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Using Matlab-Based Finite-Difference Time 
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Division of Electronics and Communication Engineering 
Greece 

1. Introduction  

The need of ultrawideband (UWB) antennas with omni-directional coverage is increasing 
for both military and commercial applications (Wiesbeck et. al., 2009; Minin, 2010). The UWB 
radio technology promises high resolution radar applications, sensor networks with a large 
number of sensors for industrial or home surveillance as well as high data-rate 
communication over short range for personal area networks. With a need for antennas with 
the characteristics of broad bandwidth and small electrical size, conical antenna structures 
have been a focus of research because of its broad bandwidth and omni-directional radiation 
pattern (Maloney & Smith, 1993; Sandler & King, 1994; Yu & Li, 2008; Palud et. al., 2008). The 
bi-conical antenna exhibits a very stable omni-directional radiation pattern in the plane 
normal to the dipole axis together with an excellent transient response. However, the 
feeding with a usual coaxial cable requires a balun, which transforms the asymmetric mode 
of the feed line into a symmetric mode at the feed point. For the coaxial balun the ultra wide 
bandwidth demands very high precision in the manufacturing process in order to get a 
good and stable matching especially for the high frequencies. The mono-cone antenna as 
asymmetric structure does not need any balun for an asymmetric feed line but it needs an 
infinite ground plane, which in reality can only be approximated. The theory of wide-angle 
conical antennas has been developed sufficiently to permit calculation of the transfer 
functions relating source voltage to radiated field and incident field to load voltage over the 
range of frequencies required in the study of transients. Such calculations were 
demonstrated in (Harrison & Williams, 1965). 
Due to their three-dimensional configurations, conical antennas are bulky and difficult to 
fabricate, integrate, and reconfigure. Moreover, since conventional conical antennas   
comprise of free-standing metal, they are typically heavy in order to achieve sufficient 
mechanical stability. Several configurations have been proposed to improve conical 
antennas’ mechanical performance (Ma et. al., 2009; Zhou et. al., 2009, Kliros et. al., 2010a). 
Resistive loading for conical antennas, which is investigated in (Maloney 1993), does not 
constitute the optimal solution as it reduces the antennas’ efficiency. Recently, investigations 
have been carried out on configurations that employ a dielectric or magnetic material to 
cover the conical antenna (Gentili et. al., 2004, Lu, 2007). Dielectric and magnetic coating of 
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the radiating cone, enables making the antenna electrically smaller and more rugged while 
maintaining a wide band input impedance.   
In this chapter, we present a Finite Difference Time Domain (FDTD) code in spherical 
coordinates implemented in MATLAB in order to simulate the performance of dielectric 
covered conical antennas. MATLAB provides an interactive environment for algorithm 
development, data post-processing and visualization. The spherical FDTD equations can be 
found using a modified Yee cell in spherical coordinates (Fusco, 1990). Spherical Berenger’s 
perfectrly matched layer (PML) is applied as absorbing boundary condition where a 
parabolic conductivity profile in the spherical PML-region is used (Berenger, 1996). A 
unique feature of the PML is that electromagnetic waves of arbitrary incidence, polarization 
and frequency are matched at the boundary in a reflectionless manner. Results concerning 
time evolution of the radiated electromagnetic field, the return loss, input impedance, 
maximum gain as well as far-field radiation patterns across an extended bandwidth, are 
presented. A time domain study has also been performed to characterize the antenna’s 
behaviour in case an UWB pulse is used. For evaluating waveform distortions caused by the 
antenna, we examine the degree of similarity between source pulse and received pulse 
waveforms in several propagation directions. The effect of the dielectric spherical cover on 
the antenna’s performance is investigated.  The author mostly worked in MATLAB version 
7.4 and the related sample codes are provided in the Appendix. 

2. Conical antenna design and analysis  

In this section, we present the design of a conical antenna covered by a dielectric material 
with hemispherical shape and describe the FDTD algorithm in spherical coordinates for the 
analysis of the radiation as well as the time-domain characteristics of the antenna. Dielectric 
coating of the metallic radiating cone enables making the antenna electrically smaller and 
more rugged while maintaining a wide band input impedance. Moreover, dielectric coating 
enables the design of a quasi-planar structure with approximately omni-directional 
radiation pattern. Therefore, this antenna can be easily integrated with planar circuits.  

2.1 Conical antenna geometry 
The dielectric covered conical antenna is illustrated in Fig. 1 and can be described by two 
parameters: the half-cone angle (flare angle) θ0 and the length of the cone’s arm antenna 
length)  . The spherical dielectric cover is made of homogeneous material with permittivity 
εrε0 and permeability ┤r┤0, where ε0 and ┤0 are the permittivity and permeability of free 
space, respectively. The addition of the dielectric cover provides mechanical support to 
conical radiator and enables physical size reduction of the antenna. The bottom side of the 
dielectric is coated by metal and behaves as the ground plane. The metallic cone and the 
ground plane jointly form a mono-cone radiator. Τhe antenna is fed by a coaxial connector, 
with its outer and inner conductors connected to the ground plane and the cone tip 
respectively.  
The radiation mechanism of this dielectric covered antenna is similar to the conventional 
mono-conical antenna (Liang & Wah, 2000). Since the feed is located at the center of a 
revolutionarily symmetric structure, spherical transverse electromagnetic (TEM) wave is 
launched in the dielectric material. When the TEM wave hits the end of the cone, it is 
reflected and scattered. The reflection and scattering attenuate as frequency increases and 
therefore, the antenna approaches a semi-infinitely long transmission line for high 
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frequencies. Compared to conventional mono-conical antennas, the addition of the dielectric 
cover introduces some complications (Lu et. al., 2007):  
a. The wavelength within the dielectric material is shorter than that in the air and as a 

result, the electrical length of the antenna increases. This affects the UWB performance 
of the antenna.   

b. The dielectric-air interface results in more reflection and scattering of the outgoing TEM 
wave, making the antenna less matched to free space. 

c. The dielectric material forms a cavity that stores energy, hence would reduce the 
antenna’s bandwidth.  

d. The conductivity of the dielectric cover would reduce the antenna’s efficiency and low 
dielectric loss should be another criterion for the antenna’s cover.  

Consequently, it is not easy to predict the effect of the dielectric cover on the performance of 
the conical antenna for UWB applications.  
 

 

Fig. 1. Geometry of the dielectric covered conical antenna. 

2.2 FDTD Method in spherical coordinates  
FDTD method is very suitable for analysing and optimising the antenna for UWB radio 
technology. The method becomes one of the attractive methods due to its programming 
simplicity and flexibility in analyzing wide range of electromagnetic structures. Cartesian-
grid FDTD technique utilizes a cubic prism as a unit cell. Thus, it may produce significant 
errors when modelling perfect electric conductors with curved surfaces and edges because 
of the staircase approximation introduced in the process. In this section, the FDTD algorithm 
in spherical coordinates is described following the lines of (Liu & Grimes, 1999; Brocato, 
2004). The Maxwell’s equations in finite difference form, the suitable absorbing boundary 
conditions and the input voltage source model are presented. 

2.2.1 Spherical FDTD Equations for a conical antenna 
The FDTD equations are derived directly from Maxwell’s curl equations in the time domain. 
Taking into account the medium properties, Maxwell’s curl equations can be written as: 

  *

t
µ σ

∂Η
∇ × Ε = − ⋅ − ⋅ Η

∂

 
  (1) 
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t

ε σ
∂Ε

∇ × Η = ⋅ + ⋅ Ε
∂

 
  (2) 

where ε and ┤ are the permittivity and permeability respectively and, σ and σ* the electric 

and magnetic conductivity of the propagation space respectively. These two vector 

equations are the general equations governing the antenna operation. Because the conical 

antenna is a revolutionary symmetric structure, the three dimensional problem can be 

reduced to two-dimensional problem. In spherical coordinates, due to rotational symmetry, 

Eq. (1) and (2) lead to the following three scalar partial differential equations: 

  ( ) ( )
* 1

sin sin
sin

rr
t r r

φ
φ θ

σ
θ θ

µ µ θ θ

∂Η ∂ ∂ 
= − ⋅ Η − ⋅ Ε − ⋅ Ε 

∂ ⋅ ⋅ ∂ ∂ 
     (3) 

 ( )1
sin

sin
r

r
t r

φ

σ
θ

ε ε θ θ

∂Ε ∂
= − ⋅ Ε + ⋅ Η

∂ ⋅ ⋅ ∂
      (4) 

 ( )1
r

t r r
θ

θ φ

σ

ε ε

∂Ε ∂
= − ⋅ Ε − ⋅ Η

∂ ⋅ ∂
    (5) 

To obtain a discrete set of the continuous differential equations, the central difference 

approximation is used on both the time and space first-order partial derivatives. The entire 

computational space is a collection of modified Yee unit cells (Yee, 1966).  In our modified 

Yee’s scheme, the computational space is subdivided by using an orthogonal mesh in 

spherical coordinates. The electric fields are located along the edges of the cells, while the 

magnetic fields are positioned at the centers of these cells. Using the well-known half time 

step notation in all locations and after some rearrangements, a set of finite difference field 

forms for Eqs. (3)-(5) follows (Kliros et. al., 2010a, 2010b): 

 ( ) ( )
( )

( )
( )

( ) ( )
1 1

1 2 2
sin ( 1 / 2) Δ( )

, ( ) , , , 1
1 / 2 Δ sin ( 1 / 2) Δ

n n
n n b
r a r

jC i
E i j C i E i j H i j H i j

i j
φ φ

θ

θ θ

+ +
+

 +
 = + ⋅ − −

+ −  
  (6) 

 

1 1
1 2 21 / 2
( , ) ( ) ( , ) ( ) ( 1, ) ( , )

1 / 2

n n
n n

a b

i
i j C i i j C i H i j H i j

i
θ θ φ φ

+ +
+

  +
 Ε = Ε + ⋅ − − ⋅ 

−   
 (7) 

 

( ) ( )
( )

( )( )
( )

( ) ( )

( ) ( )

1 1

2 2
sin 1 Δ( )

, ( ) , , 1 ,
1 / 2 Δ sin Δ

1
( ) 1, ,

n n
n nb

a r r

n n
b

jD i
i j D i i j i j i j

i j

i
D i E i j E i j

i

φ φ

θ θ

θ

θ θ

+ −  +
Η = Η + ⋅ Ε + − Ε 

+   
 + 

− + −    

  (8) 

where 

 

( )
1

( )2 ( )
( ) ,   ( )

( ) ( )
1 1

2 ( ) 2 ( )

a b

i t t

i ri
C i C i

i t i t

i i

σ

εε
σ σ

ε ε

∆ ∆
−

∆
= =

∆ ∆
+ +

   (9) 
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*

*

( )
1

( )2 ( )
( ) , ( )

( ) ( )
1 1

2 ( ) 2 ( )

a b

i t t

i ri
D i D i

i t i t

i i

σ

µµ

σ σ

µ µ

∗

∆ ∆
−

∆
= =

∆ ∆
+ +

     (10) 

and Δr , Δ┠  represent the step size in the r- and ┠- directions, respectively. Superscript n 

signifies that the quantities are to be evaluated at t = nΔt, and, i and j represent the point 

(iΔr, jΔ┠) in the spherical grid. The half time steps indicate that the fields E and H are 

calculated alternately. The maximum time step is limited by the stability Courant’s criterion 

(Fusco, 1990):  

 
( )( )

( ) ( )2 2
min

r r
t

c r r

θ

θ

∆ ∆
∆ ≤

∆ + ∆
  (11) 

where c is the velocity of the light in free space.  

2.2.2 Absorbing Boundary Conditions (ABC) treatment 

In order to study antenna matching and pulse fidelity in the time domain, any spurious 

reflections had to be eliminated using suitable absorbing boundary conditions (ABC). 

Because we treat the problem using spherical coordinates, the absorbing boundary layer 

should be spherically symmetric as shown in Fig. 2. The purpose of the PML is to simulate 

an infinite simulation space, that is, outgoing waves are absorbed by the PML and cannot 

reflect back into simulation space. A unique feature of the PML is that plane waves of 

arbitrary incidence, polarization and frequency are matched at the boundary in a reflection- 

less manner.  The boundary of the computational space must be sufficiently far from the 

antenna, usually in a distance at least ten times the free space operating wavelength. 
 

 

Fig. 2. Spherical perfectly matched layer at the edge of the simulation space. 
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In order to determine a spherical PML, the following steps must be taken: 

i. Splitting of the magnetic field component φΗ into two sub-components rφΗ and φθΗ in 

the coupled Maxwell equations, as follows:  
 

 
( )sin1 1

sin

r

t r

φθ
θ φθ

θ
σ

µ θ θ
∗∂Η  ∂ Ε

= − Η + 
∂ ∂ 

  (12) 

      
( )1 1r

r r

r

t r r

φ θ
φσ

µ
∗∂Η  ∂ ⋅ Ε

= − Η + 
∂ ∂ 

    (13) 

 
( )( )sin1 1

sin

rr
r

t r

φ φθ

θ

θ
σ

ε θ θ

 ∂ Η + Η∂Ε  = − Ε +
 ∂ ∂
 

   (14) 

 
( )( )1 1 r

r

r

t r r

φ φθθ
θσ

ε

 ∂ Η + Η∂Ε  = − Ε +
 ∂ ∂
 

    (15) 

ii. Create spherical FDTD equations from the above revised Maxwell equations: 

 ( ) ( )
( )

( )( )
( )

( ) ( )
1 1

2 2
sin 1 Δ( )

, ( ) , , 1 ,
1 / 2 Δ sin Δ

n n
n nb

a r r

jD i
i j D i i j i j i j

i j
θ

θφθ φθ

θ

θ θ

+ −  +
Η = Η + ⋅ Ε + − Ε 

+   
   (16) 

 ( ) ( ) ( ) ( )
1 1

2 2 1
, ( ) , ( ) 1, ,

n n
n n

ar brr r

i
i j D i i j D i E i j E i j

i
θ θφ φ

+ −  + 
Η = Η − + −    

  (17) 

 ( ) ( )
( )

( )
( )

( ) ( )
1 1

1 2 2
sin ( 1 / 2) Δ( )

, ( ) , , , 1
1 / 2 Δ sin ( 1 / 2) Δ

n n
n n b
r r

jC i
E i j C i E i j H i j H i j

i j
θ

αθ φ φ

θ

θ θ

+ +
+

 +
 = + ⋅ − −

+ −  
 (18) 

   
1 1

1 2 21 / 2
( , ) ( ) ( , ) ( ) ( 1, ) ( , )

1 / 2

n n
n n

ar br

i
i j C i i j C i H i j H i j

i
θ θ φ φ

+ +
+

  +
 Ε = Ε + ⋅ − − ⋅ 

−   
   (19) 

where  

 
1

2 ,

1 1
2 2

r

r br
r r

tt
r

C C
t tα

σ
εε

σ σ

ε ε

∆∆
−

∆
= =
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+ +

  (20) 

  
1

2
,

1 1
2 2

r

ar br
r r

tt

r
D D

t t

σ

µµ

σ σ

µ µ

∗

∗ ∗

∆∆
−

∆
= =

∆ ∆
+ +

  (21) 

www.intechopen.com



Simulated Performance of Conical Antennas  
Using Matlab-Based Finite-Difference Time Domain (FDTD) Code 

 

161 

 
1

2 ,

1 1
2 2

a b

t t

C C
t t

θ

θ θ
θ θ

σ

ε ε θ
σ σ

ε ε

∆ ∆
−

∆= =
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+ +

   (22) 

 
1

2
,

1 1
2 2

a b

t t

D D
t t

θ

θ θ
θ θ

σ

µ µ θ

σ σ

µ µ

∗

∗ ∗

∆ ∆
−

∆
= =

∆ ∆
+ +

  (23) 

and rφ φ φθ= +Η Η Η  in the last two equations. 

iii. for a given number N of PMLs, calculation of free-space conductivities, 0σ and *
0σ , the 

final conductivities Nσ and *
Nσ and the conductivity profile of each PML.  

According to (Berenger, 1996), for a desired conductivity profile ( )rσ of thickness δ, the 

reflection factor at normal incidence R(0) is given by: 

  
0

2
(0) exp ( )R r dr

c

δ
σ

ε

 
= − 

    (24) 

and consequently, the reflection factor for a wave at arbitrary incidence, θ, is   

  cos( ) (0)R R θθ =   (25) 

Assuming a parabolic conductivity profile and extending the results of (Berenger, 1996) for 
spherical PMLs, we obtain the following equations for the desired conductivities: 
a) free space conductivity: 

 
( )( )0

0 4 3

ln 0

2 PML

c R

r N

ε
σ = −

∆
  (26) 

b) conductivity of each layer (i): 

 
2

max max 0( ) , 24 PML

i
i Nσ σ σ σ

δ

 
= = 

 
  (27) 

The correct conductivity profile is calculated automatically in our code for any desired 
reflection factor and number of perfectly matched layers.  

2.2.3 Resistive voltage source model 
Antennas modelled using FDTD are often excited by a “hard” voltage source in which the 
internal source resistance is zero. However, a “hard” voltage source generates non-physical 
reflections. To avoid such problems, the base of the antenna is driven by a voltage signal 
Vs(t) with internal resistance Rs through a coaxial line with inner and outer conductor’s 
diameters a and b respectively. Fig. 3 illustrates the equivalent circuit for a voltage source 
which includes an internal source resistance Rs. 
The electric driving field E┠, resulting from the input voltage, is given by (Liu, 1999). 

 
( ) ( )

( , )
sin( )ln(b/a)

n s in sV t I t R
E i j

b
θ

θ

−
= −    (28) 
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where  

 ( ) (2 sin ) ( , , )inI t r H r tφπ θ θ=   (29) 

 

 

Fig. 3. Equivalent circuit of the FDTD input source. 

A voltage source that corresponds to electric field of Eq. (28) can be generated in a certain 
mesh location (iΔr, jΔ┠) within the source region and, therefore, the electric field in the 
source region can be written in FDTD form as 

 
1/2( ) ( , )

( , )
sin( )ln(b/a)

n
n s s inV n t R I i j

E i j
b j

θ
θ

−∆ −
= −

⋅ ∆
  (30) 

 ( )( ) ( )1 21/2( , ) 2 ( )sin 1 / 2 1 / 2, 1 / 2nn
inI i j i r j H i jφπ θ −− = ∆ + ∆ ⋅ + +   (31) 

The above field is a spherical source extending from the inner conductor of the coaxial line 
to the outer conductor. Consequently, as the voltage Vs(t) steps forward in time, it drives the 
base of the conical antenna with the above spherical field. Then, the antenna radiates the 
resulting wave following the time evolution described by Eq. (6)-(8).  

2.3 Antenna characteristics   
There are general factors determining the antenna performance for UWB applications 
(Stuzman & Thiele, 1997). Those are input matching represented by the input impedance, 
Voltage Standing Wave Ratio (VSWR) and Return Loss, frequency dependence of the 
maximum gain, radiation pattern determining the available beam angle for distortionless 
wave received from the transmitter, as well as, waveform fidelity which describes the 
distortion of radiated impulses. All the necessary frequency domain parameters can be 
calculated from the time domain parameters using a Fast Fourier Transformation code in 
MATLAB. 
The input impedance of the antenna Zin is calculated in the center of feeding line over a 
range of frequencies. It is determined from the ratio of the Fourier transform of the voltage 
wave and that of the input current wave 

  
( )

( ) exp( )
( )

in
in

in

V f
Z f j f t

I f
π= − ∆   (32) 

where the exponential term accounts for the half-time step difference between the electric 
and magnetic field  computation.  
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The results of input impedance are then used to obtain the return loss characteristics of the     
antenna. Thus, the Return Loss S11 (dB) of the antenna is given by  

 11( ) 20log ( )S dB f= Γ   (33) 

where 

    
( )

( )
( )

in line

in line

Z f Z
f

Z f Z

−
Γ =

+
             (34) 

is the frequency dependent reflection coefficient. From the calculated reflection coefficient, 
the  VSWR  can be calculated as follows:  

 
1 ( )

1 ( )

f
VSWR

f

+ Γ
=

− Γ
  (35) 

The bandwidth of the antenna is the frequency range corresponding to a reflection 
coefficient of the antenna less than or equal to 1/3 that leads to VSWR ≤ 2. 
To calculate the conical antenna gain, the far electric field in the desired direction must be 
determined as a function of frequency. Since the electric far-field is computed so that the 1/r 
amplitude factor and the propagation delay are suppressed, the antenna gain relative to a 
lossless isotropic antenna in θm – direction is given by  

 

2
( , )1

( , )
2 / 4

m
m

in

E f
G f

P

θ
θ

η π
=     (36) 

where ( , )mE f θ is the peak value of the Fourier transform of the pulsed far  field radiated in 

the θm-direction, ┟ the characteristic space impedance and Pin the steady-state input power 
at each frequency given by 

 
1

( ) Re ( ) ( )
2

in in inP f V f I f∗ =     (37) 

Directivity curves can be also computed. Directivity of an antenna is defined as the ratio of 
the radiation intensity in a given direction from the antenna to the radiation intensity 
averaged over all directions. The directivity in θm-direction is given by the ratio of the 
integral of Poynting vector with the value of electric field ( , )mE f θ to the actual value of the 

integral: 

 
2

0

2 ( , )
( , )

( , ) ( , )sin

m
m

E f
D f

E f E f d
π

θ
θ

θ θ θ θ∗

=


  (38) 

3. Simulation of the conical antenna characteristics 

Parametric studies concerning both time domain and frequency domain characteristics of 
the dielectric covered conical antenna were performed using the above described spherical-
coordinate FDTD algorithm implemented in MATLAB.  A flowchart of the FDTD algorithm 
is given in Fig.4.  

www.intechopen.com



 
Scientific and Engineering Applications Using MATLAB 

 

164 

The FDTD cell dimensions are Δr=3 mm and Δ┠=1ο. The antenna sits on top of a perfectly 

conducting ground plane that extends 360o in all directions for a distance of Rm=10  . Just 
before the maximum radial distance Rm is reached, the simulation space is terminated by a 
PML section of thickness 20Δr. The maximum reflection coefficient at normal incidence is 
chosen to be R(0) = 10-14. The time step is taken Δt=0.2 psec, sufficient to satisfy Courant’s 
criterion. An UWB Gaussian pulse (FWHM = 64 psec) modulated by a continuous sine wave 
carrier of frequency fc is used in our simulations, that is,  

 
( )

( )( )02

2
0

2( ) exp sinm c
d

s V f t t
t t

V t
t

π
 
 = −  
 

−
−       (39) 

where 064 sec, 4 , 6.5cp t f GHzτ τ= = × = and 0.1mV V= . The UWB excitation pulse driving 

the conical antenna is depicted in Fig.5.   
 

 

Fig. 4. Flowchart of the FDTD algorithm. 

To verify the FDTD steady-state calculations, time-domain fields are transformed to the 
frequency domain by a Fast Fourier Transform routine. The MATLAB code was run for a 
wide range of different antenna’s parameters combinations in an effort to find the antenna 
with the best match to a 50 Ω SMA-connector. FDTD has the ability to get the frequency 
response in one run. Accurate simulations require 214= 16384 time steps to achieve a 
complete decay of the fields in the structure. The code was run on a computer equipped 
with an AMD Athlon 64X2 Dual Core Processor at 1.9 GHz and 2 GB of RAM memory and 
the computing time required to obtain a result, for specific antenna’s parameters, is less than 
3.5 minutes. 
In the following sub-sections, we present both time-domain and frequency-domain results 

for a spherically dielectric covered antenna with arm’s length  =45 mm (~┣c=c0/fc), for 
different loading dielectrics εr and different flare angles θ0. In all simulations the antenna is a 
small cone made of copper with conductivity of 5.8x107 mhos/m place at the center of the 
simulation space. The simulations were performed in spherical coordinates and then re-
mapped to Cartesian coordinates. Finally, the Fourier transforms forward and backward are 
the operations to switch from frequency domain to time domain, and vice versa. 

www.intechopen.com



Simulated Performance of Conical Antennas  
Using Matlab-Based Finite-Difference Time Domain (FDTD) Code 

 

165 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t (nsec)

n
o

rm
a

li
z

e
d

 V
s
(t

)

 

 

 

Fig. 5. Excitation UWB pulse driving the conical antenna.  

3.1 Time domain characteristics  
In general, our FDTD simulation provides very useful visualization of the dynamic field 
distributions that can help identify undesired radiation and reflection sources. Here we 

consider an antenna with length  =45 mm, flare angle θ0=47o and dielectric cover εr=3. As 
you can see from Fig.6(a) the UWB pulse has started to travel out from the base of the 
conical antenna. The snapshot is taken after 2000 time steps or at t=0.4 nsec. After 5000 time 
steps, i.e., at t=1 nsec, the UWB pulse is propagating out of the conical antenna forming its 
far-field pattern shape as it is shown in Fig.6(b). The wave reflection at the dielectric - free 
space interface produces a wave that travels back to the antenna. The mismatch between the 
antenna and the feed produces a second reflection but the resulting standing wave dampens 
out very slowly. Figure 6(c) shows the field distribution after 9000 time steps, i.e. t=1.8 nsec. 
The main Gaussian UWB pulse has been absorbed by the PML surrounding the simulation 
space but we see some small ringing arising from the imperfect mismatch between source 
and antenna impedances. These are not reflected from the PML region and within another 
2000 steps (i.e. at t=2.2 nsec) have been totally absorbed.   
The main purpose of a Time-Domain study is to characterize the distortion introduced by 
the antenna, in terms of the angular coordinates and the excitation waveform. In narrow-
band operation, it is assumed that the antenna radiates identical signals in all directions. In 
UWB operation, this cannot be taken for granted. The UWB antenna is excited by an 
incident signal whose waveform undergoes a distortion induced by the antenna. This 
distortion can be quantified using the correlation between the incident signal and the 
radiated one in certain direction, which illustrates the fidelity of the antenna in that 
direction (Sibille et. al., 2006). For evaluating waveform distortions caused by our dielectric 
covered conical antenna, we examine the degree of similarity between source pulse and 
received pulse waveforms in several propagation directions. Figure 7 shows that the 
radiated pulses, in several elevation angles ┠V, is not very different from the excitation signal 
and therefore, antenna’s fidelity in the time-domain have been achieved. Nevertheless, a 
late-time ringing is observed which can be attributed to the nonlinear far-field phase over 
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the frequency bandwidth. The received pulses are a bit larger due to the fact that the 
antenna has filtered all frequencies outside the impedance bandwidth.  The longer duration 
of the received pulses indicates lower achievable data-rates while the shape distortion can 
make the detection process more difficult. Proper channel models can be used to study these 
effects (Molisch, 2003). 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. FDTD simulation snapshots of the electric field strength after 2000 time steps (a), 5000 
time steps (b) and 9000 time steps (c).    
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Fig. 7. Excitation and radiated pulses versus the elevation angle. It can clearly be seen that 
the radiated signals are elevation angle dependent. 

3.2 Frequency domain characteristics    

In this subsection, we present our parametric study concerning the impedance, VSWR and 

maximum gain of the spherically covered conical antenna varying the dielectric constant εr 

of the cover material or the cone flare angle.   

As it is seen in Fig.9, the impedance bandwidth (VSWR < 2 or input return loss S11< -10 dB) 

of the covered antenna, with dielectric of εr=3, increases as the flare angle increases until 

reaches its maximum at θ0=47o. As it is expected, the corresponding real part of input 

impedance (Figure 8) varies with the flare angle. It is observed that an optimum flare angle 

θ0=47o exists for 50 Ω matched impedance in a frequency band from about 5.5 to 17 GHz. 

Therefore, the designed antenna can provide more than 100% impedance bandwidth. 
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Fig. 8. Input impedance for various flare angles and εr=3.0. 
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Figure 10, shows the evolution of maximum gain in the elevation plane (E-plane) versus 
frequency. Gain gradually increases with frequency from 10 dBi to about 14 dBi in the 
frequency range from 5.5 to 8.5 GHz and remains almost frequency independent at 14 dBi in 
the frequency range from 8.5 to 17 GHz. 
Furthermore, the power radiation patterns in the elevation plane are calculated in the above 
frequency range, although for brevity, only the patterns at 4.5, 6.5, 8 and 10 GHz are shown 
in Fig.11. Obviously, the power radiation patterns present quasi-perfect omni-directional 
(monopole-like) behaviour but gradually degrade with increasing frequency. The radiation 
lobe enlarges downwards up to 6.5 GHz, and above 10 GHz a ‘null’ appears near θ=35o 
while the beamwidth decreases slowly with frequency. These variations are attributed to the 
fact that the antenna’s electrical size increase with frequency. It is also observed that the 
radiation patterns are slightly upward looking. This feature could be useful for radar sensor 
network applications. 
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Fig. 9. Simulated VSWR for various flare angles and εr=3.0. 
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Fig. 10. Maximum gain for various flare angles and εr=3.0. 
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(a)  f =4.5 GH                                                       (b)  f =6.5 GHz 

        

    

(c) f = 8 GHz                                                      (d) f =10 GHz 

Fig. 11. Computed radiation patterns in the elevation plane at f=4.5, 6.5, 8.0, 10.0 GHz.  The 
flare angle and relative dielectric constant are taken to be to θ=47o and εr=3, respectively. 

The influence of the dielectric cover on the frequency domain characteristics of the 
designed antenna are investigated next. For a conical antenna with fixed flare angle 
θ0=47o, five materials of increasing dielectric constants εr = 1, 2.2, 3, 4.4 and 9.8 have been 
considered.  
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Fig. 12. Input impedance for various flare angles and εr=3.0. 

As it is seen in Figs.12 and 13, the ultra wide-band characteristics of the antenna are not 
sensitive to the variation of dielectric constant εr. Some ripples appeared in both real part of 
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impedance and VSWR are smoothed out when the dielectric cover is present. As it is seen, 
when εr is reasonably small, the antenna’s input impedance remains close to a constant (~50 
Ω) within a wide frequency band. However, because of the dielectric-air interface, the 
reflection and scattering at the end of the conical radiator is stronger making the antenna 
less matched to free space. Consequently, a wide range of dielectric materials can be used to 
construct the spherical cover of the antenna. Obviously, low conductivity material is 
preferred in order to minimize the dielectric loss. Figure 14 illustrates the frequency 
dependence of the maximum gain for covers of different dielectric constant. As it is seen, the 
maximum gain remains almost frequency independent in a wide range of frequency for all 
materials. However, as the dielectric constant increases, the maximum gain decreases. 
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Fig. 13. Simulated VSWR for various flare angles and εr=3.0. 
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Fig. 14. Maximum gain for various flare angles and εr=3.0. 
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4. Conclusion  

In this Chapter, we present a FDTD code in spherical coordinates implemented in MATLAB 

in order to simulate the radiation characteristics of conical antennas. MATLAB provides an 

interactive environment for algorithm development, data post-processing and visualization. 

The spherical FDTD equations can be found using a modified Yee cell in spherical 

coordinates. Spherical Berenger’s perfectrly matched layer (PML) is applied as absorbing 

boundary condition where a parabolic conductivity profile in the spherical PML-region is 

used.  

The code is used to design and simulate a conical antenna covered by a spherical dielectric 

structure and placed above a large ground plane. This quasi-planar antenna is mechanically 

stable and, relative easy to build and integrate with the planar circuits.  Parametric studies 

lead to the optimum values of cone’s arm length  =45 mm and flare angle θ0=470 for 50 Ω 

matched impedance. This design achieves an impedance bandwidth from 5.5 to 17 GHz, 

with stable radiation patterns over this bandwidth. The radiation patterns are monopole-like 

and their frequency dependence is small in the whole UWB frequency band. A time domain 

study has shown that the antenna distorts the excitation pulse in a moderate way.  

It is observed that, the ultra wide-band characteristics of the antenna are not sensitive to the 

variation of dielectric constant εr of the spherical cover. Consequently, a wide range of 

dielectric materials can be used to construct the spherical cover of the antenna.  

Our study suggests that a spherical dielectric covered conical antenna holds sufficient 

potential as a low-profile antenna with very wideband characteristics. A very important 

need is to verify more of the simulation results with experimental measurements which will 

be reported in a future communication. 
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6. Appendix 

=================================================================== 

tmax=16384; % we use 2^{14} steps!  
k=0; mu_0 = 4*pi*1e-7; eps_0 = 1e-9/(36*pi);  
impedance_free=120*pi; c = 3e+8; Zline=50; 
% ==================== Define the antenna dimensions ======================= 
ant_length= 15;        % ant_length in units (dr) (mm). 
ant_angle = 48;        % flare angle:'ant_angle'Add (+1)for Matlab  
e_rel=3.0;             % relative dielectric constant of substrate  
tan_loss=0.0009d0;     % tangent loss of dielectric substrate 
sub_length=ant_length; % defines dielectric substrate length 
e_sub=e_rel*eps_0; 
impedance_medium=impedance_free/sqrt(e_rel); 
radial_view=121; % give the position (r,theta) to view the far-fields 
theta_view=46;  
% =================== Definitions and Constants ============================  
dr = 0.003;            % radial step 
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dth = 1.0*pi/180;      % angular step in radians 
dt = 0.2e-12;          % time step in sec 
tsample=0.2e-12; 
radial_max =201;       % simulation space radius 
theta_max = 91;        % simulation space angle 
b = 0.006;             % coaxial feed-line outer radius 
a = 0.003;             % coaxial feed-line inner radius 
fc = 6.5e+9;           % central frequency of the spectrum 
% Define the parameters of the Gaussian sine-modulated driving pulse.   
td = 64e-12; t0 = 4*td; once = 0; Vmax = 0.1; Rs = 50; Zin = 0; 
R0 = 1e-14;   % select the desired zero-angle reflection. 
Npml = 20;  % select number of PML layers   
sigma_space = - eps_0*c*log(R0)/16*dr*Npml^3;% free space conductivity  
sigmaM_space = mu_0*sigma_space/eps_0;       % impedance matching condition 
% calculate final conductivity for parabolic profile  
sigmaPML(Npml) = 24*sigma_space*Npml^2; 
sigmaMPML(Npml) = mu_0*sigmaPML(Npml)/eps_0;  
for I=1:(Npml-1) 
sigmaPML(I) = sigmaPML(Npml)*(I/Npml)^2;   
sigmaMPML(I) = mu_0*sigmaPML(I)/eps_0; 
end 
for I = 1:Npml %Initialize the PML domain for magnetic field  
   for J=1:theta_max 
   Hpr(I,J) = 0; 
   Hpt(I,J) = 0; 
   end 
end 
% ==============  Set up the conducting antenna surface ==================== 
sigma_cu = 5.8d+7; % conductivity of Cu:5.8e+7 mhos/m 
sigmaM_cu = mu_0*sigma_cu/eps_0;   
sigma_epsilon = 2.d0*pi*fc*e_sub*tan_loss; %dielectric substrate losses 
 sigmaM_epsilon = mu_0*sigma_epsilon/e_sub;        
for I =1:radial_max 
for J= 1:theta_max  
    if (J==ant_angle)  
        if (I <= ant_length)  
            sigma(I,J) = sigma_cu; 
            sigmaM(I,J) = sigmaM_cu;  
            elseif (I < radial_max-Npml+1) 
            sigma(I,J) = sigma_space; 
            sigmaM(I,J) = sigmaM_space;  
        else 
sigma(I,J) = sigmaPML(I + Npml - radial_max); 
sigmaM(I,J) = sigmaMPML(I + Npml - radial_max); 
end 
elseif (I < ant_length) 
    if (J < ant_angle)  
       sigma(I,J) = sigma_space; 
       sigmaM(I,J) = sigmaM_space; 
    else 
       sigma(I,J) = sigma_space;  
       sigmaM(I,J) = sigmaM_space;  
    end  
else 
if (I< radial_max-Npml+1) 
    sigma(I,J) = sigma_space;  
    sigmaM(I,J) = sigmaM_space;  
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else 
sigma(I,J) = sigmaPML(I + Npml - radial_max); 
sigmaM(I,J) = sigmaMPML(I + Npml - radial_max); 
  end  
end  
if ((I <=sub_length) & (J > ant_angle )& (J< (theta_max-1))) 
       sigma(I,J)= sigma_epsilon; 
       sigmaM(I,J)= sigmaM_epsilon; 
    end 
    end 
end  
for I = 1:radial_max %initialize, zero the fields for all free nodes  
    for J= 1:theta_max 
if ((I >= ant_length)|(J >= ant_angle)) 
    Er(I,J) = 0; Et(I,J) = 0;  Hp(I,J) = 0; 
    end  
  end  
end 
g1 = dt/(2*mu_0);   g2 = dt/(2*eps_0); 
g3 = dt/(dr*eps_0); g4 = dt/(dr*mu_0);    
I_factor = 2*pi*b; 
V_factor = (log(sin(ant_angle*pi/180))-log(1-cos(ant_angle*pi/180)))/log(2); 
%============================ Begin of time iterations =====================  
t = 0;   
fid=fopen('Etime.dat','wt'); 
while (t < (tmax*dt)) 
t = t + 0.5*dt; % For the first half time-step, update the H-field.  
for I = 3:(radial_max-Npml) 
  for J = 2:(theta_max-1)  
    if ((I >= ant_length)|(J >= ant_angle)) 
    g5 = sin(J*dth)/sin((J-1)*dth); 
    Da = (1-sigmaM(I,J)*g1)/(1+sigmaM(I,J)*g1); 
    Db = g4/(1+sigmaM(I,J)*g1); 
    ER1 = (g5*Er(I,J+1)-Er(I,J))/((I-1/2)*dth); 
    ET1 = (I/(I-1))*Et(I+1,J) - Et(I,J); 
    Hp(I,J) = Da*Hp(I,J) + Db*(ER1 - ET1); 
    end 
  end  
end    
J = theta_max; % H-field at the ground plane 
for I = 3:(radial_max-Npml) 
Da = (1-sigmaM(I,J)*g1)/(1+sigmaM(I,J)*g1); 
Db = g4/(1+sigmaM(I,J)*g1); 
ET1 = (I/(I-1))*Et(I+1,J) - Et(I,J); 
Hp(I,J) = Da*Hp(I,J)- Db*ET1; 
end 
for I = ant_length:(radial_max-Npml)  
Hp(I,1) = Hp(I,2); % H-field along the line of symmetry 
end 
layer = 1; % Update the H-field in the PML region  
for I = (radial_max-Npml+1):radial_max 
Dar = (1-sigmaMPML(layer)*g1)/(1+sigmaMPML(layer)*g1); 
Dbr = g4/(1+sigmaMPML(layer)*g1); 
Dat = Dar; Dbt = Dbr; 
for J = 2:(theta_max-1) 
g5 = sin(J*dth)/sin((J-1)*dth); 
ER1 = (g5*Er(I,J+1)-Er(I,J))/((I-1/2)*dth); 
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if(I == radial_max) 
ET1 = 0; 
else 
ET1 = (I/(I-1))*Et(I+1,J)- Et(I,J); 
end 
Hpr(layer,J) = Dar*Hpr(layer,J) - Dbr*ET1; 
Hpt(layer,J) = Dat*Hpt(layer,J) + Dbt*ER1; 
Hp(I,J) = Hpr(layer,J) + Hpt(layer,J); 
end 
layer = layer + 1; 
end 
J = theta_max; % Update H-field in the PML along the ground plane 
layer = 1; 
for I = (radial_max-Npml+1):radial_max 
Dar = (1-sigmaMPML(layer)*g1)/(1+sigmaMPML(layer)*g1); 
Dbr = g4/(1+sigmaMPML(layer)*g1); 
Dat = Dar; 
if(I == radial_max) 
   ET1 = 0; 
else 
   ET1 = (I/(I-1))*Et(I+1,J) - Et(I,J);  
end 
Hpr(layer,J) = Dar*Hpr(layer,J) - Dbr*ET1; 
Hpt(layer,J) = Dat*Hpt(layer,J); 
Hp(I,J) = Hpr(layer,J) + Hpt(layer,J); 
layer = layer + 1; 
end 
t = t + 0.5*dt; % For the second half time-step, update the E-fields.  
Vsource= Vmax*exp(-((t-t0)/td)^2)*sin(2*pi*fc*(t-t0)); 
Vin = 0; Iins = 0; 
for J = ant_angle:theta_max 
    Iin = I_factor*sin((J-1/2)*dth)*Hp(3,J); 
    Vdrv = Vsource- Rs*Iin; 
if ((t >= tsample) & (J > ant_angle)) 
   Vin = Vin + b*Et(3,J)*dth; 
   Iins = Iins + Iin; 
   if(J == (theta_max-1)) 
     Iins = Iins/(theta_max - ant_angle -1); 
     exVin = Vin; exIin = Iin; 
   end 
end 
Et(3,J) = Vdrv*(1/(b*log(2)))/sin((J-1/2)*dth); 
end 
k=k+1; 
piVin(k)=Vin; 
piIin(k)=Iin; 
for I = 4:(radial_max-Npml) % Step E-fields for free nodes 
    for J = 2:(theta_max-1) 
    if ((I >= ant_length)|(J >= ant_angle)) 
    g6 = sin((J-1/2)*dth)/sin((J-3/2)*dth); 
    Ca = (1 - g2*sigma(I,J))/(1 + g2*sigma(I,J)); 
   Cb = g3/(1 + g2*sigma(I,J)); 
    HPHI1 = (g6*Hp(I,J)- Hp(I,J-1))/((I-1/2)*dth); 
    HPHI2 = Hp(I-1,J)-((I-1/2)/(I-3/2))*Hp(I,J); 
    Er(I,J) = Ca*Er(I,J) + Cb*HPHI1;  
    Et(I,J) = Ca*Et(I,J) + Cb*HPHI2; 
    end 
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  end 
end 
% ================ Introduction of spherical dielectric cover ============== 
for I = 4:sub_length  
   for J = ant_angle:theta_max-1 
        g6 = sin((J-0.5)*dth)/sin((J-1.5)*dth);          
        g2_sub = 1/(1*e_sub/eps_0); 
        g3_sub = 1/(1*e_sub/eps_0); 
        Ca = (1 - g2_sub*sigma(I,J))/(1+ g2_sub*sigma(I,J)); 
        Cb = g3_sub/(1 + g2_sub*sigma(I,J)); 
        HPHI1 = (g6*Hp(I,J)- Hp(I,J-1))/((I-0.5)*dth); 
        HPHI2 = Hp(I-1,J)-((I-0.5)/(I-1.5))*Hp(I,J); 
        Er(I,J) = Ca*Er(I,J) + Cb*HPHI1; 
        Et(I,J) = Ca*Et(I,J) + Cb*HPHI2; 
    end 
 end 
J = theta_max;E  % Compute the fields at the ground plane 
for I = 4:(radial_max-Npml) 
Ca = (1 - g2*sigma(I,J))/(1+ g2*sigma(I,J)); 
Cb = g3/(1 + g2*sigma(I,J)); 
HPHI2 = Hp(I-1,J) - ((I-1/2)/(I-3/2))*Hp(I,J); 
Er(I,J) = 0; 
Et(I,J) = Ca*Et(I,J) + Cb*HPHI2; 
end 
J = theta_max; % Compute the E-fields for the substrate domain  
 for I = 4:sub_length 
     g2_sub = 1/(1*e_sub/eps_0); 
     g3_sub = 1/(1*e_sub/eps_0); 
     Ca = (1 - g2_sub*sigma(I,J))/(1+ g2_sub*sigma(I,J)); 
     Cb = g3_sub/(1 + g2_sub*sigma(I,J)); 
     HPHI2 = Hp(I-1,J) - ((I-1/2)/(I-3/2))*Hp(I,J); 
     Er(I,J) = 0; 
     Et(I,J) = Ca*Et(I,J) + Cb*HPHI2; 
end 
for I = ant_length:(radial_max-Npml) %E-field along line of symmetry 
    Ca = (1 - g2*sigma(I,1))/(1 + g2*sigma(I,1)); 
    Cb = g3/(1+g2*sigma(I,1)); 
    HPHI1 = (Hp(I,2) - Hp(I,1))/((I-1/2)*dth); 
    Er(I,1) = Ca*Er(I,1) + Cb*HPHI1; 
    Et(I,1) = 0; 
end 
layer = 1; % Update the E-fields in the PML region  
for I = (radial_max-Npml+1):radial_max 
   for J = 2:(theta_max-1) 
   g6 = sin((J-1/2)*dth)/sin((J-3/2)*dth); 
   Car = (1 - g2*sigmaPML(layer))/(1 + g2*sigmaPML(layer)); 
   Cbr = g3/(1 + g2*sigmaPML(layer)); 
   Cat = Car; Cbt = Cbr; 
   HPHI1 = (g6*Hp(I,J) - Hp(I,J-1))/((I-1/2)*dth); 
   HPHI2 = (Hp(I-1,J) - ((I-1/2)/(I-3/2))*Hp(I,J)); 
   Er(I,J) = Cat*Er(I,J) + Cbt*HPHI1; 
   Et(I,J) = Car*Et(I,J) + Cbr*HPHI2; 
   end 
layer = layer + 1; 
end 
layer = 1; %E-field in the PML region at the ground plane 
J = theta_max; 
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for I = (radial_max-Npml+1):radial_max 
Car = (1 - g2*sigmaPML(layer))/(1 + g2*sigmaPML(layer)); 
Cbr = g3/(1 + g2*sigmaPML(layer)); 
HPHI2 = (Hp(I-1,J) - ((I-1/2)/(I-3/2))*Hp(I,J)); 
Er(I,J) = 0; Et(I,J) = Car*Et(I,J) + Cbr*HPHI2; 
layer = layer + 1; 
end 
Etheta(k)=Et(radial_view,theta_view); 
Radial_view=151; tt=t/1e-12; 
for sJ=1:theta_max-1 
    EthetaT(sJ,k)=Et(radial_view,sJ); 
end 
end 
fclose(fid); 
table=[tt; Et(radial_view, theta_view)]; 
%========== Spherical to rectangular coordinates transformation ============   
for I=1:radial_max 
  for J=1:theta_max-1 
  x= radial_max +round((I*sin((J-1)*dth))); 
  x2 = (2*radial_max+1) - x; y = 1 + round((I*cos((J-1)*dth))); 
  Ecart(x,y) = Et(I,J); Ecart(x2,y) = Et(I,J); 
  end 
end 
for I=1:(2*radial_max-1) 
   for J = 1:radial_max 
   EcartNew(I,J) = Ecart(I,J); 
   end 
end 
Imin = 2; Imax = 2*radial_max - 2; Jmin = 2; Jmax = radial_max-1; 
for I = Imin:Imax 
   for J = Jmin:Jmax 
      if ((Ecart(I,J)=0)&(radial_max*cos((I-radial_max)*dth*91/151)+25>= J)) 
      ItempLo = I-1; ItempHi = I+1; 
      while ((Ecart(ItempLo,J) == 0) & (ItempLo > 1)) 
        ItempLo = ItempLo-1; 
      end 
      while ((Ecart(ItempHi,J) == 0) & (ItempHi < 2*radial_max -1)) 
        ItempHi = ItempHi + 1; 
      end 
      M = Ecart(ItempLo,J); N = Ecart(ItempHi,J); 
      if(M == 0) 
        temp1 = N; 
      elseif(N == 0) 
        temp1 = M; 
      else 
        temp1 = sign(M+N)*sqrt(abs(M*N)); 
      end 
      JtempLo = J-1; JtempHi = J+1; 
      while ((Ecart(I,JtempLo)= 0) & (JtempLo > 1)) 
       JtempLo = JtempLo-1; 
      end 
      while ((Ecart(I,JtempHi)= 0) & (JtempHi < radial_max)) 
      JtempHi = JtempHi + 1; 
      end 
      M = Ecart(I,JtempLo); N = Ecart(I,JtempHi); 
      if(M == 0) 
      temp2 = N; 
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      elseif(N == 0) 
      temp2 = M; 
     else 
     temp2 = sign(M+N)*sqrt(abs(M*N)); 
     end 
     if (temp1==0) 
     EcartNew(I,J) = temp2; 
     elseif(temp2 == 0) 
     EcartNew(I,J) = temp1; 
     else 
     EcartNew(I,J) = sign(temp1+temp2)*sqrt(abs(temp1*temp2)); 
     end 
  end 
  end 
  EcartNew(1,radial_max)=1.0; EcartNew(2,radial_max)= -1.0;   
end 
%======================== 3D time evolution of E-field ===================== 
I=1:2*radial_max-1; J=1:radial_max;  
x(I) = I; y(J) = J; 
surfl(y(J), x(I), EcartNew(I,J)) 
xlabel('Y-axis cm'), ylabel('X-axis cm') 
zlabel('Etheta V/m') 
shading interp; colormap bone  
%==========================  Frequency-Domain Analysis ===================== 
t_val=0.2e-12:0.2e-12:0.2e-12*tmax; 
dt = t_val(2) - t_val(1); t0 = t_val(1); V_val=piVin; I_val=piIin; 
iplot = 1; ipad = 0; omega_plot_max =2*pi*10e+9; omin=2; omax=61; 
central_f=14; % omega (14)corresponds to frequency 6.5 GHz! 
Vft_power,Vft,omega,iflag] =  
get_Fourier_transform(dt,t0,V_val,iplot,ipad,omega_plot_max);%Call FFT 
iflag=0; N=length(Vft); 
[Ift_power,Ift,omega,iflag] = ... 
 get_Fourier_transform(dt,t0,I_val,iplot,ipad,omega_plot_max); 
Z_FT=complex(zeros(1,N),zeros(1,N)); cutoff=1e-25; 
for m=1:N 
    if(abs(Ift(m)< cutoff)) 
        Z_FT(m)=0; 
    else 
        Z_FT(m)=Vft(m)/Ift(m); 
    end 
end 
j=1:N; Z=Z_FT(j); % Impedance Matrix 
imath=sqrt(-1); phase=exp(-imath*0.5*omega*dt); 
ZTR1=Vft./Ift; ZTR=ZTR1.*phase; 
Re=real(ZTR); Im=imag(ZTR); Zabs=abs(ZTR); 
plot(omega(omin:omax)/(2*pi*1e9),Re(omin:omax),'k-.') 
xlabel('frequency (GHz)'); ylabel('Impedance (Ohms)'); 
GAMMA=(ZTR-Zline)./(ZTR+Zline);      % Reflection coefficient   
RLoss=20*log10(abs(GAMMA));          % Input Return Loss in (dB) 
VSWR=(1+abs(GAMMA))./(1-abs(GAMMA)); % Voltage standing wave ratio 
plot(omega(omin:omax)/(2*pi*1e9),VSWR(omin:omax),'k-.') 
xlabel('frequency (GHz)'); ylabel('VSWR'); 
FeedPower=0.5*real(Vft.*conj(Ift)); % Input Power versus frequency   
omeg=omega(central_f); 
plot(omega(omin:omax)/(2*pi*1e9),RLoss(omin:omax),'k-.') 
xlabel('Frequency (GHz)'); ylabel('Return Loss (dB)');  
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% ==========================Directivity & Gain =============================  
iflag=0; % used in the FFT-routine   
for J=2:theta_max-1 
    itime=1:k; 
    iplot_new=0; 
    Etheta_val=EthetaT(J,itime); 
    EthetaJft_power,EthetaJft,omega,iflag] = ... 
    get_Fourier_transform(dt,t0,Etheta_val,iplot_new,ipad,omega_plot_max); 
    Gain=(2*pi/impedance_medium)*EthetaJft_power./FeedPower; 
    Gain_theta(J,:)=Gain; Gain_Max(J)=max(Gain(:)); 
    Directivity(J,:)=EthetaJft_power; 
end 
J=2:theta_max-1; itime=1:k; 
Gain_elevation=Gain_theta(J,itime); 
     for itime=omin+1:omax; 
         GMax_F(itime)=max(Gain_elevation(:,itime)); 
     end   
plot(omega(omin:omax)/(2*pi*1e9),10*log10(GMax_F(omin:omax)),'k.') 
xlabel('Frequency (GHz)'); ylabel('Maximum Gain (dBi)');  
for itime=1:k; 
    step=1; arg=2:(theta_max-1); 
    f=Directivity(arg,itime);%Directivity as a function of θ and time-step  
g=sin(arg.*pi/180); fun=f*g; 
table = cumtrapz(fun)*step*pi/180; % Integration over angle theta 
integral=table(theta_max-2)-table(1); intg(itime)=integral; 
end  
%======================= Power Radiation Pattern ========================== 
theta_max=91; radial_max=0; 
rmin=-20; rticks=10; 
line_style='-'; 
theta1=1:theta_max-1; 
FFP= Directivity(theta1,central_f); 
D11=10*log10(FFP./max(FFP)); 
th1=[1:length(D11)]'; 
hpol = polar_dB(th1,D11,rmin,radial_max,rticks,line_style);  
hold on; 
th1=[1:length(D11)]'; 
hpol = polar_dB(360-th1,D11,rmin,radial_max,rticks,line_style);  
 

Table 1. FDTD simulation of a dielectric covered conical uwb antenna in MATLAB. 
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