
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

21

The Importance of a Deep Knowledge of
LabVIEW Environment and Techniques in

Order to Develop Effective Applications

Riccardo de Asmundis
Istituto Nazionale di fisica nucleare, Section of Napoli,

Physics Departement University “Federico II”,
Italy

1. Introduction

LabVIEW development system is spreading out in many applicative fields: industry,

research fields, controls and monitoring designs; automatic measurement systems as well as

machine controls or robotics; FPGA design associated with real time applications, artificial

vision and enhanced controls in industrial processes. These circumstances create the need to

prepare many people in the correct approach in the design, manipulation and management

of both simple, complex and extensive LabVIEW Applications and Projects.

All these conditions imply the necessity of having good programmers involved in such a

job: very often this statement is not at all reflected by the real working conditions with

evident critical consequences on the resulting style and quality of the Applications

delivered. You must be aware from the easy paradigm of the type “I understood, it’s easy to

do”, without investing time and human resources to correctly study the development

system before making Applications of a high level (Bishop 2009). Programming in LabVIEW

must be considered as a serious job exactly like programming in any other language;

expertise and professionalism play an essential role in the correct design in order to

accomplish the final result of having a solution which is effective, robust, scalable in the

future, reliable and pleasant to use or manage. If these conditions are unsatisfactory I would

suggest either avoid programming in LabVIEW or delegating someone else with the correct

expertise in making programming on it, or spend some time on your own in learning and

becoming proficient in this knowledge process in order to obtain the best results for your

Applications.

1.1 What the bad programmer loses?
A bad programmer is usually not conscious of being a bad programmer. Just like the

mistakes made while learning a new human language, a bad programmer isn’t aware of the

mistakes he is making, either since he does not know about different solutions or he is not

conscious of using a bad one, or he underestimates the consequences of an erroneous or

poor design; these consequences are frequently “masked” by the exceptional quality of the

G-Compiler, Memory Manager or other elements contained in the Run Time Engine, or the

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

438

machine performance and whatever is done behind the scenes in helping arrive at a final

successful execution and good apparent behaviour: in other words, LabVIEW is strongly

“robust against stupidity” and the programmer often doesn’t see it. Please, try to avoid the

principle of “whatever works is ok for me”.

The most evident damages of bad programming can be visible in both the short and long

terms: in the short term the programmer can undergo a possible personal stress in

manipulating the generally extended front panels, with poorly identifiable objects onto it;

complex block diagrams are usually related to them and have typical drawbacks: for instance

they do not fit into the PC window of the screen and oblige the programmer to move the

window up-down and left-right continuously, creating incredible difficulties in following the

wire routing. Under these conditions it becomes hard to include new parts of code to extend

functionalities, for both loss in space into the diagram and loss in technicalities which help in

this process. As a result the solution is unsatisfactory and the programmer will dislike the

development system and probably the language itself, or, worse, he will continue to design

Applications in this way without taking advantage of the advanced tools and clean designing

which are all possible in LabVIEW (Essic 2008) (Johnson G. W. 1994).

On the other hand, the heritage of such a badly written code by a different programmer is

usually a shocking event whose solution passes several times through a complete

redesigning of the Project. In the long term, developers like these do not encourage the use

of the system at all: they tend not to choose LabVIEW because they finally don’t know how

the system really works and how to use it in terms of programming. They think it is not

sufficiently clear, that the desired results cannot be easily reached, and sometimes that

“LabVIEW is slow”. All these bad opinions come uniquely from their own responsibility:

the one of not knowing the system correctly and, sometimes, of simply having to accept the

fact that they will have to spend sufficient time in learning all its features.

Fig. 1. Example of a typical result of a "badly designed" block diagram.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

439

Lot of recommendations come even from official LabVIEW courses: if you look at the Figure

1 the example reported comes from one of the official LabVIEW Intermediate courses just as

an example of what should never happen when programming in LabVIEW (National

Instruments 2010).

From here I wish to start with my series of recommendations, which I will try to indicate in

such a way in order to allow the reader to keep track of them and use them in the future as a

reference.

Recommendation 1) Don’t allow diagrams to go out of the development window

sizes; if this cannot be avoided for grouping reasons (1) do it in a single direction, the

best would be in the horizontal one.

Avoid diagrams whose development goes out of the screen. If your diagram is starting

to have an aspect similar to the ones in Figure 1 (out of the screen, too many wires, too

many superposition, confusion,…), stop your development and think about the right

solutions: adopt the modularity model typical of LabVIEW by using SubVIs. Open a

new VI and start to write your code into it. Then you will define the final character and

finality of the SubVI you are developing in order to include it into the whole project

(main VI) as a subpart. In other words think modularly!

1.2 The data dependency model
LabVIEW uses a “Data Dependency Model”. This concept is strongly stressed into all main
and basic courses like the LabVIEW Core 1 course. Self-teaching developers tends to
underestimate this concept, even if they have seen it in the Core 1 self-course. If the
developer does not adequately consider the data dependency he will experience several
problems. One is to

Fig. 2. Two different ways of designing sequential operations. (From LabVIEW 2009-Core 1
course manual, Lesson 8 “Using Sequential Programming”).

1 Like a SubVI which has to complete some operation in a whole (i.e. a complete communication with an
instrument or a complete access to a file,…)

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

440

arrange the parts of his VI badly, which have to be executed in sequence: hyper-usage of
Sequences Structures generally indicates a non-understanding of the data dependency
issues, poor management of the available structures, a strong mental conditioning coming
from classical text-based programming languages probably utilized in the past. And here
we can introduce the next recommendation:

Recommendation 2) Avoid using the Sequence Structures. Sequences are not
considered in the official courses unless for marginal purposes: they overcome the data
dependency paradigm which is the main point of force in LabVIEW. Make the effort in
using data dependency instead. Mainly use the error cluster to create data dependency
which forces the sequence of execution and, at the same time, takes care of produced
errors.

Error cluster is a main topic in the LabVIEW environment. Their use is not only
recommended but is vital for good programming structures and final reliability of the
application. Lots of aspects have to be analysed concerning the Error treatments and a
specific paragraph will be dedicated to it. In the Figure 2, the contrast between the two
indicated solutions to create a sequence is shown. The first is “forced” by the flat sequence
structure; the second is naturally invited to be sequential thanks to the data dependency: the
error cluster makes the operations naturally in sequence and its usage allows it to act with
the right messages to the user in case of error/no-error. Try to comprehend this example to
amplify the concept of data dependency model: LabVIEW executes nodes as data are available at
its entrance.
Finally the Sequence Structures have another drawback: several developers tend to
affectionate to them avoiding using of most of the existing alternatives: State Machines, for
examples, can be used in the place of many Sequences Structures, with the big advantage of
letting the program flow to “choice” the step to be performed, which is, on the contrary,
fixed for the Sequences.

1.3 The development environment: project explorer and the organization of the proper
job
In my daily experience I see many programmers who don’t have good organization of their
work in terms of the storing resources in the PC: precise rules should be used for the
locations in which the VIs related to a project or VIs coming from third parts (like
Instruments Drivers) must be stored (Sumathi, Surekha 2007). Very frequently people can be
confused regarding this issue, and this causes problems: the most frequent problem is losing
control of what version of certain SubVI the developer is using: this aspect can lead to very
serious problems, like the non-functioning of a VI (even the “main one”) that worked the
day before! Such a situation can happen if a version conflict is engaged due to different and
old versions of VIs on the machine.
Here are some suggestions to consider for good organization for a correct outcome:

Rule 1) Decide an “official” area on the machine in which all LabVIEW Projects or
Applications must be stored and use that area at all times.
a. Do not use the Windows “Desktop” to store work, or folders located on the

desktop.
b. Chose a subfolder of the main “Document” folder relative to the developer

account, which must have Administrator’s privileges.
c. As an alternative to point b., use the “LabVIEW Data” folder, automatically

created by the LabVIEW installation.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

441

Rule 2) Create a subfolder for every project you develop: all material developed
uniquely for that project must be stored in that folder.
Rule 3) Subdivide the folder of the project into several subfolder, each of them
containing VIs, Controls, Menu, etc. for specific tasks: see figure 3 for an example.
Rule 4) Use the project explorer: the project explorer must reproduce the organization
you are keeping in the file system. See figure 4 for the aspect of the project explorer
related to the Project.

Fig. 3. An example of a folder containing a project. Remark the readability in such an
organization created thanks to a subdivision in lower subfolder.

Fig. 4. Aspect of the Project Explorer window relative to the example above.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

442

Project Explorer not only allows you to keep track of the organization of all files (VIs, data

files, LabVIEW menus, other accompanying files for documentation too) but also gives

several instruments not available in other ways: building a stand-alone Application is an

example, as well as creating and managing Shared Variables.

Remember that you have at least two ways to create subfolders in the Project Explorer: the

“Virtual Folder” and the “Auto populating Folder”. The latter replicates what you do in the

actual Windows directories, while with the former you need to explicitly manipulate them

in the Project Explorer in order to organize the materials. The former is not always

preferable: in my example I used Virtual Folders (i.e. “manual” organization) only.

Rule 5) Be careful if you save new versions of SubVIs with the same name but under

different location. It’s possible that, at a new reload of the Project, the system links an

older version of these SubVI’s, causing incomprehensive malfunctioning. If you need to

change the location only of a sub-VI, pay attention in removing the old version by

deleting it or, if useful for future references, move them to a storage area called

“deposit” or similar, with a different name (i.e. “mySubVI_OLD.vi”).

Rule 6) Last: if you need to use a third part software like Instruments Drivers, take care

that the whole driver folder is located in the official Instruments directory of

LabVIEW, like C:\Program Files\National Instruments\LabVIEW 2009\instr.lib,

depending on the LabVIEW version you have. Official subdirectory must be “instr”

folder. This allows LabVIEW to look at the existing drivers and to create the

appropriate buttons in the Functions Palette window. Drivers stored there, are not

erased when you uninstall the LabVIEW version in view of installing a new one: you

just need to copy the whole driver folder to the new “instr” subfolder of the new

installation (National Instruments 2010).

2. The correct design of front panels

Front Panels represent a critical job that is very often underestimated. It is true that, in

case of a VI used as a quick, short and “fast” check, it is not worth spending a long time

on the front panel: the problem is that from those poorly designed front panel, used in

temporary VIs, we frequently evolve towards a large public utilization of the VI. The VI

becomes from a short test, a “final user VI” and for this reason it must be correctly

designed.

Poorly designed front panels usually suffer from the following drawbacks:

1. They are larger than the screen size and need to move window positioning bars, both

horizontal and vertical.

2. They use lot of “single” controls or indicators, not separated among them well,

creating confusion in the input and output objects.

3. They use insupportable colours on the objects or parts of the objects.

4. They use inconsistent character sizes and/or styles.

5. Controls and indicators are labeled by their default names (numeric 1, array 2,…).

6. They are not user-friendly.

In the Figure 5 you can see an example of a badly-designed front panel. Here a certain

confusion exists in the destination of controls and indicators which are not organized well or

logically and several character styles are used together (National Instruments 2010).

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

443

Fig. 5. A badly designed Front Panel. The use of different character styles, the non-clear

assignment of controls and indicators cause confusion in the final user. (From National

Instruments 2009-Core 1 Course presentation slides, Lesson 4 “implementing a VI”).

Try to adopt certain rules in designing front panels. We can distinguish two categories of

rules: the aesthetical ones and the functional ones. The problem is the two categories

interfere each other. We try to resume in the following:

Aesthetical rules:

Rule 1) Avoid front panels that are bigger than the screen size. If more elements should
be included use:
a. Tab Control to separate the elements in different logical context (i.e. all

input/instrument settings, run control, output, error or alarm list, etc.).

b. Different windows as SubVIs which open for the running period only (i.e. small

windows for setting, controlling etc.).

Rule 2) Clearly organise controls and indicators for their correct purpose: do not mix
them in short space, but explicitly separate them for their functions. Regroup controls
and indicators that are related to the same element (i.e. all controls of an instrument
should be collected together in an unique portion of the screen or a specific tab of a Tab
Control.
Rule 3) Do not play with colours: use default colours when possible. If an emphasis
must be done use the light colours only and be uniform for entire parts (i.e. all controls
of an instruments=light-blue).
Rule 4) Try to put yourself under the final user point of view; try to check the panel by
thinking that the user has never seen it before. If necessary ask a colleague to check if
the panel is easily understandable.

Functional rules:
Rule 5) Use specific labels for controls and indicators: do not use default names
(numeric 1, 2, array 1, 2,…). Always give a representative name to the objects.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

444

Rule 6) If labels became long, use a short one (mnemonic) and use Caption instead on
the front panel objects. Establish your own rules for the name assignment for labels
and/or captions and respect it. Example: Label CSM_BField; caption “Common Switch
Magnet, Magnetic Field (Tesla)”.
Rule 7) Panels must respond quickly to any stimulus from the user (coming from the
mouse, TAB key,…) and must appear as animated (ex. a clock indicating day/time
running).

The last point of the above list is strictly related to a correct design of the block diagram, but
is very crucial for a good implementation. We will return on it when we discuss diagram
issues. In the Figure 6 you can see an example of a well-designed Front Panel: note the
absence not only of the displacement bars but also of all extra elements in the LabVIEW
Menu on top of the window; such a solution contributes to the clearness of the VI and in
avoiding unexpected behaviour at run time due to an improper use of the commands.

Fig. 6. An example of quite a good design for a Front Panel. Please note the subdivision of

the panel into boxes clearly indicating the category or specificity of the elements included

(from APV Data Acquisition System for CERN-Geneve, by R. de Asmundis).

In this case the VI presents only an overview of the execution status, indicating all the

relevant elements involved: data are presented in separate panels. This solution has been

adopted to further separate the logical aspect of the final Application.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

445

In most cases, when a front panel must be revisited, you may need a stop to your
development process, taking your time to decide how to reorganize it. Pressing in a fast
design is the most dangerous aspect that can cause a bad design.

2.1 Custom menus
Usually all commands to be sent to a VI are implemented as graphical controls: buttons as
Booleans, simple numeric controls or slides, dials etc. represent a natural “way of thinking”
in LabVIEW. Nevertheless, if the number of implemented commands starts to be too high,
basically on the main VI, different solutions are suggested. In this context Custom Menus
becomes a very useful alternative. Custom Menus allow you to define your own menu
items and organize them as you desire. Your custom menu is shown at run time on the VI
window allowing the user to select from the menu voice the required function: the VI
diagram has to handle the menu item voice by voice, by executing the related command,
just as you would do by using Boolean buttons. Use event structure to handle, in an unique
event case, all menu items. There are several useful examples concerning the menus which
can be used as a starting point: this issue is quite a rich one and must be carefully studied. In
the Figure 6 again, a custom menu is visible on top of the window, while in the figure 7, a
possible programming solution for menu choice handling is shown.

Fig. 7. Portion of the diagram which handles the Menu Item selection and acts in
consequence. The bottom most loop handles the request coming from the top one (from
APV Data Acquisition System for CERN-Geneve, by R. de Asmundis).

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

446

This handling is performed via a queue command exchange between the top and the bottom

loop in Figure 7.

3. Elements of language: why to ignore them?

Several aspects related to the basic knowledge of LabVIEW language are, for some

mysterious reason, often ignored by beginners. This is really a pity and demonstrates the

weakness in which several people approach the language: they tend to underestimate the

possibility offered and to overestimate their capability in developing with the few elements

of language learned. We can individuate the following objects which are often misused, not

well understood or completely ignored:

• Relating data: Arrays and Clusters. Correct use of them in several

situations.

• Shift register, a precious tool: their “active” utilization instead of under

staying to the needs of them.

• Auto indexing of arrays into For and (marginally) While Loops.

• Advanced data manipulation: Variant, bit manipulation, cast type, etc..

• The References to objects and their use in the Property Nodes setting

actions.

A deep discussion on all of these topics would make this Chapter too long, so, for some of

them, I can only make a citation.

3.1 Arrays

These elements are often misused. Cluster not used at all. Let me try to give some

suggestions.

Arrays and Clusters are “musts” in LabVIEW environment: Arrays constitute a

mandatory data structure for several situations, like data acquisition coming from

samplings (at slow or high rates), oscilloscopes and data sampling equivalent acquisition

cards, blocks of data to be processed and so on. Even weak programmers undergo the

experience of using arrays because of their “natural” introduction by lots of drivers-VIs,

subVIs or LabVIEW functions that only treat arrays. Nevertheless very often arrays are

badly used since most of their mechanisms are not well understood. The most powerful of

these mechanisms is the auto indexing principle: Arrays are, by default, auto indexed

when entering or leaving any For Loop structure, while they are optionally auto indexed

in While Loops. When using arrays, programmers must think from the “array point of

view” and always considering auto indexing not only as an useful instrument, but also as

the best way with which we treat arrays. Arrays tend naturally to be treated by auto

indexing mechanisms (Travis 2004).

As an example consider the following problem: we want to generate a 10 by 10-elements

matrix of random numbers where each row contains a random in the range 0-10n, where “n”

is the row index starting from 0. Then we want to extract the main diagonal of this matrix

into a second output array. In other words, each row of the 2D-matrix, will contain random

numbers in the range 0-1, 0-10, 0-100,…0-109. In the following figure the two different

solutions are reported:

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

447

Fig. 8. Contrast between two different solutions in the use of indexing of arrays. Remark the
elegance of the second (the right) solution.

In the leftmost solution auto-indexing of array is not used and more functions are involved,
the structure is more complicated and the readability of the diagram lower. In particular, the
second loop generates an array starting from an empty one by using a build array function
in concatenate mode: this solution, although quite practical, is memory and time consuming
for the machine and should be adopted only if strictly necessary.
The solution on the right uses auto-indexing which is implicit in the For Loop structures:
the compactness and the elegance of the solution, in particular in the extraction of the main
diagonal, is evident.
So, definitively:

• Auto-indexing should be used as frequently as possible when manipulating
Arrays.

• Sometimes auto indexing can be useful with While Loops too (example to record
the history of some parameters once the loop has terminated): be careful in this
case, because While Loops can run for extremely extended time and accumulation
of array on the border is greatly memory consuming in those conditions. For this
reason auto indexing in While Loops is disabled by default.

We cannot spend very long on arrays since there are a lot of other issues to be considered in
the Chapter. Anyway, make the effort to think and plan better and better when working
with the arrays, even by investing some time in understanding related functionalities.

3.2 Clusters
Clusters are basically ignored by most beginning programmers. This is a paradox since the
cluster is the equivalent in LabVIEW to the “Structures” in C or C++ languages, or Records
in Pascal. Roughly speaking, ignoring clusters is exactly like ignoring one of the most
important data structure of programming languages: it is like completely cutting out an entire
vital existence of LabVIEW. People who do so often make incorrect sentences like “data
structures in LabVIEW are complicated and too many wires and connections are necessary to
move data”. Reasons for this lack of knowledge always comes from the approximated way of
learning the language, without spending any time in the pure study of it, but going directly to
“try to develop” something: it becomes natural that in such cases, people use what they have
learned until that time and tend not to go on in their acquisition of knowledge.
So, stop for a while and study Clusters. Then use them as frequently as possible to
represent data which is logically related one another. Clusters are extremely useful, for

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

448

instance, for grouping setting parameters for an instrument, variables coming from the same
source that must be displayed together, entire groups of data to be presented like
atmospheric parameters in an environmental control, and so on. Moreover many internal
structures in LabVIEW are clusters, like data handled by X-Y graphs, so you must know
them. Clusters allow:
1. The collection of several variables (In or Out) in an unique container; by choosing to

“clusterize” variables which are logically coherent, you have a natural way of logic

separation of data into different categories.

2. Wiring becomes simpler: very complex data can be exchanged using a single wire.

3. Clusters can be assembled or disassembled by name: this introduces an intrinsic

clearness into the diagram, by citing the name of the variable transported.

4. Uniform clusters (i.e. all numbers, all characters) can be sent directly to mathematical

(or character) operations thanks to the polymorphic nature of the functions, so it is not

necessary to unbundle and re-bundle them.

5. Clusters allow improvement in clearness of front panels. A Front Panel organized in

clusters is clear, compact, logically subdivided in a natural way and simpler to maintain.

Consider, as an example, the front panel showed in Figure 9 it is quite well designed, but it

does not use Clusters. Besides the hard work to obtain it (all boxes around Controls are put

by hand), the real problem is into the diagram (Figure 10) where values coming from

different controls are picked up in an apparently spread out way. Clusters would help a lot

in grouping together the data and make the diagram more friendly, as you can see in the

bottom part of Figure 10, where two Clusters have only been introduced. Notice the

Unbundle by Name function which greatly increases visibility of the diagram. You can

imagine the advantage in using Clusters for all Controls and Indicators in this diagram.

Fig. 9. Example of a front panel which do not use Clusters: even if it appears quite good, a
lot of time has been spent to obtain this result. Boxes around groups of Controls or
Indicators have been put in by hand: Clusters would provide a natural way of doing this.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

449

Fig. 10. On top a portion of the diagram relative to the Figure 9. In the bottom the same
portion in which only two clusters, each containing three elements, have been introduced.
You have to imagine the final result when the clusterization of data is completed.

3.3 Type definitions
Clusters, but not only them, are often involved in Type Definitions. If Clusters are “seen

but ignored”, type definition are often not known at all. Again this is a paradox, since they

are the equivalent, in C/C++, of “Typedef” statement. In particular C-statement “typedef

struct” is translated in LabVIEW as “Type definition made using Clusters”. For this

reasons, Clusters and Type Definitions are often used together.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

450

Use type definition to create your own data type for your Applications. Include type
definitions into your project using a specific folder. Once you create a Type Definition, you
can use instances of it wherever you want in all VIs of your Project. Instances are bound to
the original Type Definition, so that, if you modify it, all instances are automatically
updated.
Type definitions are made by using the Control Editor and this may be the reason for
which they are so ignored: editing of Controls are, in fact, considered as a “far” item, not
useful in the daily practice and to be used rarely. Although it is true that we do not modify
controls to create our own controls every day, Type Definitions can be manipulated in this
environment only.
It can be convenient to try with the following suggestions:
Suggestion 1) If you think a control/indicator, even a simple one like a small cluster
expressly prepared, is subject to be used several time, then define it as a Type Definition.
Suggestion 2) To do so, simply select your control, go to “Edit å Customize Control” menu
item. The Control Editor window will open. Select “Type Definition” or “Strictly typed Type
Definition” as the type of control you are editing. Customize it if necessary and save it as a
new, separate type. When you close the Editing window, answer YES to the question asking
if old control must be bound with Type Definition.

Fig. 11. Example of a Control Panel which uses several Type Definition. Remark the
contextual menu with relative voices like “Open Type Def” or “Disconnect from Type Def”.
If the pointed Cluster is modified in the Control Editor as Type Def, all instances are
automatically updated (from a Real Time Gas Control System implemented in the INFN
Naples, R. de Asmundis)

In the example of Figure 11 several Type Definitions are present. On one of them the
contextual menu is opened. All Type Definitions are Clusters, and this is not by chance: if a
cluster must be repeated in several points of the VI because it has several utilization, it is
convenient to define it as Type Definition.

• Remember that if you need to change anything in your Type Definition, just open
it and make your modifications: all instances will be automatically updated.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

451

One of the most useful aspects of adopting Type Definition is in the case of advanced
Design Patterns into diagrams. We will return to this in the relative paragraph.
Remember: it is not convenient to ignore Type Definitions.

3.4 Local and global variables. Using shift registers as Global Variables
Shift Registers represent a very powerful tool generally used to report, in repetitive

structures (For or While Loops) data coming from previous cycles. We do not enter in the

details because shift registers are so useful that they are surely known even by beginners.

Almost every repetitive structure uses shift registers because of the needs of the process

itself.

Don’t forget that Shift Register are actually a memory storage for any type of data.

Consequently we can use Shift Register as a memory storage to pass data among VIs or part

of a VI. This solution, strongly recommended by National Instruments knowledge base, is

called “Functional Global Variable”.

The reader surely knows Local and Global Variables: they are an useful way of accessing to
Controls and Indicators in different parts of a diagram or among SubVIs. Excessive use of
Variables is, indeed, to be strongly avoided. I have seen several beginners using local
variables in the place of drawing wires to transmit data within the diagram. Well, this is a

very incorrect way of programming for several reasons:
1. You lose the main principle of LabVIEW language, again the Data Dependency

paradigm. LabVIEW performs operation once data is available at the input of functions.
Variables alter this paradigm, by inducing an immediate availability of data, but with
no guaranteed it will be up to date. This leads to 2.

2. Race conditions can be introduced: a function (far) uses data (picked up from a
Variable) that has not been updated yet, because, in another point of the diagram, the
Variable is still waiting to be updated., In this way we planned to send correct data to
the target VIs or portion of diagram, but this is not the case.

3. Race condition must be avoided since they represent big “bugs” in your program.
Diagrams can run correctly even thousands of times and fail at a thousand and one!

Fig. 12. Example of a Functional Global Variable (FGV). To be noted, the different choices
with which the FGV can be called: “initialize” to clear the output, “Set Reference” to save
values to be successively used, then “Read Parameters” to use them.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

452

Please consider Figure 12. the front panel and diagram of a Functional Global variable
which uses shift registers to store data is represented. The problem solved here is the
following: in a professional application, the User can decide when saving streams of data
onto a file and when not to. Where to open and handle the file in such a process? Usually
data streaming consists in opening the file before a loop, writing continuously within the
loop and closing it after (see paragraph on the “files” in this Chapter). If the diagram is quite
complex and this sequence for file handling is not convenient to be designed in the standard
way, the opening and closing of the file only can be done in the command section of the
diagram: there a Functional Global Variable is used to store the file reference and, if
needed, other information too. Then, in the part of the diagram which writes the file, the
same functional global is used to read the file reference number and whatever is needed.
You can, in this way, store and retrieve information at different locations in a diagram
without using a variable. Since Functional Globals are SubVI the data dependency paradigm
tend to be correctly applied, automatically avoiding race conditions.

4. References and variants

References and Variants represent two other data type which is often ignored in LabVIEW.
We encountered References in the above paragraph, talking about files. References do not
apply to files only: basically each object can be referenced, and actions can be taken on the
objects by using references. References are numbers which we do not decide, create or define:
just use. References are created by right click on terminals in the diagram and from there on,
this number can be used for several purposes:

Fig. 13. The “Reference” palette menu.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

453

Reference to a file, as above, to write, read and do any other special operation on file;
reference to an object on the front panel can be used to access it and programmatically
modify any attribute it has. It is difficult here to collect all situations where References can
be used or are useful. Just as an example, consider using the property nodes to change
property programmatically (i.e. changing the colour of an indicator depending on data,
make a control active or inactive greyed-out and so on). Property Nodes need a considerable
space in the diagram and it can be useful to move them in a SubVI. In that case References
to the modifying objects must be sent to the SubVI: it will be received in the SubVI as a
“Control Reference”. Figure 14 shows a cluster of reference created to send compactly
references to SubVIs.

Fig. 14. A Cluster of Reference is created in order to transmit compactly References to
specific SubVI.

Fig. 15. The subVI in which these References are used.

Figure 15 shows the diagram of a SubVI which uses these References: note the Property
Node which accesses to the object and read/write data on it, remotely (i.e. in a SubVI) and
again without using Global Variables. Property nodes act in a better way on objects with
respect to Variables, and allow Error treatment.
In the same figure also a Variant is used. Variant can be very practical, and it is another item
defined in most programming languages. It simply contains “any” kind of data. You can use
Variants when you need to send various-shaped data using a single “channel”. An example
is the handling of a user menu choice: depending on the selected menu item, you need to
send different data types to a consumer into the diagram. You simply send a Variant at
every menu item, so the structure to send data is always the same: the receiver must
interpret the Variant by knowing what data type is associated with it in order to reconvert.
Variants are a very flexible way of data exchange for several situations. It is useful to spend
some time in testing and learning them in view of an advantageous utilization starting from
available built-in examples on Variants.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

454

5. The hierarchy

LabVIEW is conceived as a hierarchical environment: different tasks or jobs can be performed
in different subprograms, namely different SubVIs. It often happens that programs are written
without using SubVI, writing everything in an unique diagram, namely the main VI. This is
not a good choice. In this way diagrams tend to quickly become too big, going over the screen
size and incomprehensive; it becomes difficult to manage, to be updated and is not as scalable
as it should be. In my opinion there are two main reasons for this tendency:
1. There is insufficient familiarity in creating SubVIs at the beginning, so their usage is not

taken into account.
2. Developers do not “think hierarchically”, meaning they have not figured it out, before

writing the code, the best way of organizing the diagram and basically on how to
subdivide tasks.

Regarding the first point, it is sufficient a simple tour in creating some SubVIs, be careful
where to store them or giving the correct names to SubVIs, correctly choose the data in/out
and the terminal connection and so on.
As for the second point, don’t forget that SubVIs are the equivalent of Functions and
Subroutines in text-based programming languages (C, C++, Pascal,…). When learning C, for
instance, one of the first points stressed is the use of Functions: C and C++ that are made by
Functions. Pascal pushed this concept to the extreme: Functions and Subroutines had to be
declared in the main program. All these aspects force the developer to “think
hierarchically”: when a C developer has a specific task that the main program has to do, a
specialized one or a task which has to be repeated several times, he/she immediately starts
to define a new C Function. It must be the same in LabVIEW: opening a new VI and
making it a SubVI should be a natural process.
In the Figure 16 we can have an idea of what a disastrous diagram can come out when not
constructed with the principle of a good planned hierarchy.

Fig. 16. An example of a very badly designed diagram in which no use of SubVIs has been
adopted.

Situations like the diagram of Figure 16 lead to serious difficulties in understanding and
possibly rescaling the program (i.e. the diagram) for future developments. It can be
impossible to understand it even after reopening just two months later: the confusion can be
total and the robustness is strongly compromised.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

455

Fig. 17. Left: the “Hierarchy Window” of the above diagram has no meaning due to the poor
hierarchical design. On the right a Hierarchy Window for a correct designed Application
which adequately uses SubVIs.

The Hierarchy Window helps a lot in keeping the control of the development process. It
would be useful to refer to it during hierarchy definition. Starting from the first SubVI you
introduce into your application, open the Hierarchy Window to have a look at the
modularity you are adopting in creating your Application. SubVIs can be easily accessed to
open their front panel, to set VI properties, to edit their icons.
Here are some possible hints about Hierarchical developing and SubVIs in general:
Suggestion 1) Whenever you have a “sub-problem” in the sense that a certain task can be
seen as independent, open a new VI and use it as a SubVI. You can develop robust, clear,
independent VI that can be used as SubVI in several points of your Application.
Suggestion 2) SubVIs allow you also to create parts of your program that can be tested and
debugged independently from the whole Application: once your SubVIs work fine you are
saved from one of the most frequent source of bugs in your Application.
Suggestion 3) When your main diagram starts getting too big, individuate a part that can be
performed by SubVs: then select that part and make “editå create SubVI” command from
menu. Then re-organize your SubVI (terminals, Icon, etc.).
Suggestion 4) When you open a new VI to be used as a SubVI, immediately drag the icon
terminal pane in the main VI: this immediately imposes the desired hierarchy, and the
SubVI is visible in the Hierarchy Window. You organize your hierarchy even before finish
developing of your SubVIs.
Suggestion 5) The last hint is somewhat more complicated: think what you don’t want to
see into the diagram of the Main VI of your Application and what you do see. For example
decide what not to have in the main VI as, for instance, low level functions: file open,
write/read, close; access to instruments drivers; TCP/UDP access; etc. Decide that all low
level functions of any kind must be written in SubVI. This solution allows you to create a
“Layers” Hierarchy in which you can have different visibility of your work: it is a great help
for big Projects and Applications.
Obviously most of these hints must be checked and a lot of experience must be done to
absorb them. But please, start to adopt these strategies immediately.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

456

5.1 Documenting Vls
VI documentation is another missing point: basically all developers, also experienced ones,

tend to skip this step completely. Diagrams are poor in explanations, notes or internal

documentation. This is another mistake. VIs without any documentation are hard to

understand and if you mix this with the general weakness in the diagrams clarity the result

is hard to understand.

LabVIEW is a self-documenting environment and you do not need a lot of work to create

a good documentation. It is sufficient to keep in mind some standard steps to adopt during

the development processes to get an automatically documented code. Documentation issues

include:

• A correct name given to the VIs.

• A correct allocation of VIs in your file system (as already described).

• A correct naming of Controls and Indicators on the Front Panels.

• Designing of a good Front Panel, in order to self-guide the user in understanding it.

This should be a good practice for SubVIs too, even if they are not normally open or

visible to the final user.

• Good aspect of VIs Diagrams.

• An adequate choice and design of the VIs Icons.

• A correct positioning of input and output terminals on the SubVIs Connection Panes.

• Some words in the “documentation” tab of the VI Properties page for all VIs involved.

Most of the above issues are clear to understand. For others, further clarification may be

useful. As you can see, basically, all these rules do not imply extra-work to your job. They

must become habitual. When you open a new VI, for instance, the first thing to be done is

saving it in the right folder and giving it a good name which is indicative of its attitudes.

The same thing when you introduce any Control or Indicator: the name label is

automatically selected to allow you to input the specific name: please, do it. Do not leave

“numeric 1, numeric2, array1”… names.

For VI icons you can have suggestions by the same Figure 17 right side, in which two icons

only must still be designed. There is a logic in the choice of the icons:

1. An icon Template has been adopted: it is a simple framework design (two rectangles in

light blue in Figure 17) with a short explanation as a short name of the Project or the

activity for which the Project has been made. Create it and save it as an Icon Template

(from version 2009 on).

2. One specific Template should be used for each Project, giving a signature to the

project.

3. The background colour is modified into two-three options (Red or Pink) to locate

different purposes of SubVIs: normal VIs are in the original colour (blue); Functional

Global variable are in Red and Type Definitions are in Pink.

4. At every icon of the SubVI in the Application three lines of text, one glyph and the

cited framework identify the purpose of the SubVI itself.

5. Icons that are different in styles come from the LabVIEW system (as internal functions

made by SubVIs) or from my personal “User Library”: obviously they keep their old

icon design.

In the two figures 18 and 19 you can see the front panel and diagram of a SubVI that is

normally closed, but optionally opened and shown to the User.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

457

Fig. 18. Example of a documentation introduced in a SubVI.

Note the care taken in the arrangement of the objects on the front panel: Input, Internal and
Output frames create a visual impact which immediately guides the user; the coloured
object are Type Definitions and this strategy is useful to locate them in panels; the message
written in the “Description” page (indicated by the oval (in figure 18)) of the VI-Property
window is automatically shown in the LabVIEW Context Help.

Fig. 19. The diagram of the SubVI of figure 18.

In the second figure the corresponding diagram is shown. Note the presence of several free
labels used as internal documentation of the diagram itself. They help a lot in reminding the
purpose of objects used, of SubVIs etc. Here are some hints concerning the diagram:
Suggestion 1) It is useful to document specific operations by choosing to show the label on
structures (For and While Loops, Events structures), giving them a clear name which

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

458

indicates the function. You can do the same on some function (it is done on a Bundle
Function in the Figure 19).
Suggestion 2) Using free labels to document the diagram is highly suggested.
Suggestion 3) From version 2010 on use the “wire label tool” to give a label to single wires,
indicating the data transported.
With a well-organized and documented set of SubVIs you do not risk that even after two
months, when you reopen your project, you will not remember what you did.

6. Data filing in LabVIEW

Data filing is not a trivial job in any programming language: LabVIEW makes no exception
in this regard. There is, in fact, a very wide range of choices concerning how you can save
your data on files, and the decision of using one format instead of another must be steered
by the following two points:

• What kind of data, in a “logic sense” you are saving.

• What is the future utilization of this data?
These two points are not clear at all to the novel developer, and sometimes even to an
experienced one.
Typically, once learned how to save data onto spread-sheet files, the tendency is to continue
using spread-sheets even in cases that would require a more convenient solution: the Spread-
sheet format is supported by the fact that it is Excel compatible, in the sense that files can be
directly read by Excel and eventually transformed into Excel format. But we mustn’t forget
that there exist a lot of other possibilities whose utilizations can be strongly recommended.
First of all, let’s try to give some explanations of the statements above.

• The “logic sense” of data to be saved means a sort of category to which data needed or
produced by an Application belong. Here is a possible list reported as a series of
examples:
a. [configuration data] The physical channels to which the program must acquire data

from the field via ADCs or other related hardware.
b. [configuration data] On-Off status which decide if some Data Acquisition Channels

must be taken or not (to temporary inhibit DAQ from certain channels).
c. [Internal data] Information related to the user (ID, account, a possible password).
d. [internal logging] Log information concerning the correct functioning of an

Application for debugging purpose.
e. [internal logging] Journal file of actions taken by the user / Journal file of actions

taken by the Application for getting a strong redundancy on delicate processes.
f. [log raw data] Real (physical) data acquired that must be saved on disc for future

analysis.
g. [log analysed data] Online analysis is performed and we want to save basics results

of analysed data.
The list is far from being complete. Pay attention to the fact that we are not speaking about
the format. The format, in fact, is an independent choice: all the logical categories of data
indicated in the above list are subject to be saved into different formats, but there are no
fixed rules for this. One must clarify, before deciding the format, what is the logical aspect
of data to be saved. For each of them a different and more indicated solution is suggested.

• The second point is in some way related to the first and, from a certain point of view,
the choice must be done by considering both aspects. Saved file can be:

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

459

a. Successively used as source of data to be analysed.
b. Retrieved intact, just as they have been written.
c. Subject to be archived in a long term historical archive and sometimes

retrieved for future reference.
d. Hidden because it is used by the program itself for its internal setups (typical

case of Configuration Files).
e. Subject to be used on the same machine which took it or moved to be

opened/used on a different machine.
f. Their destination is on the same Operating System or on a different one.

And this list could also continue.
Another aspect is the format: text file or binary file? What exactly is the difference? What is
more convenient and for what reasons? I found that sometimes even experienced people
make some trivial mistakes by choosing a wrong solution on this point.

6.1 An overall analysis of the file functions
The File Functions are very well divided and organised in LabVIEW. After an overall analysis
of them we will switch to a series of useful hints for deciding file saving in LabVIEW. The
Figure 20 represents the main File Function palette at the centre with four sub-palettes opened.
The first row of the main palette contains the “basic” File Functions, the ones you use when
you don’t want to worry about how, technically speaking, you are saving your files.

6.1.1 Basic file functions
This first line provides two different and pre-ordered ways of file saving: spread-sheet file
(Write and Read respectively) and express VIs which use LabVIEW Measurement file format.

Fig. 20. The very extended and rich File Functions palette of LabVIEW.

Even if these two methods are useful in several situations, they suffer from some drawbacks:
• Spread-sheet file

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

460

a. Spread-sheet files can only save numeric values in double precision
representation. Moreover some old LabVIEW versions saved these data as single
precision representation. If your floating data are usually treated in double
precision, a loss of representation or loss of data can be introduced if you saved
them with the Write to Spread-sheet File Function.

b. You cannot write on your file any other auxiliary information like strings, Booleans,
annotations etc.: you cannot save date and time string information; date and time
can only be saved as floating point, i.e. using the absolute timestamp of LabVIEW,
but that is to be decoded by another program and is not clearly understandable by
human operators if written as a double number and not interpreted.

c. The machine format is a text file, whose fields are separated by tab character. This
means that huge files can be created even for not such a large amount of data to be
stored.

d. When you record spread-sheet files you must be careful in developing the file
towards bottom direction instead of to the right one: in other words, spread-sheets
must grow toward the bottom by appending lines, avoiding too many columns on
the right. In this case, spread-sheet programs can fail in opening these files.

e. The numeric precision can be lost because you chose the number of significant
digits at the moment of the file save, just as in a print-out sheet.

The last point is particularly significant when critical numerical data must be saved. It is an
important issue concerning text file which will be considered later.

• LabVIEW Measurement files. They can be very useful, but I suggest to adopt this
solution for a relatively small amount of data. They are driven by an Express VI, so a
specific setup panel is opened when you introduce these functions into your diagram.
The main advantage of using LabVIEW Measurement Files is the rapidity in defining
the file and obtaining it. The read-back of the file is also easy.
Here are some drawbacks:
a. They are usually text file unless you select “binary (TDMS)” into the setup page, so

they reflect the usual problems of text files.
b. Their utilization is basically foreseen as a LabVIEW tool, being incompatible with

any other analysis software or platform.
c. Files can grow a lot if you try to save uncontrolled data banks, like big multi-

dimensional arrays and so on.
The last point can be a very critical issue. Often the data size treated by an Application is
hidden by the apparent ease in which the diagram handles it: a simple array, for instance,
can grow to hundreds of Megabytes without any particular indication or problem. This
aspect is so transparent that risks can be under evaluated by the developer: in the case of
saving such an amount of data, very huge files can be abruptly created, causing slowness in
the machine response.
In conclusion use the first line of File Function if you have little data, in small or moderate
Applications, or to do initial tests of data saving of a new Application. Then consider using a
more sophisticated method for file saving even for moderate Applications and whenever
more control and care must be taken in saving data.

6.1.2 Owner’s file functions
The second and third lines (on Figure 20) provide a complete control of file writing and
reading which should be well understood. These functions are able to manipulate files as

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

461

you want: you can open, write/read data repeatedly and finally close. You can use these
function for every situations of data I/O to disc. You can decide:
- If the file is a text or a binary file;
- The data representation in the case of binary files;
- The number of characters/data elements to be read;
- The adoption of data streaming technique.

6.1.3 File Constants Palette
The upper right palette of figure 20 is the File Constant Palette. It is an important series of
tools useful for path definition and handling. Consider using them to create the correct path
to access the disc area in which files are stored (the whole path to the actual folder). In
particular the “Current VIs Path” function is extremely useful for getting the current path in
which the VI is acting: wherever you move the VI, on different machines also, the function
shows you the current and complete path to locate the VI. From there, with the strip and
building path functions, you can define your own path.

6.1.4 Advanced file functions
This is a very plenty toolkit with all sorts of functions: you can move within an (opened) file,
by positioning the “pick up head” wherever you choose, calculate file sizes, list directories,
create or destroy folders or files, and so on. These functions are not frequently used, but when
needed they are really useful. A typical use is the positioning within a file with Get/Set File
Position functions, which allows you to move in binary files like on a tape recorder. Some
experience is needed to use these functions; always start with little tests: create new, small
VIs to do the test and study the effects and the results. Then integrate the test VIs as SubVIs
into your final application. This process is the only way to learn and clarify the utility of these
functions kit. Since the functions are low level Functions, you can almost do anything on your
File System, even delete important System Files! They must be used carefully.

6.1.5 Text files or binary files?
At this point in our discussion, some time must been spent on the format. Text files are
usually preferred to binary ones, at least because when we open them with a text editor we
can see the contents. The same thing does not happen for binary files which are somehow
unreadable. A binary file can only be read by using the same procedure as when it was
written: the same data type must be declared when we read and the number of bytes of
elements must be input to the read function.
But what is the real difference between the two types ?
Consider that a file (binary or text) is composed of a sequence of bytes, groups of 8 bits on
the disk (independently from how the File System of the machine has fragmented them on
the disk). A single byte can have a value that, if translated into integer, goes from 0 to 255.
Well, a file which can potentially contain all combinations of the 8 bits within the bytes, i.e.
bytes which contain all values from 0 to 255, is called a binary file. On the contrary, if the
values are limited to a certain subset of the range 0..255, they are called text files. The subset
is a precise one: “allowed codes” cover all ASCII printable characters (form ‘space’ to ‘z’,
numerically 32..127 code range) and some other “control character” which indicates line or
page feed, carriage return etc.. Under certain points of view there is not a big difference
between the two categories, but practically the difference is enormous.
The following table reports some hints concerning the possible choices for file saving:

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

462

Table of suggestions for choosing format of files
Use Text files when Use Binary files when

You do not have big amount of data to be
saved.

The amount of data starts to be significant.

You want to have the “feel” on the data just
saved by watching them.

Your utilization of data in the future is for
analysis or archiving purposes.

You are not concerned about space on the
disc.

You are concerned about saving space on
the disc: Binary files are extremely more
compact than Text ones.

You don’t have to worry about speed in data
writing or reading, since text file operations
are slow.

You are concerned about speed: if you need
to get data quickly and save on disc “into
the loop” Binary files is the only solution,
often accompanied with the “data streaming
technique” (see later).

You don’t have to worry about machine
overload: text files are somehow a heavy
process for it.

You are concerned about machine overload:
writing in binary is a light process and no
data conversion is needed.

You do not care about precision for saving
numerical data: suppose you have a 15
significant digits number to be saved. When
saving it in a text file you de facto print it on
the disc by using a character representation.
If you, by mistake, ask for 5 significant digits
to be saved, the remaining 10 digits are
definitively lost.

You are interested in definitively storing
data with the original precision or the
original conditions (i.e. all data must be
saved “as they are”).

Your data must be read from other
programs, different machines or different
Operating Systems.

Your data must be read in the same
environment (LabVIEW); some extra work is
needed as a specifically-written program
into a different Language (C, C++, …), even
on a different Operating System, in order to
read binary file on other platforms.

Table 1. A compendium of indications for steering the choice of a correct file format.

Binary files seem to be more complicated or difficult to manipulate. Well, it is not so: they
are quite simple and easy to understand. Consider the following example. We have the
following eight numbers (as signed integers) to be saved:
667283 -134452 235567 7894451 -5569852 7789663 -3363331 -445874
Each of them, to be stored in memory, needs a 32 bits Integer (I32) representation and takes
4 bytes in the computer memory.

• If we save them into a Text file, we need approximately 67 bytes: each digit is, in fact,
transformed in an ASCII character (1 byte) and we do not save numbers but their
representation in a character writing. It is like printing a sheet of paper and saving it

on the disc. The text files need some control characters like ‘tab’ to move from one
number to the next, ‘EndOfLine’ to end the rows and so on.

• If we save them into a Binary file, the effective file size containing data is 32 bytes: 8
numbers times 4 bytes each, simply the dump of the memory onto the disc. Negative
numbers are already taken into account thanks to the two’s complement representation.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

463

Try to figure out how they work: take some time before deciding and do not make rapid
decisions which usually end up in text files.

6.1.6 TDMS Files
In recent years, starting from version 7, National Instruments introduced the LabVIEW
Measurement Files format (LVM files). We already cited this format while talking about the
Basic Files Functions: it is a text file well organized to record on disc “sessions” of data
taking under the form

[Date-Time] | [X] | Channel 1 | [Channel 2] | …
Where ‘[]’ means optional fields. The format and storing parameters (name, paths,
automatic naming,…) can be set up by Express VIs. A prefix header can be optionally
recorded to store further descriptions.
A few years later the TDMS format was introduced, together with the TDM Streaming palette
(the bottom-left palette in figure 20). TDMS File format is an evolution of LVM, recorded in
binary mode and optimized for search and access thanks to a specific indexing technique. The
details of how the files are stored or indexed are transparent to the developer, who can take
advantage from the intrinsic structures and handling related to this format. TDMS is a
LabVIEW “internal” format, in the sense that it is conceived as an efficient method for data
storage and retrieving in LabVIEW environment: you can save large amounts of data,
perform data streaming and classify your data into different channels and categories. This
choice can be particularly useful in several situations in which you have a consistent amount
of data and/or numerous sources of it (i.e. several channels which produce data).

Fig. 21. An example of the TDMS file Viewer in which some data is shown.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

464

In the Figure 21, two screenshots of the “TDMS File Viewer” (the bottom-left VI in the TDM
palette of figure 20) are shown. I’m indicating here two possible presentations of data: table
form and graph form. You can imagine that the number of channels visible as in the top
table can increase, or the number of curves on the same graph could increase as well. It
depends on how you organise the data saving operation in your writing VI and on how you
access to their view by using the TDMS File viewer: this function works as an interactive
browser that you can expressly open or programmatically open from a VIs.

Fig. 22. Portion of file writing VI which saved data of figure 21.

In the Figure 22 you can see how the data are saved into a TDMS file: two writing
operations are used (“TDMS Write” to create the two Channels “Voltage” and “Current”),
while the same Group Name is used (coming from “Polarization” string set). Note that
before writing the file, a series of auxiliary data is stored by using “TDMS Set Properties”
function: it is a very useful feature that allows you to store a header on the file whose format
is completely custom. The parameters, conditions and serial number of the device under test
are written in the header in the test bench Application chosen for this example.
In conclusion: if you have a consistent amount of data that must be visible internally in
LabVIEW, without any doubt use TDMS Files. In the case you need to extract data and use
it in a different environment (i.e. convert to ordinary binary or to text file) it is easy to write
a conversion program.

6.1.7 Configuration and Datalog Files
We have yet to speak about two special categories of files: Configuration files and Datalog
Files.
Use Configuration Files if you need to store internal characteristics or parameters of your
VIs or Application: examples are initial setup of a panel or of a bench instrument, different
configurations for instruments or for any connected hardware; choices of taking or not data
from certain channels of your field and so on. Configuration files resemble the old “.ini”
files in Windows: they are text files in which a series of “Sections” are listed and, within any
“Section”, information is identified using “Keys”. One advantage is that they can be opened
in a text editor and, if needed, edited by hand (even if this is not a suggested action) and one
can always keep track and “understand” what is written. One disadvantage is that, as the
number of Keys and Sections grows, writing and reading the file can start to be tedious
because you need to expressly call the “Read Key”, “Write Key” or similar VIs for every
Section and Key you have. It is convenient to organize the Configuration File reading and
writing process well:

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

465

1. Perform Read and Write on Configuration files in specifically written SubVIs; it is not
convenient to implement this aspect into the Main VI.

2. Carefully chose the Sections (how many and their names) to be used and Keys within
sections.

3. If possible use automatic naming in For Loops for assigning names to Keys or Sections.
Automatic naming can be formed by a base (i.e. “Voltage_”) followed by the index of
the loop iteration

Fig. 23. Example of Configuration File write using an iterative technique and its result.

To have an idea, the Figure 23 reports the code to write a DBL floating point array to a
Configuration File in iterative mode, together with the resulting file. All types of
information needed by your application can be collected in configuration files: integers,
doubles, Booleans, etc., even Variants data type. One should decide to use Variants when
the amount of data to be stored and retrieved is quite consistent. Variants are stored as a
series of codes and strings, where the former classify the type of data contained in the latter.
Information can be reconstructed using the Variant as data type to be read from the file and
finally by reconverting Variants to the original type using the “Variant to Data” function.
Using Variants allow you to quickly write and read on configuration files, but the result is
somewhat incomprehensible at a first glance.

Fig. 24. Example of the aspect of a Configuration File using a Variant writing.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

466

Use Datalog Files when a series of data organized as “Records” must be saved. Datalog files
are a special kind of binary files basically conceived for storing Clusters contents: suppose
you want to save a group of inhomogeneous data, like the content of a cluster composed by
a timestamp, some Boolean, integers, strings, and so on, and several times during your
execution. Datalog file makes a single Record at every saving action and stores it in this
way. Single records can be accessed when reading back the Datalog file, by specifying its
index: the first, second record etc.. Moreover the record position can be specified before
reading, avoiding a sequential access which is usually slow.

Fig. 25. Example of use of a Datalog File. The cluster is transcript as records in the file. The
resulting file contents (which is binary) is also represented.

6.1.8 The concept of the “Data Streaming”
A very important concept which is typically ignored by new or inexperienced LabVIEW
developers is the Data Streaming. If an Application produces a flux of data whose duration
in time or size is long, the Data Streaming technique is almost a “must”, to save data. New
developers tend to accumulate data internally in the VIs, under the form of arrays of
different sizes: then, at a certain moment in the program, they “save” these arrays into some
files. This is not a good solution for several reasons:
- First, accumulation of large amounts of data in some structures of the VI is not

convenient for the machine overload it can create, in particular regarding the LabVIEW
Memory Manager.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

467

- Second, if the program halts or is subject to an internal error which induces the VI to
abort, all accumulated data can be corrupted or is lost.

- Third, since accumulation memory cannot be infinite, you need to stop some processes
to dedicate machine time to write the data in a shot: the writing time can have,
unfortunately, a duration of several seconds in the case of a large amounts of data to be
saved. This situation can be attenuated with the correct handling of parallel processes,
which constitute another important aspect of good programming in LabVIEW.

For all these reasons, in similar cases, use Data Streaming. The concept is simple and is
based on the following processes:
1. open your data file
2. enter a loop which takes data and write immediately into the file, usually in binary

format
3. stop the loop when finished and close the data file
4. check for errors.

Fig. 26. Example of a simple Data Streaming implemented with a text file. (From National
Instruments 2009-Core 1 Course presentation slides, Lesson 6 “Managing Resources”).

In the Figure 26 the simplest data streaming technique is reported, in this case made by
writing on a text file. Such a structure must be implemented as an independent one with
respect to the rest of a VI, like parts which operate on the User Interface, for instance. The
next paragraph will present some complex structures and Design Patterns which help for
such a kind of design.

6.2 A conclusion concerning the files
Filing in LabVIEW (and in all programming languages) is a very extensive topic which has
lots of implications. A mistaken choice in file format or recording technique can cause
serious problems in using the data stored in your DAQ systems. It often happens that a
series of conversion programs (under the form of several new VIs in the case of LabVIEW)
must be written just to convert data files in order to make them compatible with some
analysis system. A list of suggestions follows:
Suggestion 1) Plan carefully regarding your file format before starting to write code abruptly.
Suggestion 2) Decide, on the basis of the amount and type of data to be stored, how many
files you need to write “in parallel”: LVM files, Configuration, TDMS, Datalog, actual row
Data Files, analysed results, etc..
Suggestion 3) Choose carefully the files locations (folders) related to your application, and
use an automatic naming technique for data files which is based on a correct archiving logic:

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

468

for example a basic file name followed by date and time of your DAQ and a standard file
extension.
Suggestion 4) Decide about the format for your data file: text file or binary ones. Both of
them have advantages and disadvantages. A binary file is compact, rapid to write and read,
and reports the actual values taken during DAQ; if correctly formatted, it can be read under
different platforms too, even if this is an advanced task. Text files are nice because they are
comprehensible, but take more time to be written and read, they need more space on the
disc and limit the numerical precision because you cast your native precision by an “internal
printing” operation.
Suggestion 5) Save files in streaming mode using an adequate structure if the DAQ or
related processes are long term processes. Avoid accumulating large amounts of data and
save them at the end of your process or from time to time by interrupting your DAQ.

7. Structures and parallel programming in LabVIEW

Structures in LabVIEW include For and While (Timed or not) loops, Case and Event structures
and Sequences (flat or staked). Most beginners use structures in an incorrect way: they
superimpose one structure over another by adding pieces which try to satisfy the increasing
demands in the features of the application under development, again without any planning.
First of all try to avoid using the Sequences Structures. All LabVIEW programs can be done
without them, and data dependency can fully substitute the sequencing of operations in
most cases. Sequence Structures must be used in very restricted cases, when, for example,
stringent timing issues are present during, suppose, a dialogue with an instrument.
Sequences Structure is in contrast with the data dependency paradigm typical of LabVIEW,
and must be used expressly to circumvent it when necessary. They tend to hide code in
different frames, generating poor diagrams not clearly understandable.
Bad usage of structures implies several problems and under-utilization of LabVIEW system
features. LabVIEW is an implicit parallel environment in the sense that it is designed to
generate parallel and optimised code without particular intervention of the developer: but
the latter must know how to arrange structures in order to induce LabVIEW to work
parallel.
A last point is that Structures are related to the so-called Design Patterns techniques: this
topic is a very important point which is expressly studied in several official LabVIEW
courses (from Core 1 on).

7.1 Parallel processing issues
Putting more than one loop structure on the same diagram, automatically generates parallel
code in LabVIEW, if no data dependency exists among the loops. Loops (While or For, but
the usefulness is basically on While ones) cannot be interconnected to one another with wires,
because this would create a data dependency, and the second loop should wait for the end of
the previous to start its execution. Even transmitting a “STOP” flag needs a specific technique.
LabVIEW compiler optimizes code in order to be executed in separate threads of the
Operating System or, if it is the case, in separate sub-processor of a multi-core system.
Similar precautions must be taken to transmit data among parallel loops, and for this aspect
several synchronization VIs are available (see the “Synchronization Function” palette). We
cannot do a large excursus here, but I want to show you some general principles in order to
encourage you to continue in carefully study and learn about these techniques.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

469

Fig. 27. Example of a very simple parallel structure. The Stop signaling must be passed via
Local Variable (as in the case of figure), Global or Shared Variable or Propery node (on Value
item). (From LabVIEW 2009-Core 1 course presentation slides, Lesson 9 “Using Variables”).

Consider the example in Figure 27 the two loops are timed using the metronome function
and the stop signal is sent via local variable. This is the simplest way for implementing
parallel processing.
If you need to send data from one loop to another, which is the case for some particular
design patterns, you must use Synchronization Functions.

Fig. 28. Two parallel processes which exchange data via Notification Functions and control
the end of process using the “Running” flag.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

470

By looking at the Figure 28, several techniques for parallel processing and data exchange are
presented:
1. The loops exchange information using Notification VIs Functions.
2. Notifiers allow you to pass a single data to the receiver.
3. The data can be of any type: here a cluster containing two enumerated types is passed.
4. You can ask to create “the same notifier” (whose name here is “ModuleCommand”):

it will be created only once by the first Create Notification Function which is
executed. Using multiple initializations with the same notifier name adds clarity to
the diagram.

5. The upper loop signals the action of the user that has been taken into account by the
Event Structure, by writing the “new value” of the notified variable (the cluster) into the
notifier reference.

6. The lower loop receives the data and processes it. You have the possibility of tracing, in
the lower loop, if any data has arrived, thanks to the “timeout” technique: the Boolean
coming out from the notification receiver (lower loop) is the timeout flag.

7. Both loops need no timing: the upper one waits for an event from the users that is
processed by the Events Structure (typical way of functioning for this structure); the
lower loop uses the timeout of the notification function as internal timing, and
performs different operations in the case the notifier has sent a data or not (timed out or
not).

This technique is an application of the so called “Master-Slave Design Pattern”, in which a
short information, like a sort of flag, is sent from a “Producer” loop to alert a “Consumer”
loop to do something.
An extension of this technique is the “real” Producer-Consumer Design Pattern in which
Queues Functions are used instead of Notification Functions. Use Producer-Consumer
design patterns, when more data must be sent from an acquisition loop to a data treatment
loop, for example. Using notifier can cause data to be lost since it can treat one item at a
time: queue functions, on the contrary, allow you to send streams of data from a producer
loop to a consumer loop without losing any.
In the figure 29 Data Consumer is the bottommost loop. It is a state machine which
“knows”, from outside, if a Data Acquisition Process is in action or not.

• In the first case it provides to extract data packets from the queue, analyse and write
them into an archiving data file using data streaming on a binary file; it finally sends
formatted events (I mean physical events) data to a second queue for event monitoring
purpose: a third loop (not represented in the figure) provides for this extraction and
online presentation.

• In the second case it just does a monitoring of the incoming events.
This example is extracted from an actual Data Acquisition System for the “RD51” research
activity at CERN (Geneva, Switzerland), on a Data Acquisition System for MicroMGas
particle Detectors. This example carries several technicalities into it: two queues are used,
one for UDP (raw) data and the second for pre-analysed data (built physical events). A
Producer-Consumer design pattern is used where the consumer features a state machine
which handles Run status on the experiment: state machine stays “idle” if no Run is active,
and makes a series of operations (like initialization, file opening, flags settings,…) when a
Run is started. Then it takes data, analyse it creating actual physical events and save it into
formatted, binary streaming file; and eventually sends events to the online monitor via the
second queue.

www.intechopen.com

The Importance of a Deep Knowledge of LabVIEW Environment and
Techniques in Order to Develop Effective Applications

471

Fig. 29. A more complex example of parallel loops in a “Producer-Consumer” Design
Pattern.

Using design pattern is extremely advantageous for a lot of reasons:
1. It is clear at the beginning of the development operation, how to implement things in

the VIs.
2. Design patterns feature the logic and the “place” for implementing all that you need in

an Application: from User Interface which gets commands from the User and formats
information toward the “Command Consumer” which actually executes the command,
to data getting and distributing onto secondary processes.

3. The design becomes clear and standard: a known framework helps to insert code. You
already know where and how to process an User command, for instance, where to get
data or write a file.

Definitively the work can be well organised in a rational, standard way. Future extensions
of code can be added easily, but also reusing of code in new applications, since the
framework is basically the same.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

472

8. Conclusions

This Chapter does not want to substitute official LabVIEW courses, but, on the contrary,
pushes in the direction of encouraging following some course, at least Core 1 and Core 2 if
you are a beginning programmer. It is only a collection of considerations and suggestions in
the direction of improving the knowledge in what a developer should know as a minimum
to develop rational, well organized and effective Applications. Extending Applications in
the future, which is a common job for programmers, can be done without altering the
existant structure with the risk of obtaining a non effective solution. Remember that it is not
convenient that diagrams go over the screen size, for clarity and readability: if that is not
important make sure that the Diagram goes out of the screen in one direction only;
horizontal direction is preferred. If you are starting to go over the screen, stop for a while
and reorganize by creating more SubVIs, compacting structures and wiring and so on.
Avoid excessive usage of local and global variables and sequence structures, since these
features overcome the data dependency paradigm.
Many other suggestions can be made. A lot of other topics exist in LabVIEW programming,
from Active-X usage to priority setting of SubVIs, from extensive use of Variants to complex
data structures, from interaction of machine with the external field (via specific hardware) to
Instrument Driver designing techniques. This list can be basically infinite.
I hope this work can stimulate new or inexperienced developers in adopting a well-planned
strategy for development their job, in the direction of creating effective Applications which
are finally understandable, reliable and scalable. This strategy starts from a good knowledge
of the language features that can only be reached by a careful study before and during
LabVIEW development process. In this way a complete experience can be accumulated
which make, at the end, a very capable LabVIEW programmer.
In the end I would like to conclude with a final remark. The Figure 16 is an indication in
understanding to which level of difficulty a diagram can arrive, when the developer thinks to
“know everything” concerning LabVIEW. Several people, in particular if coming from the
scientific environments, are convinced that just by giving few spots on the LabVIEW
development system they are capable of doing everything: this is a big mistake, and anyone
who wants to develop effective Applications in LabVIEW should have the ability to stop at a
certain point and take the time to study LabVIEW.

9. References

Bishop R.H. (2009) LabVIEW 2009 Student Edition, National Instruments
Essic J. (2008) Hands-On Introduction to LabVIEW for Scientists and Engineers, Oxford Press
Johnson G. W. (1994) LabVIEW® Graphical Programming, Mc Graw Hill
National Instruments (2010) LabVIEW Core 1 Course Manual and presentation slides, ©National

Instruments
National Instruments (2010) LabVIEW Core 2 Course Manual and presentation slides, ©National

Instruments
National Instruments (2010) LabVIEW Core 3 Course Manual and presentation slides, ©National

Instruments
Sumathi S., Surekha P. (2007) LabVIEW based Advanced Instrumentation Systems, Springer-

Verlag
Travis J., Kring J. (2004) LabVIEW for everyone, Prentice Hall

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

Edited by Dr. Silviu Folea

ISBN 978-953-307-650-8

Hard cover, 472 pages

Publisher InTech

Published online 01, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book consists of 21 chapters which present interesting applications implemented using the LabVIEW

environment, belonging to several distinct fields such as engineering, fault diagnosis, medicine, remote access

laboratory, internet communications, chemistry, physics, etc. The virtual instruments designed and

implemented in LabVIEW provide the advantages of being more intuitive, of reducing the implementation time

and of being portable. The audience for this book includes PhD students, researchers, engineers and

professionals who are interested in finding out new tools developed using LabVIEW. Some chapters present

interesting ideas and very detailed solutions which offer the immediate possibility of making fast innovations

and of generating better products for the market. The effort made by all the scientists who contributed to

editing this book was significant and as a result new and viable applications were presented.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Riccardo de Asmundis (2011). The Importance of a Deep Knowledge of LabVIEW Environment and

Techniques in Order to Develop Effective Applications, Practical Applications and Solutions Using LabVIEW™

Software, Dr. Silviu Folea (Ed.), ISBN: 978-953-307-650-8, InTech, Available from:

http://www.intechopen.com/books/practical-applications-and-solutions-using-labview-software/the-importance-

of-a-deep-knowledge-of-labview-environment-and-techniques-in-order-to-develop-effecti

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

