupling effect between the 
motor and chassis, and between the motor and rotor, this last ones cross finally the coupling 
effect between the shaft and the bearings. 
A temporal CMC acquisition and a single common-mode discharge are shown in figure 5. 
These currents typically show a frequency range of mega-hertz with a period of micro-
seconds between bursts. CMC discharges provoke bearings lubricant degradation. This 
effect provokes the contact between the bearings with the rail. Therefore, CMC discharges 
amplitude is directly depending of the parasitic capacitances which are depending of the 
lubricant state and the distance between bearings and rail mainly. Therefore, seems to be 
possible the bearings diagnosis by means of the number of CMC pulses that surpassed a 
prefixed amplitude threshold during a fixed time, in order to distinguish between fault and 
healthy bearings (Delgado et al., 2009). Analyzing the number of CMC pulses that surpassed 
a current amplitude threshold value, it is possible to see that a minor number of CMC pulses  
surpassing the threshold, is significant of a degradation state of the bearings, because the 
capacitive effect rail-lubricant-bearing needs a minor “energy” differential to allow an EDM.  
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a) 
 

 
b) 

Fig. 4. a) Main CMC paths over inverter-motor-load system. b) Electrical Scheme for 
capacitive and parasitic couplings. 

Therefore, the methodology consists in a first time acquisition over the stator CMC in a test 
bench with healthy bearings. The amplitude of the CMC pulses decrease at the same time 
that bearings degradation increase, so is necessary to specify a CMC pulses amplitude 
threshold and count the number of pulses that surpasses this threshold during a fixed time. 
Obviously, the time acquisition and the threshold value make depends the number of CMC 
pulses counted. An acquisition time of tens of milliseconds, and a threshold over the 75% of 
the maximum CMC pulses amplitude over healthy bearing, is enough to distinguish 
between healthy and degraded bearings. 
In this work, to limit the CMC acquired signal to only pulses flowing through bearings (the 
responsible of balls degradation), a motor modification was introduced. All the ball bearing 
under test were isolated from the motor stator frame but in a point connected to ground 
through a cable where the pulses were measured. Bearings insulation was achieved by 
surrounding the piece with a polytetrafluoroethylene (PTFE) flat ring with a hole 
mechanized in it to let the cable pass through. 

2.4 Acoustic emissions 

The Acoustic Emission Technique is a very promising tool that has practical application in 
several fields, and specifically, recent important relevance in condition monitoring of 
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machines. Acoustic Emission is defined as a radiation of mechanical elastic waves produced 
by the dynamic local rearrangement of the material internal structure. This phenomenon is 
associated with cracking, leaking and other physical processes and was described for the 
first time by Josef Kaiser in 1950. He described the fact that no relevant acoustic emission 
was detected until the pressure applied over the material under test surpassed the 
previously highest level applied. 
 

a)

b) 

Fig. 5. Examples of common-mode current discharges, a) individual discharge, b) a set of 
discharges. 

Acoustic Emissions Technique is classified as a passive technique because the object under 
test generates the sound and the Acoustic Emission sensor captures it. By contrast, Active 
methods rely on signal injection into the system and analysis of variations of the injected 
signal due to system interaction. Then an acoustic emission sensor captures the transient 
elastic waves produced by cracking or interaction between two surfaces in relative motion 
and converts their mechanical displacement into an electrical signal. This waves travel 
through the material in longitudinal, transverse (shear) or surface (Rayleigh) waves, but the 
majority of sensors are calibrated to receive longitudinal waves. Wherever the crack is 
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placed, the signal generated travels from the point of fracture to the surface of the material. 
The transmission pattern will be affected by the type of material crossed and then isotropic 
material will lead to spherical wave front types of propagation only affected by material 
surfaces or changes, where the Snell law rules their reflection and reflexion. On Figures 6 
and 7 is shown the evolution of acoustic waves inside a Material. On figure 6 it is shown 
how reflections on waves due to the defect appear. 
 

 

Fig. 6. Acoustic Emission Wave Propagation 

 

 

Fig. 7. Acoustic Emission Wave Propagation in fractured Material 

The biggest advantage of this method is probably that it is capable of detecting the earliest 
cracks of the system and their posterior growth, making possible fault detection before any 
other current method. The main drawback is that it requires additional transducers and a 
well controlled environment. 

3. Experimental results 

Next, the experimental test bench and acquisition system, as well as the results obtained by 
each of the presented fault indicators are shown, finally, two inference methods are 
presented to merge the obtained information. 
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3.1 Experimental setup 

The test rig used during this research work consists of four ABB M2AA 1.1kW induction 
motors, three of them with the drive-end ball bearings under test (with different bearing 
fault degradation level), and the other one used to regulate the applied load. Both driving 
and loading motors were controlled using independent inverters. Motors under test have 
also a cable attached to the drive-end bearings housing with the other side connected to 
ground (a hole was mechanized in order to pass the cable through the motor shield), 
allowing a low resistance path for CMC acquisition proposes. 
The three motors under test have SKF 6205 bearings with normal clearance and nine balls 
with diameter of 7.9 mm and pitch of 38.5 mm, and a contact angle of 0.66 radians. The 
bearings set under test (labeled healthy, lightly and heavily damaged), is composed by a 
healthy one (with very similar vibration levels to other new units tested in previous works) 
and other two units with different levels of damage due their operation hours, qualitatively 
evaluated with a shock pulse tester from SPM Instruments. 
 

 

Fig. 8. Experimental test bench and acquisition system scheme. 

Regarding the acquisition system, it is based on four different sensors connected to a main 
acquisition device. A triaxial shear design MMF branded piezoelectric accelerometer model 
KS943B.100 with IEPE (Integrated Electronics Piezo Electric) standard output and linear 
frequency response from 0.5 Hz to 22 kHz, was attached using stud mounting to the drive-
end motor end-shield and its data was collected at 20kS/s during 1 second for each 
measurement. Phase stator currents were acquired using Hall effect Tektronix A622 probes 
with a frequency range from DC to 100 kHz and collected at 20 kHz during 1 second for 
each measurement. High frequency CMC signal was measured at the cable attached to the 
bearings housing with a Tektronix TCPA300 amplifier and TCP303 current probe, which 
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provides up to 15 MHz of frequency range, and acquired at 50 MHz during 100 ms for each 
measurement. Acoustic emissions were acquired with the use of a Vallen-Systeme GmbH VS-
150M sensor unit with a range from 100 kHz to 450 kHz and resonant at 150 kHz. A Vallen-
Systeme GmbH AEP4 40dB preamplifier was used before data acquisition at a sampling 
frequency of 25MS/s during 20ms each measurement. All the described sensors are 
connected to a PXI acquisition system from National Instruments formed by different specific 
boards. 

3.2 Experimental results 
3.2.1 Vibrations 

The vibration signal RMS contributes clearly to bearings diagnosis. Figures 9, 10 and 11 
show the evolution of the RMS value of each motor vibration signals for different speeds 
and load patterns tested. Clearly, the healthy motor, in figure 9, shows lower RMS values of 
vibration in comparison with the other two units. Figure 11, corresponding to the unit which 
was in the worst operational condition according to the SPM measurements performed, 
provide also the highest levels of RMS vibration values. 
 

 

Fig. 9. RMS vibration for healthy unit, all speeds in rpm and loads in percentage of the 
nominal one. 

 

 

Fig. 10. RMS vibration for lightly damaged unit, all speeds in rpm and loads in percentage 
of the nominal one. 
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Fig. 11. RMS vibration for heavily damaged unit, all speeds in rpm and loads in percentage 
of the nominal one. 

3.2.2 Stator currents 

The figure 12a shows an example of stator-phase current in frequency domain over healthy 
test bench condition. The stator phase current characteristics bearing fault frequencies are 
related with the bearing construction parameters and the equations from (1) to (4) for m = 1 
and 2 that are normally used (Obaid etal., 2003). These fault frequencies are not present 
along the frequency axis. The fault indicators thresholds for the stator phase current  
 

a) 

b) 

Fig. 12. Stator current frequency spectrum, from 0 to 500Hz, a) healthy bearings b) fault 
bearing 
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characteristic bearing fault frequencies can be fixed at 5% of the fundamental frequency 
amplitude, which is a demanding threshold for diagnosis proposes (Schoen et al., 1995). If 
the amplitude of these characteristic fault frequencies surpass the thresholds, imply that it 
can be diagnosed clearly the localized bearing fault related, but if this threshold is not 
surpassed for any characteristic frequency, it cannot be deduced that bearings are healthy 
(Zhou et al., 2009), maybe a generalized bearing defect or a non detectable single defect is 
occurring, then, the sidebands of the stator current fundamental harmonic will be analyzed 
as general eccentricity fault indicator (Bellini et al., 2008). The stator phase current spectra of 
a degraded bearings shows, at figure 10b, sidebands fault frequencies greater than 5% of 
fundamental amplitude, but there are not the characteristic bearing fault frequencies. This 
effect can be due to eccentricity between rotor and stator for different reasons, so it is 
necessary additional features in order to distinguish between eccentricity due to bearings 
degradation or due to other fault in the motor. 
Regarding the other stator current feature presented, in order to avoid the influence of the 
main harmonic power value in the stator current RMS measurement, the acquired signals 
have been previously filtered using a band-rejection 5th order Butterworth filter centred in 
the power supply main harmonic with a bandwidth of 20 Hz between higher and lower cut-
off frequencies. Tables 1 and 2 compare the RMS filtered values of the heavily and lightly 
damaged units with the healthy one.  
 

Heavily Damaged-Healthy ([A] RMS) 

Speed [rpm]
Load 
[% of  nominal torque]

300 750 1050 1500 

0 0,004 -0,006 -0,008 -0,007 

50 0,036 0,03 0,073 0,044 

100 0,018 0,026 0,024 0,024 

Table 1. Difference in RMS filtered current value between heavily damaged unit and healthy 
one used as reference. 

 

Lightly Damaged-Healthy ([A] RMS) 

Speed [rpm]
Load 
[% of  nominal torque]

300 750 1050 1500 

0 0,008 0,002 -0,003 -0,003 

50 0,002 -0,011 -0,002 -0,005 

100 0,02 0,012 0,003 0,014 

Table 2. Difference in RMS filtered current value between lightly damaged unit and healthy 
one used as reference. 
A significant difference can be clearly appreciated when the motor is heavily damaged 
under load condition. Light damage is noticeable under nominal load conditions but its 
detection does not seem to be easily reliable. 
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3.2.3 High Frequency bearings pulses 

Bearings pulses threshold analysis has been executed to validate theories of correlation 

between bearings state (wear, lubrication, distributed defects, etc.) and pulses discharge 

over a threshold value. As it can be seen in figure 13 the stator CMC temporal analysis 

shows a decrement in the number of pulses surpassing a predefined threshold. The 

threshold value is fixed at 75% of the CMC pulse maximal amplitude in healthy cases. A 

number of counted pulses less than 75% of counted pulses in healthy bearings, will be the 

fault indicator threshold used to distinguish between healthy and degraded bearings. 

 
 

 

 
 

a) 
 

 
 

b) 
 

Fig. 13. Example of common mode current signal acquisition, a) healthy bearings b) fault 
bearing. 
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The results summarized in figure 14, show that over a defined threshold level healthy 
bearings undergo a bigger number in comparison to the damaged units. It is noticeable also 
that this method is able to detect failure at its initial stage if the threshold is correctly placed. 
 

 

Fig. 14. Number of bearing pulses over threshold value for all motors under test. Healthy, 
lightly damaged and heavily damaged. 

3.2.4 Acoustic Emission testing 

Acoustic Emission acquired data has been statistically classified by means of value binning 

tools and histogram presentation. Fifteen sets of data were acquired for each motor and 

averaged. Figure 15 shows the results comparing the RMS voltage values acquired for the 

different units under test. 

 

 

Fig. 15. Acoustic Emission voltage values classification 

It is advisable that pulses over 8 V only appeared during the damaged motor testing while 
under 7 V that unit does not show more activity than the healthy and lightly damaged units. 
Then, the fuzzy inference system designed uses as reference the number of pulses that 
surpass the 7 V value, which is the zone where the distinction of the fault severity of the unit 
seemed to be more noticeable. 

www.intechopen.com



 
Bearings Fault Detection Using Inference Tools 277 

3.3 Inference tools 
3.3.1 Look-up tables 
A look-up table is a common tool applied in diagnosis field. It contents basically a set of 
simple association rules applied over obtained data. The operation consists in analyze a 
given combination of inputs in order to select one of the outputs. In the diagnosis field, this 
kind of inference tool is as a set of if..then rules collected in a table. 
A proposed look-up table is shown in table 3, where a set of features, from the previously 
explained have been selected to generate an improved bearings diagnosis system. 
 

FTF harmonic 
amplitude 

BSF 
harmonic 
amplitude 

BPFO 
harmonic 
amplitude 

BPFI 
harmonic 
amplitude 

Fundamental 
sidebands 
amplitude 

Number 
of pulses 
over the 

threshold

Diagnosis 

>5% of 
fundamental 

Not 
necessary 

Not 
necessary 

Not necessary
Not 

necessary 
< 75% 

Bearing cage 
fault 

(Localized 
defect) 

Not necessary 
>5% of 

fundamental
Not 

necessary 
Not necessary

Not 
necessary 

< 75% 

Bearing ball 
fault 

(Localized 
defect) 

Not necessary 
Not 

necessary 
>5% of 

fundamental
Not necessary

Not 
necessary 

< 75% 

Bearing 
outer race 

fault 
(Localized 

defect) 

Not necessary 
Not 

necessary 
Not 

necessary 
>5% of 

fundamental 
Not 

necessary 
< 75% 

Bearing 
inner race 

fault 
(Localized 

defect) 

<5% of 
fundamental 

<5% of 
fundamental

<5% of 
fundamental

<5% of 
fundamental 

>5% of 
fundamental

< 75% 

Bearing 
degradation 
(Distributed 

or non-
detectable 
localized 
defect) 

<5% of 
fundamental 

<5% of 
fundamental

<5% of 
fundamental

<5% of 
fundamental 

>5% of 
fundamental

< 75% 

Eccentricity, 
but not for 

bearing 
degradation 

Table 3. Look-up table considering single-point stator current characteristic harmonics, 
stator current fundamental frequency sidebands evaluation, and number of common mode 
pulses. 

3.3.2 Fuzzy logic 

Fuzzy logic is a useful tool in order to implement reasoning that is ambiguous or imprecise. 
In condition monitoring field, the implementation of tolerant and flexible rules is a more 
realistic way to generate a diagnosis than the use of crisp and categorical relations. 
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The analysis of the actual bearing status has been performed using a fuzzy logic inference 
implementation (Lou et al., 2004; Ballal et al., 2007), which maps given inputs (in this case 
current and vibration RMS values) to a single output, the different signals acquired are 
linked to a damage value scaled from 1 to 3. 
 

 

Fig. 16. Membership function plot for Current RMS. (motor speed: 1500 rpm, motor load: 0%). 

 

Fig. 17. Plotted surface showing the relationship between the system inputs Vibrations RMS 
value (g) and Stator Currents RMS value (A) versus the Failure Level output. (Motor speed: 
1500 rpm, motor load: 0%) 

 

Unit Matches Success % 

Healthy 15 100 % 
Lightly Damaged 14 93,33% 
Heavy Damage 13 86,66% 

Table 4. System testing results. 

The membership functions, like figure 16, have been obtained through training and 
validation process, for each signal under analysis using real motor data. MATLAB 
“Adaptive neuro-fuzzy inference system” tool has been used for this purpose. Figure 17 
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shows the obtained relationship between Vibration and Stator Current RMS values against 
the Failure Level output for a motor speed of 1500 rpm and a load of 0%.  
To perform the evaluation of the monitoring system designed, fifteen sets of data were 
collected from the same units and processed. Table 4 summarizes the obtained results. 
All healthy data sets were correctly identified, whilst one of the lightly damaged was 
recognised as a heavily damaged set and two of the heavily damaged sets were identified as 
lightly damaged ones. The percentage of success was reasonably high and its improvement 
is still possible if more data sets are used during the system training stage. 

4. Conclusions 

This chapter tries to offer another point of view in the generation of diagnosis systems and 
the use of vibration signal analysis for machine condition monitoring. It has been presented 
an overview of multisensory inference approaches used to characterize motor ball bearings, 
and their application to a set of motors with distributed fault failure. The results show that a 
multivariable design contributes positively to damage monitoring of bearings, being a more 
solid solution than just using any of the single signals involved, which can be affected not 
only by external disturbances, but also by its own diagnosis limitations, especially dealing 
with damage severity evaluation. The selection and fusion of different fault indicators from 
different physical magnitudes has been solved by two examples: the application of simple 
look-up tables, and the development of a fuzzy system. In both proposed solutions, the 
bearings diagnosis reaches an important detection capability, including the possibility to 
detect different kinds of bearings faults and/or different levels of fault. 
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