
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

0

Extending LabVIEW Aptitude for Distributed
Controls and Data Acquisition

Luciano Catani
Istituto Nazionale di Fisica Nucleare (INFN) - Sezione Roma Tor Vergata

Italy

1. Introduction

LabVIEW is probably the most comprehensive environment for setting up a control/data
acquisition system (CS) for a scientific/laboratory experiment. It provides ready to use
solutions for both control and data acquisition for a large number of equipments and for the
analysis of various types of data.
In the scientific environment, especially, these features are particularly useful because CS are
frequently developed and managed by scientists willing to spend more time in operating
their experimental apparatuses than in maintaining software for controlling components and
reading instruments outputs.
In a scientific laboratory, or a medium/small experimental apparatus, typical selection of
equipments is unavoidably heterogeneous: scopes, digital I/Os, motors, digital cameras and,
quite often, a mixture of new and relatively old technologies for connecting devices to the
computer managing the system.
Moreover, CS for scientific experiments are quite often far from being developed once forever;
instead they are continuously updated by replacing and/or introducing new components in
order to follow the evolution of the apparatus.
LabVIEW easy to learn graphic programming and its large number of instrument drivers and
libraries for data analysis and graphical display, successfully fulfill the above requirements.
When the scientific apparatus became larger and more complex a single computer may not
be sufficient for the management of all the components. Additionally, in some environment
the equipments need to be operated from remote or it might be preferable to separate data
acquisition from on-line analysis in order to optimize the performances of both.
In other word the single computer CS needs to be upgraded to implement a distributed control
system (DCS).
LabVIEW provides quite a number of solutions also for the development of DCS by offering
tools for remote control of Virtual Instruments (VI) and sharing of data across the network by
means of dedicated LabVIEW components that allow communicating with remote computers
and devices.
Developers can easily find ready to use solutions for their needs among these resources
although, in some cases, they might either lack in flexibility or cannot offer the required
compatibility with all the software components of the DCS.
In these situations a communication solution for the DCS should be necessarily based on the
widely accepted standard protocols ensuring highest compatibility.

19

www.intechopen.com

2 Will-be-set-by-IN-TECH

There exist numerous possible alternatives. One such model is Microsoft’s component
object model COM(mscom, 2011) and its associated distributed component object model
DCOM which allows COM objects to run and communicate in a distributed manner. Also
from Microsoft is the .NET environment, supporting Internet-based connectivity between
components.
Another option is offered by the CORBA(corba, 2008) proposed by the Object Management
Group (OMG). CORBA is a software standard for component-based development that has
been quite successful among developers of DCS.
Yet another model is the Java-based proposal by Sun Microsystems, which encompasses basic
infrastructure such as Java Beans and Enterprise Java Beans and remote method invocation
(RMI) but also more ambitious solutions for interoperation of distributed intelligent systems
such as Jini(jini, 2006).
The aim of this paper is to present the development of a communication framework for
distributed control and data acquisition systems, optimized for its application to LabVIEW
distributed controls, but also open and compatible with other programming languages
because it is based on standard communication protocols and standard data serialization
methods. In the next Paragraph the LabVIEW tools for Distributed Systems and their field
of application will be briefly presented. In Paragraph 3 the general purpose communication
framework will be discussed, with particular attention to the problem of data serialization
and the definition of the communication protocol. Paragraph 4 and subsequents will discuss
in details the implementation of the communication framework in LabVIEW, focusing on the
development strategies and the solutions for achieving the performances required for this
field of application.

2. LabVIEW tools for distributed systems

LabVIEW offers a number of tools for transferring, via network, data between the components
of a distributed control/data acquisition system.
The Table 1 shows some solutions provided built-in by LabVIEW, a subset of the networking
features suggested by National Instruments for developing distributed control systems (Lima
et al., 2004). Common to all these solutions is the ease of implementation because they have
been designed to require very limited programming effort.
Shared Network Variable, DataSocket, VI Server, VI reference, TCP/IP and UDP
communication libraries and also interfaces to .NET and ActiveX are the main communication
tools offered by LabVIEW. They are powerful and well suited for many applications but, with
the exception of TCP/IP and UDP, are not flexible enough to allow the implementation of a
real communication protocol.
Shared Variable and Data Socket, for instance, basically provide data sharing across the
network, others (VI Server, VI reference) allow access to remote VI, with some relevant
restrictions in some cases, and their use is limited to LabVIEW environment.
In addition the LabVIEV Internet Toolkit includes a HTTP server and the possibility to operate
the VIs (Virtual Instruments, i.e. the LabVIEW applications or subroutines) as CGIs that a
client can invoke using the HTTP protocol to execute particular procedure on the server side.
This is a relatively flexible solution but offers low performances and limited features.
In conclusion it’s hard to find the best candidate for developing an open, general purpose
communication framework because the before mentioned solutions are either offering limited
features or performance, or they are proprietary so that, for instance, integration with the
control system of a nearby experiment or with a bigger apparatus, that could have been

400 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 3

Networking
Feature

Use Case
Programming

Required

Multiple
Writers/
Readers

Transmission
Delay

Transfer
Rate

Shared Network
Variable

Share live data with other
VIs on a remote computer,
or deployed to a target.

No
Many-to-

Many
Low High

DataSocket
Share live data with other
VIs on a remote computer,
or deployed to a target.

Yes
Many-to-

Many
Low High

Application
Control VIs and
Functions

Programmatically control
VIs and LabVIEW
applications across a
network by way of the
TCP protocol and VI
Server.

Yes
One-to-

one
Medium Medium

Remote Front
Panels on the
LabVIEW Web
Server

View and control a VI
front panel remotely using
LabVIEW or a Web
browser.

No
One-to-
Many

Medium Low

Web Services on
the Application
Web Server

Deploy LabVIEW
applications as Web
services.

No
Many-to-

Many
Medium Low

HTTP Client VIs

Build a Web client that
interacts with servers,
Web pages, and Web
services.

Yes
One-to-
Many

Medium Low

TCP VIs and
Functions

Communicate with an
instrument that uses a
protocol based on TCP.

Yes
One-to-

One
Medium High

UDP VIs and
Functions

Communicate with a
software package that uses
a protocol based on UDP.

Yes
One-to-
Many

Low High

Table 1. LabVIEW most relevant communication features (excertp from Communication
Features table from LabVIEW on-line manual).

developed with different software solutions, would be hard to manage or even impossible.
On the other side, an example of requirements for the communication framework is given
by the list of communication modes it should allow, like for instance the four cases shown in
Fig.1.

The case 1 is the typical client/server model: a client application asks for data to a remote
controller and receives from it the required information that could be, for instance, the most
recent value of an I/O channel, the history of that value, a bundle of data of different types.
The case 2 is similar to the remote procedure call (RPC) model: a client application needs
to execute a subroutine or procedure on a device attached to another controller without the
programmer explicitly coding the details for this remote interaction. It could be the change in
the set point of a remote equipment, the execution of a measurement. etc.
For the above mentioned modes of communication a programmer can relay on the
predictability of type of data handled and on the limited set of action to be taken on the server
and client side. It that would have been the case, DataSocket or VI Server will probably solve

401Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

4 Will-be-set-by-IN-TECH

read cmd

set cmd

stream cmd

set cmd

data

OK

set cmd

data stream

middle layer

Client App 1

Client App 1

Srv App 1

Srv App 1

Srv App 1

Srv App 1

Srv App 1

Srv App 1

Client App 1

Client App 1

Client App 1

Client App 2

Client App 1

Client App 2

11

11

case 1

case 2

case 3

case 4

Srv App 1

Srv App 1

Fig. 1. Modalities of interaction between components of DCS to be supported by the
communication framework.

the communication problem.
The case 3 and the following case 4 introduce a more elaborated way of interaction. In the first
one a request originated from a client application in turn requires an execution of a command
on the client side according to the response received by the remote unit. The case 4 extends the
example in case 1 to another modality of communication that is a continuous stream of data
from a server application upon request from the client.
These are just few examples but they are sufficient to confirm and strengthen the requirement
for a communication framework that should be based on a versatile and well established
communication solutions, to achieve high compatibility and, at the same time, it should allow
information to be transferred as different format, i.e. requests or commands, responses and
data of different type.

3. A general purpose communication framework

When compatibility and flexibility is an issue, TCP/IP and UDP socket communication might
be the natural choice. Network socket communication libraries are available for all main
programming languages and the simplicity of the protocol ensures a wide compatibility.
Indeed, LabVIEW provides tools for interfacing with other devices on a TCP and UDP
network with standard socket communication protocol by means of TCP/IP and UDP VI and
functions.

402 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 5

The set of functions LabVIEW provides for TCP/IP and UDP communications, similarly to
other implementations of network socket libraries, supports few elementary operation: open,
close, listen, read and write.
The first three are used to establish connections between client and server, the last two for
transferring data in the form of buffers of given length (VI in the Networking/TCP&UDP
section of LabVIEW examples show some possible implementations of network socket
communication).
If data to be transferred is not as simple as either a string of characters or an array of bytes, the
communication framework should be equipped with tools for packaging and parsing data,
regardless their type, size and complexity.
This process, known as serialization, converts any complex data structure into series of
bits that can be easily transmitted across a network connection link and later restored in
the original or equivalent form. This result is achieved by adding some kind of descriptor
(meta-data) to the payload. Hopefully, the impact of meta-data on the size of serialized data
structure and the coding/parsing execution time on the overall data throughput should be
limited.
Different types of serialization strategies can be used to flatten object(s) into a one-dimensional
stream of bits suited for their transmission by means of socket communication functions.
XML (xml, 2000) (eXtensible Markup Language) is a popular way of coding data especially
when interoperability and compatibility between platforms and programming languages is
an issue. Client/server communication protocols based on this coding exist, among these the
more interesting are SOAP(soap, 2007) and XML-RPC(xmlrpc, 1999). The latter it’s basically a
remote procedure call(rpc, 1988) that uses HTTP, or other TCP/IP and UDP protocols, as the
transport and XML to serialize data allowing complex, and relatively large, data structures to
be transmitted and then un-marshaled at destination.
Services provided by the server are called methods that a client can invoke by issuing method
Call to the server. The latter, in turn, replies sending the result in the form of method
Response. Fig.2 shows an example of messages passed between a client and a server in the
XML-RPC protocol. They include header with declarations and methodCall or method
Response fields.
The methodCall contains, enclosed with the correspondent tags, the name of the method
to be executed on the server side (methodName) and optional parameters (params). The
methodResponse, being the reply message from the server to the client contains, enclosed
by the (params) tag, the data produce by the execution of the methodName.
XML-RPC can be easily implemented in LabVIEW by using the before mentioned socket
communication libraries; it will be discussed in details in the following Paragraphs.
Socket communication sessions are defined upon the couple IP address and port number that
are chosen, on the local and remote computer, for that particular session. That means in
a distributed control system with several computers the local application willing to send a
command or receive data to/from another application running on a remote computer should
be informed on the IP address and the port number that is used by the remote application
for listening incoming connections, or equipped with instruments permitting to obtain this
information from some kind of repository.
Actually, from the client application point of view, i.e. display consoles, measurement
application etc. the DCS should better be seen as a distributed set of components: actuators,
diagnostic components, equipments etc. and client applications could be unaware of their
physical location or the details of the communication protocol.

403Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

6 Will-be-set-by-IN-TECH

POST / HTTP/1.1
User-Agent: LabVIEW (XMLvRPC)
Host: svr1.dummy.org:12000
Content-Type: text/xml
Content-length: 127

<?xml version="1.0"?>
<methodCall>
 <methodName>get_device_name</methodName>
 <params>
 <name>all</name>
 </params>
</methodCall>

HTTP/1.1 200 OK
Connection: close
Content-length: 312
<?xml version="1.0"?>

<methodResponse>
 <methodName>caller</methodName>
 <params>
 <Array>
 <Name>served elements</Name>
 <Dimsize>2</Dimsize>
 <String>
 <Name>String</Name>
 <Val>cam_01</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>cam_02</Val>
 </String>
 </Array>
 </params>
</methodResponse>

1

2

Fig. 2. methodCall (left) and methodResponse (right) in the XMLvRPC protocol.

In order to be addressed uniformly components need to be integrated in a standardized way
such that the communication framework can be developed on top of a generic component
model.
It means the network socket communication libraries should be the basis for a general purpose
communication framework, a middle-layer between the top level with display or client
programs and the front-end layer with device controllers, providing a simplified access to
data and commands transfer across the network by hiding the transport layer implementation
details.
In the next paragraphs definition of the middle layer and data serialization will be discussed
in details.

4. Distributed controls with XMLvRPC

Although it has been basically developed for web services, XML-RPC provides a number of
features that fit with the requirements of a simple and flexible communication framework for
the distributed control system under development. In particular XML-RPC:

• uses a well established human readable data serialization

• can be easily implemented in LabVIEW by using the standard TCP/IP and UDP libraries

• allows a good flexibility in defining the communication between client and server

• offers high compatibility having a large number of implementations with different
programming languages

A communication protocol named XMLvRPC, based on XML-RPC and optimized for
LabVIEW distributed controls, was introduced by the author in a previous paper (Catani,
2008).

404 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 7

4.1 Client/server communications

The main components of the XMLvRPC protocol are the XMLvRPC_Server.vi and XMLvRPC
_Client.vi. Fig.3 schematically shows an example of a data request from a client application to
a XMLvRPC server running on a remote controller.
The client application calls the XMLvRPC_Client.vi providing the TCP socket information that
identify the server side, the remote method to be invoked and optional parameters. The
XMLvRPC_Client.vi encode the information as a standard XML-RPC call and send it to the
server specified (1).
The XMLvRPC_Server.vi extract the methodName and call the correspondent VI providing
"as it is" the information enclosed by the params tags in the methodCall (2). The
VI that implements methodName is instructed to parse the data in params; it executes
its task accordingly and replies to XMLvRPC_Server.vi that encode the information in a
methodResponse that is finally returned to XMLvRPC_Client.vi (3).
As final step the XMLvRPC_Client.vi outputs to the calling application the content of params
enclosed in the methodResponse.
At this point XMLvRPC shows a first difference respect to standard XML-RPC.
While the latter always assumes, at least so far, that params returned from the server will
be directly used by the calling application, XMLvRPC allows the XMLvRPC_Client.vi to
dynamically call another application, different from the one that issued the methodCall,
for handling the data received from the remote server.
This is possible because, similarly to methodCall, also methodResponse includes a
methodName field for specifying the application (a LabVIEW VI, in this case) that must be
invoked to handle the enclosed data.
For this purpose, a number of different solutions can be implemented according to user’s
needs: all method.vi can be either pre-loaded at start-up to optimize execution time or loaded
when called and released after execution or optionally cached in memory. Since method.vi are
programmatically loaded and run, this also means that when a new method is added to a
server (similarly on a client) the server source-code doesn’t need to be modified to include
the call to this new VI. It will be sufficient to copy the VI that serves this new method to the
directory where the server XMLvRPC_server.vi searches for the method.vi implementing the
particular methodCall requested from the client.
This feature simplifies implementation of new methods: once the client and the server side
routines (i.e. LabVIEW VIs) of the method have been developed, they just need to be copied
into the specified directories to be immediately available to the control system.
Fig.4 provides more information about the XMLvRPC_Server.vi by showing a portion of its
block diagram where the main steps of execution are presented.
Let assume that during phase (0) the server has been listening for connection requests. When
it finally established a connection after a client request, in (1) the XMLvRPC_Read_request.vi

XMLv
 RPC
 Server

get
 elem
 ents

XMLv
 RPC
 Client

<methodCall> <methodResponse>

svr1.dummy.org:12000TCP socket

get_elementsMethod Name

callerMethod Name

allParams

device1, device2, ...Params

1

3

4

2 <params>

Fig. 3. Main components in a XMLvRPC client/server communication.

405Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

8 Will-be-set-by-IN-TECH

10 2 3 4 5

error

Connect.
ID

Fig. 4. Portion of block diagram of the the XMLvRPC_Server.vi showing the execution of the
server loop.

receives the methodCall from the client and parses it, looking for methodName and params.
The methodName is then used (2) to find out the full path of the VI that serves that particular
method, that is expected to be stored in a dedicated directory with the other methods available
for that particular server. The full path allows to dynamically load and run the target VI with
Call by Reference Node.
This solution simplifies very much the server’s structure. Methods don’t need to be placed
directly on the block diagram provided they all have the same connector pane because the
Call By Reference Node requires a strictly typed VI refnum.
Fortunately this isn’t a severe limitation. In fact, since data provided as input for the method
execution are serialized onto the params string of the XML coding, for VI implementing any
of XMLvRPC methods, basically, only one input connector (a String control) is sufficient.
Similarly, data produced by the methods, either a single value or a complex data structure,
are returned from a single output connector.
In the following paragraph it will be explained why a Variant indicator is used as output
instead of a String data type. At this point it is sufficient to mention that Variant data do not
conform to a specific data type allowing a program to pass it from one VI to another without
specifying what kind of data type it is at compile time.
In LabVIEW, variant data type differs from other data types because it stores the control or
indicator name, the information about the data type from which was converted, and the data
itself, allowing to correctly convert the variant data type back to the original or to another
one.
As for the input connector, the Variant allows methods VIs to output any type of data, or
combination of thereof, after the Call By Reference Node.
For that reason the XMLvRPC_Server.vi is a generic server for requests issued by clients and it
doesn’t need to be specialized for a particular controller, i.e. for a particular set of tasks to be
executed or components to be controlled, because the methods are not statically linked subVI
calls. The VIs implementing the methods only need to be available at run time, ready to be
loaded and executed upon request of the remote client.
Block diagram of XMLvRPC_Client.vi is even simpler, as shown in Fig.5 (next page).
In conclusion XMLvRPC client and server are based on four symmetric functions.

406 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 9

1 2 3 4 5

Fig. 5. Block diagram of the the XMLvRPC_Client.vi.

The VIs implementing these functions are, on the server side, XMLvRPC_ReadRequest.vi
and XMLvRPC_WriteResponse.vi, on the client side, XMLvRPC_WriteRequest.vi and
XMLvRPC_ReadResponse.vi.
These VIs, depending to their specific function, perform coding or parsing of XML
request or response or network socket read or write operations. The block diagram of
XMLvRPC_WriteRequest.vi is shown as example in (Fig.6 next page).

4.2 Data serialization

Before going into details of data serialization for XMLvRPC, it should be noted that XML is
not the unique choice for providing a human-readable serialization of a given data structure.
Another option for text-based serialization is, for instance, JSON(JSON, 2009) derived from
Java Script syntax and, as well as XML, well supported from many programming languages.
Compared to XML, JSON is more lightweight though, probably, a bit less readable.
Similarly to XML-RPC, a remote procedure call protocol based on JSON encoding has been
proposed with the name of JSON-RPC(JSONRPC, 2009). The XML-RPC methodCall and
methodResponse examples shown in Fig.2 would translate to JSON-RPC as the following:
Request from Client: {"jsonrpc": "2.0", "method": "get_elements",

"params":[all], "id": 1}

Response from Server: {"jsonrpc": "2.0", "result": ["cam_01",

"cam_02"], "id": 1}

Clearly JSON coding, being less verbose and more compact, provides a clear advantage with
respect to XML when used for web services.
However, taking into account all the possible data structures that are routinely transferred
across the network in the case of distributed controls for scientific applications, neither XML
nor JSON can address the crucial problem for the final size of serialized data that is the coding
of large binary arrays that client applications may receive from some particular devices.
Typical example could be the read out of the buffer of a digital scope, consisting of few
hundreds of floating point values or, what’s worse, raw images produced by a digital
monochrome camera consisting of hundreds of thousand pixels, eight or more bits each.
In this case, the text-based serialization produced by either JSON or XML could be really
unfavorable because of the large number of single values to code and, especially, because of
the much larger size of the serialized data with respect to the original.

407Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

10 Will-be-set-by-IN-TECH

1 2

Fig. 6. Block diagram of the the XMLvRPC_WriteRequest.vi.

4.2.1 Binary arrays management

Embedding of binaries in XML format has different options. Binary data, for instance, can
be enclosed with the XML CDATA tag, a special tag for processing data that isn’t going to be
parsed during XML processing.
Unfortunately, this method is not perfectly safe and might lead to messy results as, for
instance, when binary data contains the]]> sequence, which would indicate to the XML
parser the end of the non parsed data even though it’s not the end of the binary data.
Another option is binary encoding, a process that changes the binary bytes into ASCII bytes
using relatively simple algorithms. The two most popular binary encoding algorithms are
UUencode and base64(base64, 2006) encoding. They are commonly used when binary data
needs be stored and transferred over media that are designed to deal with textual data.
However, binary encoding introduces some processing overhead and, moreover, it expands 3
bytes into 4 characters, thus leading to an increase of data size by one third.
In other words, a well recognized and efficient standard for handling binary data in text-based
serializations is not available, at least so far, and since this work is aimed to developing a
communication framework for LabVIEW based distributed systems, it’s worth trying to find
a suitable solution among the LabVIEW features.
The natural approach to an efficient serialization of large binary arrays is to flatten the binary
data into characters and then handle the result as any other string in XML.
In LabVIEW this data transformation is provided by one of the flatten to string functions that
convert to string either variants or directly any kind of data type.
LabVIEW flatten to string transforms numeric arrays, as well as any other data type, to strings
of binary digits in big-endian form. In the case of arrays, the binary sequence of the data is
preceded by the record of the size, in elements, of each of the array dimensions.
Obviously, an arbitrary flattened data or data structure can be specified in an XML-RPC
communication as the content of a <String> element, i.e. its associated <Val> container,
as long as any special characters such as "<" are represented as entities ("<").
XML provides five pre-declared entities that can be used to escape special characters(xml,
2000) in an XML encoded document. This process is under the responsibility of the server

408 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 11

1 2 3 4 5 6 7

Fig. 7. Pre-processing of LabVIEW data converted to Variant to replace binary arrays with
correspondent flattened strings.

side application after encoding the data it has to send, while the client receiving the flattened
data will need to check the binary sequence to replace the escaped characters before it process
the flattened string to recover the original binary stream.
To preserve compatibility with standard LabVIEW XML functions, instead of introducing
modification in the XML coding to process binaries as previously mentioned, it is worth to
pre-process the LabVIEW data before it’s converted to XML by inserting a VI that inspects
the input data structure and replace, when it finds it, any binary array with the equivalent as
flattened to string.
Because the pre-processor, similarly to the XML coding tool, must be ready to accept any
possible type of data structures as input, the latter is first converted to LabVIEW Variants, that
sort of type-less container for any (simple or structured) data type that has been introduced in
Par.4.1. The Any-to-Variant function converts any LabVIEW data to this particular format that
can be passed between VIs and manipulated independently from the original data type.
A Variant can be unpacked, its content modified (adding, deleting or replacing data, for
instance) and at the end converted back to a "standard" LabVIEW data (numeric, text, array,
cluster, etc. or any combination thereof).
The pre-processor developed for XMLvRPC is a VI that recursively searches for nested binary
arrays into a LabVIEW data structure, previously converted into a Variant, and replace them
with the correspondent flattened strings.
Since the binary array(s) in the Variant structure is(are) flattened and coded into a XML string
the reduction in size, with respect to the non pre-processed data, can be significant especially
when size of the binary array is large.
In Fig.4 the XML_preR-processor.vi is executed just before the XMLvRPC_WriteResponse.vi that
serialize the LabVIEW data into an XML format and then send the MethodResponse to the caller.
In Fig.7 a portion of the block diagram of XML_preR-processor.vi is shown. The VI inspects the
input Variant (1) looking for either a Cluster or a Array data type. When a Cluster is found
the VI recursively inspects its inner elements (2). If, at some point, an Array is found (3), it’s
flattened to string (5), checked to escape special characters, and finally replaced to the original
Array (7) into the Cluster.
Later, the XML encoder will handle the string corresponding to the flattened binary array as
well as any other string type data, i.e. by encoding the data into a <String> element and by

409Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

12 Will-be-set-by-IN-TECH

HTTP/1.1 200 OK
Connection: close
Content-length: 450
<?xml version="1.0"?>
<methodResponse>
 <methodName>get_scope_data</methodName>
 <params>
 <Array>
 <Name>chan1</Name>
 <Dimsize>4</Dimsize>
 <DBL>
 <Name>data</Name>
 <Val>1.76365E-1</Val>
 </DBL>
 <DBL>
 <Name>data</Name>
 <Val>2.75606E-1</Val>
 </DBL>
 <DBL>
 <Name>data</Name>
 <Val>7.96079E-1</Val>
 </DBL>
 <DBL>
 <Name>data</Name>
 <Val>1.57441E-1</Val>
 </DBL>
 </Array>
 </params>
</methodResponse>

 <

 <
 <

 <
 <

 <
 <

 <

HTTP/1.1 200 OK
Connection: close
Content-length: 215
<?xml version="1.0"?>
<methodResponse>
 <methodName>get_scope_data</methodName>
 <params>
 <String>
 <Name>chan1(1)(DBL)</Name>
 <Val>¿¿¿¿?Ô58B‡FD?Ït∏‚wöE?‚^∫[tæ‹?‰G&’Y÷û</Val>
 </String>
 </params>
</methodResponse>

LabVIEW XML-RPC

XMLvRPC

¿ represents non-printable cahracters

Fig. 8. Binary arrays coding in XML and XMLvRPC.

enclosing the string as it is in Val tags (Fig.8)
As consequence, compared to standard XML, the quantity of bytes to be transferred on the
network is very much reduced, overhead is almost negligible and the throughput of the
communication protocol become compatible with the requirements of a control system.
If considering, for instance, XML coding of a data structure (e.g. a LabVIEW cluster) that
includes a 640x480 2D-array of unsigned-bytes, a typical pixels map of a raw image produced
by a CCD camera, the reduction in size obtained by applying the pre-processing just described
can be a factor 100 or more with respect to standard XML.
It should be mentioned that development of the XMLvRPC’s pre and post-processor has been
significantly simplified by complementing the LabVIEW functions with the OpenG(Jim Kring,
2003) LabVIEW Data Tools library providing a number of useful functions for manipulating
Variants.
Fig.9 presents the execution time in ms for the pre-processing and post-processing VIs as
function of the size of the input array. The latter is a 2D-array of unsigned-bytes with equal
sizes in both dimensions. In Fig.9 values in abscissa are the (equal) dimensions of the 2D-array.
Since pre and post processing are executed separately by the two partners in the
communication process (data sender does pre-processing while receiver post-processes data
received), their contribution (green and light blue areas) to the total time budget (blue) has
been evidenced.
Total execution time, well below 10 ms even for large binary arrays, is comparable to the
typical time needed to transfer the same amount of data through the network (from few to
several tens of milliseconds).
It must be noted that when a LabVIEW binary array is flattened into a string, some relevant
information about the original array is lost. As consequence reconstruction of a binary

410 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 13

0.531
0.946

1.41

2.12

8.68

ex
ec

u
ti

on
 t

im
e

(m
s)

0

1

2

3

4

5

6

7

8

9

2D-array size

0 100 200 300 400 500

Pre+Post-processing

Pre-processing

Post-processing

Fig. 9. Perfomances of pre-processing and post-processing routines for different sizes of 2D
binary array. Values in abscissa (2D-array size) represent the two equal sizes of a 2D array,
e.g. the value 128 corresponds to a 128x128 U8 binary array given as input to processing
routines.

array on the receiver (client) side is not possible unless it is supplied, by other means, the
dimension(s) of the array and its data type and size. It has been already mentioned that the
number of elements for each dimension is included by LabVIEW in a header of the flattened
string.
The solution that has been chosen for XMLvRPC serialization is straightforward: the missing
information, i.e. the dimensions of the array and its data type (U8, U32, I32 etc.), properly
coded and formatted is appended to the name of the variable. This part of the procedure
corresponds to step (6) in the block diagram of Fig.7.
As an example, the variable image, being the 640x480 2D unsigned-bytes array previously
mentioned, after the pre-processing procedure transforming it into a string will change its
name into image(2)(U8). On the receiver side a post-processor parses the LabVIEW Variant
obtained converting the XML data. It selects the strings that it recognizes, by their particular
names, as flattened binary array and un-flatten them into an array having the indicated
dimensions (2) and data type (U8).
As alternative additional XML elements can be introduced into <String>, e.g. <ArrayDim>
and <ArrayDataType> to specify the original array structure.
Results of some tests have been carried out to evaluate the performance of the communication
protocol are shown in Fig.10.
To the overall command execution time shown in the graph contribute, beside the time
needed to transfer data-in and data-out from/to client to/from server, the execution time
of the method.vi on the server side and time needed to open/close communication sockets for
the transmission of the methodCall and the methodResponse between client and server.
Performance, especially when dealing with large data sets, can be improved by optimizing
the network parameters (e.g. ethernet packet size) as evidenced by the two curves resulting

411Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

14 Will-be-set-by-IN-TECH

200
215

230

260

290

330

370

390

100 100 100

120

140
150

180

215

300

ex
ec

u
ti

on
 t

im
e

(m
s)

100

150

200

250

300

350

400

2D-array size

data size (kB)

200 300 400 500 600 700

90 160 250 360 490

1500 MTU

3000 MTU

Fig. 10. Time needed to complete a client/server methodCall and methodResponse as
function of different data size returned by the server. The two curves correspond to results
obtained with different settings of Maximum Transmission Unit (MTU, i.e. Ethernet
maximum packet size) on the network interface of the client computer in a 100 MBps
switched network.

from different settings of MTU.
Moreover, when a continuous flow of large data buffers needs to be implemented as,
again, in the case of streaming the output of a digital camera, one can consider to
implement a dedicated streaming-like communication between server and client(s) that can
be initiated/terminated on demand by XMLvRPC commands.

4.2.2 Enhancing the client/server communication

It was mentioned before that the XMLvRPC protocol supports asymmetric methodCall/
methodResponse communications. It means that on the client side the method.vi that is
required to handle the data received from the server can be different from the one that
originated the methodCall.
The methodResponse can indicate another method (i.e. another client application) to deal
with the response on the client side, according to the data produced from the method.vi on the
server.
The client’s methodRequest, for instance, might ask for the newest data on the controller,
i.e. the most recently updated value among the I/O channels read from equipment assigned
to this particular controller. In this case the result will have a data format that cannot
be defined a-priori and needs the appropriate client application to be displayed. Another
example of asymmetric XMLvRPC communication will be given later in Par.5 when the
services registration procedures will be discussed in details.
Interestingly, this feature of XMLvRPC can be employed for extending the client/server
communication discussed so far by introducing another option for data transfer between a
server and the client application.

412 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 15

Client App 1

run
Stream App

(camera_stream_client)

(camera_stream_client)

Client App 2 run
start_stream

data stream
Client App 2

Stream App

Stream App

p

get_camera_stream

camera_stream_client

XMLvRPC Srv

XMLvRPC Srv

Fig. 11. An example of asymmetric communication in XMLvRPC establishing a streaming of
image data from a controller of a digital camera to a client application.

When, for instance, a display or a measurement application is expecting to receive continuous
updates of a value for a given time, it would be more efficient to open a socket connection
between the two parts and keep it open, as long as needed, instead of forcing the client to
continuously send identical methodRequests to the server.
This is even more significant when the data to be transferred each iteration is large. In
this case data serialization can be optimized in such a way to reduce the overhead by XML
coding/parsing and, as consequence, avoiding the pre/post-processing.
Fig.11 shows an example of asymmetric communication in XMLvRPC aimed to establishing
a streaming of image data from a controller of a digital camera to a client application.
As first step the client application sends a methodCall to the controller by issuing the
method, e.g. get_camera_stream, that starts the image stream server. As soon as the stream
server is running, the XMLvRPC server replies to the client with camera_stream_client

as methodName providing, as parameters, its IP address and port number for the
socket connection, and other optional information. The client, as consequence of the
methodResponse dynamically opens and runs the display application, i.e. the client-side
method, camera_stream_client.
Block diagrams of both the client and server side of the data stream connection are shown in
Fig.12.
On the server the Stream Application starts listening for incoming requests. When connection
is established the inner loop read data from the device controller and, in this particular case,
push the 2D array with raw image data to the client.
Since server and client are specialized for handling a particular type of data, i.e. a 2D
unsigned-bytes array, serialization and de-serialization are very much simplified compared
to what has been previously shown for XML coding. The string sent to the client is obtained
by simply appending the 2D array, previously flattened to a string, to the 4-bytes string being

413Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

16 Will-be-set-by-IN-TECH

Stream Application

camera_stream_client

Fig. 12. LabVIEW diagrams of server (top) and client (bottom) applications in a data stream
session.

the flattened U32 size of the 2D array.
This information is needed to the client application to inform the TCP Read.vi about the size
of the buffer it’s going to receive from the server.
Finally, a Type cast allows to restore the original 2D unsigned-bytes array.
As expected this approach allows better performances than XMLvRPC, around a factor 2
faster, and very simple programming.

5. Inizialization and registration of services

On Par.3 it was mentioned that the final goal of this development should be the realization of
a middle-layer providing a set of functions allowing (top) client applications communicating
with (bottom) hardware equipment via XMLvRPC.
Actually, what has been presented so far already provides a fairly complete solution for small
or medium size CS where the number of components to be controlled, and that of controllers
and client consoles, is limited. In this case it shouldn’t be too difficult to organize a simple
list, or a spreadsheet table, with a catalog of components managed by each controller, their
I/O channels, IP addresses of network units etc. Then, each client application could relay
in this catalog to search for information such as the controller in charge for a particular
component and its IP address, the list of methods it provides and optional parameters for
a correct formatting of a methodCall.
An improvement of the system configuration procedure can be achieved by implementing
either a central configuration service or a sort of service location protocol allowing
components of the CS to find services and components without prior configuration.

414 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 17

 o o. . .

HTTP/1.1 200 OK
Connection: close
Content-length: 398
<?xml version="1.0"?>

<methodResponse>
<methodName>get_elements</methodName>
<params>
 <Array>
 <Name>served elements</Name>
 <Dimsize>5</Dimsize>
 <String>
 <Name>String</Name>
 <Val>cam_01</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>cam_02</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>corr_01</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>corr_02</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>corr_03</Val>
 </String>
 </Array>
</params>
</methodResponse>

POST / HTTP/1.1
User-Agent: LabVIEW (XMLvRPC)
Host: svr1.dummy.org:12000
Content-Type: text/xml
Content-length: 121

<?xml version="1.0"?>
 <methodCall>
 <methodName>get_elements</methodName>
 <params></params>
</methodCall>

POST / HTTP/1.1
User-Agent: LabVIEW (XMLvRPC)
Host: svr1.dummy.org:13000
Content-Type: text/xml
Content-length: 167

<?xml version="1.0"?>
<methodCall>
 <methodName>synch_me</methodName>
 <params>
 <host>controller1.domain.org</host>
 </params>
</methodCall>

U
D
P

b
r
o
a
d
c
a
s
t
:
s
y
n
c
h
_
m
e

TCP:get_elements (Call) TCP:get_elements (Resp)

1

2

Fig. 13. Synchronization of a controller with the Configuration database either at startup by
means of UDP-broadcast (1) or run time by using dedicated XMLvRPC methodCall (2).

Fig.13 introduces a new component, the Configuration DataBase, to the DCS depicted so
far. Its role is the management of the configuration of components in the distributed control
system.
At startup each controller sends a UDP-broadcast to register on the Configuration DataBase
by issuing synch_me or register_me (Fig.13).
The method register_me is used if the controller has been configured with all its methods
and elements. The method synch_me is used if some methods (and elements) are provided
by the Configuration DataBase. If the system has more than one Configuration DataBase, for
redundancy purposes, both will receive the request to register the controller in the system. The
Configuration DataBase detects the UDP-broadcast and then sends to the controller a TCP/IP
get_elements methodCall and then a get_element_conf for each element listed in the
previous methodResponse received from the controller.
Practically, local services (i.e. those specific for a class of elements) are configured directly on
each controller while global services (e.g. back-up, restore etc.) can be configured centrally in
the Configuration Database.
Consoles and high level applications rely on the Configuration DataBase to locate the
controller in charge for a particular element. They use an UDP broadcast to find the
Configuration DataBase, i.e its IP address. At this point the client can either decide to receive
the complete configuration of the system at once and refresh it periodically or inquire that
service each time an application needs to identify the controller in charge of a particular I/O
channel or service.
The Configuration DataBase can run either on a dedicated server (as shown in the picture) or
any client, or controller, of the the DCS.

415Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

18 Will-be-set-by-IN-TECH

 o o. . .

XMLvRPC TCP/IP Client

XMLvRPC UDP Sender

XMLvRPC TCP/IP Server

Configuration
database

Display/Client

Controller

XMLvRPC UDP Receiver

XMLvRPC TCP/IP Server

XMLvRPC UDP SenderLvRPC UDP SeP

Fig. 14. Typical components in a XMLvRPC based distributed control system. Services
running on each component are also shown.

6. Components in a XMLvRPC distributed control system

Fig.14 shows an example of components in a XMLvRPC distributed control system.
Controllers run front-end applications: they are either the interface to equipment or provide
general services.
Displays, or consoles, run user applications or analysis and measurement procedures. They
directly connect to controllers to run remote procedure provided they know (the IP address
of) the controller in charge for the particular I/O channel (or service) and the methods made
available for it.
This information is provided by the Configuration Database on request from the Console
(or any another client). The Configuration Database is thus the repository of the system
configuration files collected from any controller at the time they start-up and register to the
system.

To summarize, TCP/IP and UDP services in XMLvRPC are the following:

XMLvRPC TCP/IP Server: runs on each controller and on the Configuration DataBase
serving XMLvRPC methodCalls issued by clients. For each controller, valid method

Names correspond to VIs listed in the XMLvRPC_ClientServer/methods_svr directory.
Elements under control are listed in XMLvRPC_ClientServer/elements_svr directory.

XMLvRPC TCP/IP Client: runs on each console (a client, in general); it sends XMLvRPC
methodCall to XMLvRPC TCP/IP Server as consequence of some action on the console
panels or from measurement application.

416 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 19

ConÞg_local.xml

Flatten_and_Unàatten_XML-RPC

Global_XMLvRPC.vi

ReadMe

XML_processors

XMLvRPC_ClientServer

XMLvRPC_browser.vi

XMLvRPC_server.vi

classes_all

XMLvRPC_ConÞgDB

XMLvRPC_UDPcdb_rec.vi

XMLvRPC_UDPcdb_sdr.vi

methods_cdb_rec

methods_cdb_sdr

config_database

svr1.dummy.org

svr2.dummy.org

XMLvRPC_startup.vi

xtras

scope_08.xml

motor_03.xml

camera_06.xml

camera_07.xml

svr3.dummy.org

elements_svr

libraries

methods_clt

methods_svr

Configuration file; defines the role of this component
(client, server, Config. DB)

XML coder and decoder

Initialize global variables and services according to
the Config_local.xml file

Contains PRE and POST XML processors (large binaries
management is done here)

Classes and elements known in the system

UDP receiver: running on Configuration DB

UDP sender: running on controllers and consoles

known methods for this unit (if it is a UDP receiver)

known methods for this unit (if it is a UDP sender)

Global variables for XMLvRPC VIs

Config. Database: contains config. files of elements
for each controller of the contr. system (only if this
unit is a Configuration DB)

subVIs library

known methods for this unit (if it is a client)

known methods for this unit (if it is a controller)

Fig. 15. Directories, VIs and configuration files in the XMLvRPC package

XMLvRPC UDP Receiver (Configuration DataBase): runs on the Configuration DataBase to
serve synch_me or register_me methodCalls sent by controllers or locate_cdb sent
by consoles at startup.

XMLvRPC UDP Sender: runs on controllers and consoles at startup. It sends synch_me
or register_me methodCalls to Configuration DataBase for registering the new
controller in the system. Consoles use it to locate the Configuration DataBase.

Configuration DataBase: is the repository of the configuration; it supplies clients (e.g.
display/measurements applications) with information about the controller in charge for
a given element.

6.1 The XMLvRPC suite of VIs

Fig.15 shows the structure (directories, VIs and configuration files) of the XMLvRPC software
package.
The installation can be identical for any component of the XMLvRPC DCS because the
role assigned to each component (i.e. server or client) and the services it will provide
are configured by XMLvRPC_startup.vi according to the settings in the configuration file
Config_local.xml.
If the local computer runs a Configuration Database the methods to be used for this service are

417Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

20 Will-be-set-by-IN-TECH

<?php

include("xml-rpc.class.php");

function get_tag($string, $tag){

 $tagstart = "<".$tag.">";

 $tagend = "</".$tag.">";

 $string = " ". $string;

 $ini = strpos($string,$tagstart);

 if ($ini == 0) return "";

 $ini += strlen($tagstart);

 $len = strpos($string, $tagend, $ini) - $ini;

 echo $tag.": ".substr($string, $ini, $len)."</br>";

 return substr($string, $ini + $len);

}

$thisHost = "client1.dummy.org"; //client hostname

$thisPort = 12000; //client port

$server = "svr1.dummy.org". //remote server hostname

$serverPort = 12000; //remote server port

$socket = Socket::singleton(); //create socket

$socket->connect($server, $serverPort); //connect to remote server

//template for methods without params, e.g. get_elements, get_methods, get_timestamp

$str1 = "POST / HTTP/1.1\nUser-Agent: LabVIEW (XMLvRPC)\nHost: " ;

$str2 = "\nContent-Type: text/xml\nContent-length: ";

$str3 = "<?xml version=\"1.0\"?>\n<methodCall>\n<methodName>";

$str4 = "</methodName>\n<params><name>none</name>\n</params>\n</methodCall>";

$methodName = "get_elements"; //set method's name

$length = strlen($str3.$methodName.$str4); //length of payload string

//format methodCall

$methodCall = $str1.$thisHost.":".$thisPort.$str2.$length."\n".$str3.$methodName.$str4;

//print methodCall

echo "methodCall sent to server:</br>".

 str_replace("\n", "</br>", htmlspecialchars($methodCall)."</br>"."</br>");

//send method and get response

$socket->sendCmd($methodCall);

$response = $socket->getMultilinedResponse();
//print methodResponse's name and Valuesecho "methodResponse from server:</br>";

$resp = get_tag($response, "methodName");

while (strlen($resp)) $resp = get_tag($resp, "Val");

?>

PHP script HTML output

verer

methodCall sent to server:
POST / HTTP/1.1
User-Agent: LabVIEW (XMLvRPC)
Host: client1.dummy.org:12000
Content-Type: text/xml
Content-length: 122
<?xml version="1.0"?>
<methodCall>
<methodName>get_elements</methodName>
<params><name>none</name>
</params>
</methodCall>

methodResponse from server:
methodName: get_elements
Val: scope_08
Val: motor_03
Val: camera_06
Val: camera_07

Fig. 16. PHP script (left) for issuing an XMLvRPC methodCall from a web browser and the
HTML output of the values in the methodResponse (rigth).

in methods_cdb_rec. The system_database directory contains a directory with the configuration
files of the controlled elements for each of the controllers (servers) which registered to the
system.
Adding an element, for instance a new device or service, is as simple as creating, and properly
editing, the corresponding configuration file in the controller directory of the system_database
folder. Similarly, a method can be added to a server, or a client, by including the correspondent
VI in the methods_svr, or methods_clt, directory respectively. In both cases there is no need to
modify either source code or global configuration file since these directories are scanned at
start-up to identify services and elements available to this component of the control system.
Development of a VI for a new method can start from a common template since they all
present an identical interface (i.e. the connector pane) to the calling application.

7. Interoperability

The communication framework described so far, although it has been designed and optimized
for a LabVIEW-based DCS, exhibits a clear attitude to interoperate with network applications
developed by using different programming language and/or running on diverse hardware
platforms or operating systems.
First of all it is, essentially, a fairly customized version of the XML-RPC protocol, yet
compatible with all its implementations at least for what concerns the client/server
communication and the basic structure of the body of the request.
That means any XML-RPC compatible client can issue a well-formed methodCall to an
XMLvRPC server and receive a methodResponse that, afterwards, it will be able to parse
to properly extract the XML elements.
Handling of binary arrays that have been serialized as described in Par. 4.2 will be under
responsibility of the application that required the data. Even if the latter wouldn’t be equipped
with tools for restoring the original format of the serialized binary array, these data will be still

418 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition 21

recognized as a valid string element, though meaningless.
A lower, hence more general, level of compatibility is the network socket communication that
is at the basis of the XMLvRPC protocol.
Libraries for socket communication are available for, practically, any existing programming
language and it very easy, as it was with LabVIEW, writing a piece of software for
implementing a socket communication session.
An example is shown in Fig.16 allowing to request and display data received from an
XMLvRPC server on a web browser.
The simple PHP script on the main frame is used for composing and issuing a methodCall,
to read the reply of the XMLvRPC server and finally parse the methodResponse for printing
the main information such as the value elements in the <params>.

8. Conclusion

The communication framework presented in this paper has been described in details to
provide a ready to use solution for implementing a distributed control system with LabVIEW.
Nevertheless, it could also be seen as a collection of strategies that instead of being adopted
as a whole may be individually replaced by, or integrated with others if those are found to be
best suited for some particular application or requirement.
It was mentioned, for instance, that XML could be exchanged with other rules for formatting
data and also that binary array serialization can be based, as alternative, on the referred
standard encoding algorithms.
All the development strategies that have been presented share in the intention to exploit
and take advantage from the great features of LabVIEW for delivering an overall solution
that still offers the expected compatibility with other programming languages and with other
well-established communication solutions.

9. References

COM: Component Object Model Technologies Microsoft Corporation, http://www.microsoft
.com/com/default.mspx

Catalog Of OMG CORBA/IIOP Specifications Object Management Group, Inc., http://www.
omg.org/spec/CORBAe/1.0/

Jini Architecture Specification jini.org, http://www.jini.org/wiki/Jini_Architecture_Specifica
tion

T.Bray, et.al. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition) W3 Consortium,
http://www.w3.org/TR/REC-xml

SOAP Version 1.2, World Wide Web Consortium (W3C), http://www.w3.org/ TR/soap12-
part1/

XML-RPC Specification, Scripting News, Inc., http://www.xmlrpc.com/spec
Remote Procedure Call Protocol Specification v.2, Network Working Group, Sun Microsystems,

Inc., http://tools.ietf.org/html/rfc1057
Catani, L. (2008). An XML-based communication protocol for accelerator distributed

controls, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, Volume 586, Issue 3, 1 March 2008,
Pages 444-451.

Lima et al., (2004). Choosing among LabVIEW Communication Features. LabVIEW 2010 Help
Manual, Part Number: 371361G-01, June 2010

419Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition

www.intechopen.com

22 Will-be-set-by-IN-TECH

Jim Kring, (2003). OpenG LabVIEW Data Tools. OpenG.org website, http://wiki.
openg.org/Oglib_lvdata

Crockford, D. (2006). JSON format specifications. Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc4627.txt?number=4627

JSON-RPC Working Group, (2009). JSON-RPC 2.0 Specification proposal. JSON-RPC Google
Group, http://groups.google.com/group/json-rpc/web/json-rpc-1-2-proposal

Josefsson, S. (2006). The Base16, Base32, and Base64 Data Encodings. Network Working Group,
http://tools.ietf.org/html/rfc4648

420 Practical Applications and Solutions Using LabVIEW™ Software

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

Edited by Dr. Silviu Folea

ISBN 978-953-307-650-8

Hard cover, 472 pages

Publisher InTech

Published online 01, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book consists of 21 chapters which present interesting applications implemented using the LabVIEW

environment, belonging to several distinct fields such as engineering, fault diagnosis, medicine, remote access

laboratory, internet communications, chemistry, physics, etc. The virtual instruments designed and

implemented in LabVIEW provide the advantages of being more intuitive, of reducing the implementation time

and of being portable. The audience for this book includes PhD students, researchers, engineers and

professionals who are interested in finding out new tools developed using LabVIEW. Some chapters present

interesting ideas and very detailed solutions which offer the immediate possibility of making fast innovations

and of generating better products for the market. The effort made by all the scientists who contributed to

editing this book was significant and as a result new and viable applications were presented.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luciano Catani (2011). Extending LabVIEW Aptitude for Distributed Controls and Data Acquisition, Practical

Applications and Solutions Using LabVIEW™ Software, Dr. Silviu Folea (Ed.), ISBN: 978-953-307-650-8,

InTech, Available from: http://www.intechopen.com/books/practical-applications-and-solutions-using-labview-

software/extending-labview-aptitude-for-distributed-controls-and-data-acquisition

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

