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1. Introduction

In 2004, graphene, a single layer of carbon atoms arranged in a hexagonal lattice,
has been experimentally realized by A. K. Geim and K. S. Novoselov (Novoselov et al.,
2004). In graphene, the conduction and valence bands touch each other at Dirac point
(DP) with a double-cone structure (Novoselov et al., 2004). Near DP, the dispersion
of electron is linear with two branches (Novoselov et al., 2004). The valence electron
dynamics in such a truly two-dimensional (2D) material is governed by a massless Dirac
equation. So graphene exhibits many unique electronic properties (Beenakker, 2008;
Castro Neto et al., 2009), including half-integer and unconventional quantum Hall effect
(Zhang et al., 2005), observation of minimum conductivity (Novoselov et al., 2005), and Klein
tunneling (Katsnelson et al., 2006). The optical-like behaviors of electron waves in graphene
have also drawn considerable attention recently, such as focusing (Cheianov et al., 2007),
collimation (Park et al., 2008a), subwavelength optics (Darancet et al., 2009), Bragg reflection
(Ghosh et al., 2009), and Goos-Hänchen effect (Beenakker et al., 2009; Zhao et al., 2010). In
this regard, one of the recent work is to investigate the guided modes in monolayer graphene
waveguide, by analogy of optical waveguides (Zhang et al., 2009). The exotic properties of the
graphene waveguide are found in two different cases of classical motion and Klein tunneing
(Zhang et al., 2009). Similar behaviors also happened to the transmission of Dirac-like
electron in 2D monolayer graphene barrier at nonzero angle of incidence (Chen and Tao,
2009). The modulation of the transmission gap by the incidence angle, the height, and width
of potential barrier may lead to potential applications in graphene-based electronic devices
(Chen and Tao, 2009). The electronics waves in graphene can also be treated as the guided
waves in an optical fibre, i.e., graphene based electronic fibre (Wu, 2011). The graphene analog
of the optical device, the fibre optic, has also been demonstrated both experimentally and
numerically in a p − n junction (Williams et al., 2011).
On the other hand, the DP with double-cone structure in photonic crystals (PCs) for the
Bloch states is found from the similarity of the photonic bands of the 2D PCs with the
electronic bands of solids. Several novel optical transport properties near the DP have
been investigated, such as conical diffraction (Peleg et al., 2007), "pseudodiffusive" scaling
(Sepkhanov et al., 2007), photon’s Zitterbewegung (Zhang, 2008), and perfect Klein tunneling
(Bahat-Treidel et al., 2010a). Up to now, the dynamics of Dirac-like excitations in 2D PCs
(honeycomb lattices) have been well studied when the propagation equation is linear.
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However, the nonlinear dynamics has drawn little attention in the 2D PCs by present. The
first study of nonlinear dynamics in honeycomb lattices was conducted in (Peleg et al., 2007),
demonstrating gap solitons, which had no overlap with Bloch modes residing in the vicinity
of the Dirac points. Subsequently, the nonlinear version of the massless Dirac equation
in honeycomb lattices were studied with the Dirac approximation (Ablowitz et al., 2009;
Haddad et al., 2009). The nonlinear interactions can also break down the Dirac dynamics
in honeycomb photonic lattices (Bahat-Treidel et al., 2010b), open a gap between the first two
bands which can support a gap soliton (Bahat-Treidel et al., 2008).
In optical system, Wang et al. have shown that, the analogy phenomenon of Dirac point
with double-cone structure can be realized in the negative-zero-positive index metamaterial
(NZPIM) (Wang et al., 2009a). It is further found that the light field near DP possesses of
pseudodiffusive property obeying the 1/L scaling law (Wang et al., 2009a). Subsequently,
they study the Zitterbewegung of optical pulses near the Dirac point inside a NZPIM
(Wang et al., 2009b). The transmission gap, Bragg-like reflection, and Goos-Hänchen shifts
near the DP inside a NZPIM slab was further studied comprehensively by Chen et al.
(Chen et al., 2009). In addition, when the thermal emission frequency is close to the DP, the
spectral hemispherical power of thermal emission in layered structures containing NZPIM
is strongly suppressed and the emission can become a high directional source with large
spatial coherence (Wang et al., 2010). Shen et al. have studied the guided modes in NZPIM
waveguide (Shen et al., 2010a), in which the properties of the guided modes are analogous to
the propagation of electron waves in graphene waveguide (Zhang et al., 2009). These unique
results suggest that many exotic phenomena in graphene can be simulated by the relatively
simple optical NZPIM.
Recently, the nonlinear optical response of graphene has been another interesting subject.
It has been predicted that the graphene exhibits a strongly nonlinear optical behavior at
microwave and terahertz frequencies (Mikhailov, 2007). At higher, optical frequencies one can
also expect an enhanced optical nonlinearity as, due to graphene’s band structure, interband
optical transitions occur at all photon energies. Hendry et al. have performed the first
measurements of the coherent nonlinear optical response of single- and few-layer graphene
using four-wave mixing (Hendry et al., 2010). Their results demonstrate that graphene
exhibits a very strong nonlinear optical response in the near-infrared spectral region. All
the results will stimulate much research on the studies of the nonlinear optical response of
graphene. Based on the facts of optics-like phenomena of electron wave in graphene and the
similarly nonlinear optical dynamics of Dirac equation in 2D PCs, Shen et al. have studied
the nonlinear surface waves (Shen et al., 2010b) and the nonlinear guided modes (Shen et al.,
2011) near the DP in NZPIM. For the nonlinear NZPIM waveguide, when the nonlinearity is
self-focusing, there exists an asymmetric forbidden band near DP which can be modulated
by the strength of the nonlinearity. However, the self-defocusing nonlinearity can completely
eliminate the asymmetric band gap (Shen et al., 2011).
This chapter presents a review on the propagation of nonlinear plasmonics in NZPIM. The
chapter is organized as follow. In Sec. 2, the nonlinear surface wave is discussed at the
interface between a nonlinear conventional dielectric media and a linear NZPIM. By analogy
of electron wave in monolayer graphene waveguide, the guided modes in NZPIM waveguide
is studied in Sec. 3 by the graphic method. In Sec. 4, the nonlinear guided modes are
investigated in NZPIM waveguide with a nonlinear dielectric media substrate. Finally, we
make brief prospects of the research and conclusion of this chapter in Sec. 5 and 6, respectively.
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2. Nonlinear surface waves near the DP in NZPIM

Surface waves, which propagate along the interface between two media and decay in
transverse direction, were previously studied at the interface between metal and dielectric
medium (Kivshar, 2008). In such systems, the permittivity of the metal is negative and then
only the TM-mode surface waves can exist. The TM-mode surface waves can also exist in
nonlinear ferromagnetic and antiferromagnetic materials (Wang and Awai, 1998). Surface
waves can also propagate in negative refractive metamaterial with simultaneous negative
permittivity and negative permeability (Smith et al., 2000). Following the seminal work on
the linear TE- and TM-modes surface waves and the nonlinear surface modes in metamaterial
(Ruppin, 2000; Shadrivov et al., 2003; 2004), some very recent studies have illustrated that the
nonlinear surface wave becomes a more interesting topic from the physical point of view,
due to a host of new phenomena in comparison with the linear surface wave. For example,
Xu et. al. (Xu et al., 2009) have investigated the nonlinear surface polaritons in anisotropic
Kerr-type metamaterials. Very lately, we also discovered the bistable and negative lateral
shifts in Kretschmann configuration (Chen et al., 2010), where the nonlinear surface waves
can be excited at a Kerr nonlinear metamaterial-metal interface.
In this section, we present a comprehensive study of the properties of the nonlinear surface
waves at the interface between semi-infinite media of two types, nonlinear conventional
dielectric and linear NZPIM, and demonstrate a number of unique properties of surface waves
near the DP in a NZPIM.

2.1 Dispersion equation of the nonlinear surface waves

We consider an interface between the nonlinear conventional medium in the x > 0 region and
the linear NZPIM in the x < 0 region. The permittivity and permeability are ǫNL

1 and µ1 for
the nonlinear conventional medium and

ǫ2(ω) = 1 −
ω2

ep

ω2 + iγeω
, (1)

µ2(ω) = 1 −
ω2

mp

ω2 + iγmω
, (2)

for the NZPIM (Wang et al., 2009a; Ziolkowski, 2004), respectively. ω2
ep and ω2

mp are the
electronic and magnetic plasma frequencies, and γe and γm are the damping rates relating
to the absorption of the material. Here we assume γe = γm = γ ≪ ω2

ep, ω2
em. It is important

that when ωep = ωem = ωD and γ = 0 (no loss), then ǫ2(ω) = µ2(ω) = 1 − ω2
D/ω2, which

indicates both ǫ2(ωD) and µ2(ωD) may be zero simultaneously. ωD is the frequency of the
optical DP (corresponding wavelength is λD = 2πc/ωD), where two bands touch each other
forming a double cone structure. In this case, the linear dispersion near the DP, ω ≈ ωD, can
be written as

κ(ω) =
ω − ωD

υD
=

2(ω − ωD)

c
, (3)

due to the fact that κ(ωD) ≈ 0 and υD ≃ c/2 at the DP, where c is the light speed in vacuum.
Near the DP, the light transport obeys the massless Dirac equation as follows (Wang et al.,
2009a):

[

0 −i( ∂
∂x − i ∂

∂y )

−i( ∂
∂x + i ∂

∂y ) 0

]

Ψ =

(

ω − ωD

vD

)

Ψ, (4)
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Fig. 1. (Color online). The transverse profile of the nonlinear surface waves: (a) µ2 > 0 and
(b) µ2 < 0.

where Ψ =

(

Ez1(x, y, ω)
Ez2(x, y, ω)

)

are the eigenfunctions of the electric fields with the same k(ω).

We consider the TE-mode electric field in this paper, and the propagation of the surface waves
obey the following nonlinear differential equations

∂2Ey

∂x2 − (κ2 − κ2
0ǫNL

1 µ1)Ey = 0, x > 0, (5)

∂2Ey

∂x2 − κ2
2 Ey = 0, x < 0, (6)

where κ0 = ω/c is the wave vector in vacuum, ǫNL
1 = ǫL

1 + α|E1|2, ǫL
1 is the linear permittivity

and α is the nonlinear index of medium 1, κ is the propagation constant of the nonlinear
surface wave, and κ2

1 = κ2 − κ2
0ǫL

1 µ1 and κ2
2 = κ2 − [2(ω − ωD)/c]2 are the decay constants

in nonlinear medium and NZPIM, respectively. We only consider a self-focusing nonlinearity
with α > 0. It should be strengthened that for the self-defocusing nonlinearity α < 0, the
transverse electronic field will very different from the case of self-focusing nonlinearity. The
solution of Eqs. (5) and (6) have the following form

E1y =
κ1

κ0

√

2
αµ1

sech[κ1(x − x0)], x > 0, (7)

E2y = E2 exp(κ2x), x < 0. (8)

Applying the continuity of wave function at the interface x = 0, we obtain two equations as
follow

E2 =
κ1

κ0

√

2
αµ1

sech(κ1x0), (9)

κ2

µ2
E2 =

κ2
1

µ1κ0

√

2
αµ1

tanh(κ1x0)

cosh(κ1x0)
, (10)

which yields

tanh(κ1x0) =
µ1κ2

µ2κ1
, (11)
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Fig. 2. (Color online). Variation of Ω with αE2
2/2, for three different value ǫL

1 when (a)
|µ2| > 1 (µ2 < 0) and (b) |µ2| < 1 (µ2 > 0).

and the dispersion equation

κ2

κ2
0
=

µ1

µ2
2 − µ2

1

[

µ2
2ǫL

1 +
µ2

2αE2
2

2
− 4µ1(1 −

ωD

ω
)2

]

. (12)

From Eq. (11), we know that the transverse profile of the nonlinear surface waves depend
on the sign of µ2. The maximum of the dielectric fields amplitude are located at the interface
when µ2 < 0 and located inside the nonlinear dielectric medium when µ2 > 0, as shown in
Fig. 1.
The power fluxes is described by the Poynting vector P = 1/2

∫

(�E × �H∗)zdx = PNL + PL

with

PNL =
κκ1

µ0µ2
1κ2

0ωα

(

1 +
µ1κ2

µ2κ1

)

, (13)

PL =
κκ2

1

2µ0µ1µ2κ2κ2
0ωα

[

1 −
(

µ1κ2

µ2κ1

)2
]

, (14)

are the power fluxes in the nonlinear medium and NZPIM, respectively.
The dispersion equation Eq. (12) tells us that increasing αE2

2 will reduce or increase the
effective wave index κ/κ0 . For the surface waves, the propagation constant should be larger
than wave vector in the nonlinear medium and NZPIM

κ2
> κ2

0ǫL
1 µ1, κ2

>

[

2(ω − ωD)

c

]2

= 4κ2
0(1 −

ωD

ω
)2. (15)

Define a parameter Ω = ω/ωD, and then the permittivity and the permeability of NZPIM are
ǫ2 = µ2 = 1 − 1/Ω

2. Eq. (12) also gives the following necessary conditions for the nonlinear
surface wave existence, since κ2/κ2

0 should be positive:

µ2
2ǫL

1 +
µ2

2αE2
2

2
− 4µ1(1 −

ωD

ω
)2

< 0, (|µ2| < µ1), (16)

µ2
2ǫL

1 +
µ2

2αE2
2

2
− 4µ1(1 −

ωD

ω
)2

> 0, (|µ2| > µ1). (17)

In the next, we will study the nonlinear surface waves in NZPIM when |µ2| < µ1 and |µ2| >
µ1, respectively.
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Fig. 3. (Color online). Dispersion relation of Ω versus normalized propagation constant, for
three different αE2

2/2 when (a) |µ2| > 1 and (b) |µ2| < 1.

2.2 Pass and stop bands, power fluxes, and group velocity of the nonlinear surface waves

Case A: |µ2| < µ1. From the Eqs. (15) and (16), we obtain the following condition for the
surface propagation:

ǫL
1 < 4(1 − 1

Ω
)2 − αE2

2
2

. (18)

For simplicity, we assume that µ1 = 1 in this article. Since |µ2| < 1, Ω obeys
√

2/2 < Ω < 1
or Ω > 1. We rewrite Eq. (18) as

AΩ
2 + BΩ + C > 0, (19)

where A = 4 − (ǫL
1 +

αE2
2

2 ), B = −8, C = 4, and a = ǫL
1 +

αE2
2

2 > 1 for general dielectric
medium. The solution of Eq. (19) is

Ω >
4 + 2

√
a

4 − a
, 1 < a < 4. (20)

Case B: |µ2| > µ1. From the Eqs. (15) and (17), we obtain that

ǫL
1 > 4(1 − 1

Ω
)2 − αE2

2
2

. (21)

Since |µ2| > 1, Ω obeys 0 < Ω <
√

2/2. Similarly, we can get the solution of Eq. (21)

4 − 2
√

a

4 − a
< Ω <

√
2

2
, a > 1. (22)

From Eqs. (20) and (22), we know that there is a forbidden band near the optical dirac point for
the nonliear surface waves. For

√
2/2 < Ω < 2, the nonlinear surface wave do not exist. The

existence regions of the nonlinear surface waves also depend on the frequency properties and
the nonlinear value αE2

2/2, i.e., the passbands and stopbands, as shown in Fig. 2. It is shown
that when |µ2| > 1 (µ2 < 0) the passbands of the surface waves have a maximum frequency
limit

√
2/2ωD . The increase of the nonlinear part αE2

2/2 reduces the lower frequency limit Ω

and widens the passband, as shown in Fig. 2 (a). From Fig. 2 (b), we know that, the passbands
have a minimum frequency limit, and the increase of the nonlinear part αE2

2/2 increases the
minimum frequency limit and reduces the passbands when |µ2| < 1 (µ2 > 0). For that the
value of the nonlinear part αE2

2/2 can be modulated by increasing or decreasing the power, so
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Fig. 4. (Color online). Group velocity Vg versus normalized frequency, for three different
αE2

2/2 when (a) |µ2| > 1 and (b) |µ2| < 1.

it maybe have potential applications in optical devices and guided wave optics.
In Fig. 3, we plot the frequency dispersion of the nonlinear surface waves. We find that
the normalized propagation constants will increase when the normalized frequency increase
for both µ2 > 0 and µ2 < 0. The dispersion curves are always positive in the existence
regions which means the nonlinear surface waves are always forward with a positive power
fluxes. This is very different from the frequency dispersion in left-hand materials, whereas
the dispersion curves may be negative under some conditions (Shadrivov et al., 2004). Fig. 3
also shows that the dispersion curves have a maximum (minimum) limit for the parameter Ω

when |µ2| > 1 (|µ2| < 1), which corresponding to the forbidden bands described in Fig. 2.
As to the case |µ2| > 1 (negative index), we can see the upper limit for the parameter Ω is
Ω =

√
2/2.

Group velocity is an important parameter for the propagation of the surface waves. It can
describe the direction of the power fluxes. We rewrite dispersion relation Eq. (12) as

κ = κ0

{

µ1

µ2
2 − µ2

1

[

µ2
2ǫL

1 +
µ2

2αE2
2

2
− 4µ1(1 −

ωD

ω
)2

]}1/2

, (23)

which yields that

dκ

dω
=

κ

ω
+

κ2
0

2κ
{( µ1

µ2
2 − µ2

1

)
′
[µ2

2ǫL
1 +

µ2
2αE2

2
2

− 4µ1(1 −
ωD

ω
)2]

+
µ1

µ2
2 − µ2

1

[(2ǫL
1 + αE2

2)µ2µ
′
2 − 8µ1(1 −

ωD

ω
)(1 − ωD

ω
)
′
]}, (24)

where (
µ1

µ2
2−µ2

1
)
′
= − 2µ1µ2µ

′
2

(µ2
2−µ2

1)
2 , µ

′
2 = 2ω2

D/ω3, and (1 − ωD
ω )

′
= ωD/ω2. The group velocity can

be represented as
Vg = dω/dκ = (dκ/dω)−1. (25)

In Fig. 4, we plot the group velocity of the nonlinear surface wave in two different conditions
|µ2| > 1 and |µ2| < 1. We know that the group velocity of the nonlinear surface waves is
always positive which means the power fluxes is always positive and the surface waves are
always forward. When µ2 < 0, the group velocity will decrease when the frequency increase.
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Fig. 5. (Color online). Total power versus normalized frequency, for three different αE2
2/2

when (a) |µ2| > 1 and (b) |µ2| < 1.

It will reach zero at the point ω =
√

2/2ωD, which means the nonlinear surface waves is
forbidden at this point. When ω =

√
2/2ωD , |µ2| = µ1 = 1 (µ2 = −1), we have κ → ∞ and

the nonlinear surface wave stops. The group velocity will decrease when the nonlinear part
αE2

2/2 increase. However, they will all stop at the point ω =
√

2/2ωD, as shown in Fig. 4
(a). Fig. 4 (b) shows that the group velocity has a lower frequency limit for a given ǫL

1 and
the nonlinear part αE2

2/2 when |µ2| < 1. This lower frequency limit imply a power threshold
of the surface waves. The lower frequency limit will increase when the linear permittivity
of ǫL

1 or the nonlinear part αE2
2/2 increase. This result can also be obtained from Fig. 2 (b),

the passbands have a minimum frequency limit, and the increase of the nonlinear part αE2
2/2

increases the minimum frequency limit and reduces the passbands. We also find the group
velocity will increase firstly and then decrease when it reaches the maximum. The group
velocity is always positive when µ2 < 0 which means the nonlinear surface waves are always
forward with positive power fluxes.
We also plot the power fluxes of the nonlinear surface waves in Fig. 5 by calculating Eqs.
(13) and (14). It is shown that the power flux will approximately linear decrease near the
Dirac point when µ2 < 0, as shown in Fig. 5 (a). And the power flux will be zero when
ω =

√
2/2ωD for that the nonlinear surface waves stops at this point. We also find that

increase the nonlinear part αE2
2/2 can effectively increase the power fluxes of the nonlinear

surface waves when the frequency is near the Dirac point. When µ2 > 0, from Fig. 5 (b) we
can see that the power fluxes have a frequency threshold for a given ǫL

1 and the nonlinear
part αE2

2/2. This threshold will increase when the nonlinear part αE2
2/2 increase, and this

result also shown in Fig. 4 (b). The power flux will also increase when the frequency increase.
However, the power fluxes will decrease when the nonlinear part αE2

2/2 increase for the same
frequency.

3. Guide modes in NZPIM waveguide

In 2009, Zhang et al. have investigated the guided modes in monolayer graphene waveguide,
by analogy of optical waveguides (Zhang et al., 2009). In this section, we will investigate
systemically the guided modes in NZPIM waveguide by using the graphic method. For the
fast wave guided modes, it is shown that the fundamental mode is absent when the angular
frequency is smaller than the DP. Whereas the NZPIM waveguide behaves like conventional
dielectric waveguide, when the angular frequency is larger than the DP. The unique properties
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of the guided modes are very similar as the propagation of electronic wave in graphene
waveguide, corresponding to the classical motion and the Klein tunneling Zhang et al. (2009).

Fig. 6. Schematic structure of negative-zero-positive index metamaterial (NZPIM)
waveguide, where the core is the air with the thickness is d and the cladding is the so-called
NZPIM.

3.1 Model and basic equation

We consider a waveguide structure of NZPIM, as shown in Fig. 6, where the core is the air
with the thickness is d and the cladding is the so-called NZPIM, the optical wave with angle θ
is incident upon the waveguide, the direction of the guide modes is z axis, and there are two
types of situations: (a) when the incident angle is less than the total internal reflection (TIR)
angle, the modes become radiation modes; (b) if the incident angle is more than the critical
angle, there will exist oscillating guided modes. What as follows we will focus on the latter
case. The TIR angle is defined by sin θc = κ2/κ1, where κ1 = ω/c is the wavevector in the air,
and κ2 = (ω − ωD)/υD is the wave vector of the NZPIM near the DP (Wang et al., 2009a).
We consider the transverse electric (TE) guided modes [TM modes can be obtained in the same
way], the electric fields in the three regions can be written as

ψA(x) =

⎧

⎨

⎩

Aeαxeiβy, x < 0,
[B cos(κxx) + C sin(κxx)] eiβy, 0 < x < d,
De−α(x−d)eiβy, x > d,

(26)

where κx = κ1 cos θ, β = κ1 sin θ is the propagation constant of the guide modes, and α =
√

β2 − κ2
2 is the decay constant in the cladding region.

Applying the continuity of wave function at the interface x = 0 and x = d, we obtain the
corresponding dispersion equation as follow:

tan(κxd) =
2µ1µ2ακx

µ2
2κ2

x − µ2
1α2

. (27)

We make Eq. (27) in dimensionless form

F(κxd) =
2µ1µ2(κxd)

√

(κ1d)2 − (κxd)2 − (κ2d)2

µ2
2(κxd)2 − µ2

1[(κ1d)2 − (κxd)2 − (κ2d)2]
. (28)
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Fig. 7. (Color online). Graphical determination of κxd for fast wave guided modes when
w < wD. The solid and dashed curves correspond to tan (κxd) and F(κxd), respectively. The
initial parameters are ωD = 2π × 10GHz, ω = 0.8ωD which means the total reflection angle
is θc = 30◦, the thickness of the core are (a) d = 10cm and (b) d = 1cm.

The dispersion Eq. (28) is a transcendental one and cannot be solved analytically, so we
propose a graphical method to determine the solution of κxd for the guided modes. We will
discuss the properties of the guided modes in two cases ω < ωD and ω > ωD, respectively.

3.2 Fast wave guided modes

Case 1: ω < ωD. The critical angle is defined as

θc = sin−1
[

2
(ωD

ω
− 1

)]

(29)

with the necessary condition 2
3 ωD < ω < ωD (Chen et al., 2009).

As shown in Fig. 7 (a), we plot the dependencies of tan(κxd) and F(κxd) on κxd. The
intersections show the existence of the guided modes, as shown in Fig. 8 (a), (b), and (c),
corresponding to the TE2, TE3, and TE4 modes, respectively. We find that for some waveguide
parameters, the lower-order mode TE1 can not coexist with higher-order guided modes. So
we can not solve TE1 mode in the same graph Fig 7 (a). This is because that the waveguide
parameters used in Fig. 7 (a) does not satisfy the dispersion relation of Eq. (30) when
m = 1. We can reduce the thickness of the waveguide to obtain the TE1 mode in the NZPIM
waveguide, as shown in Fig. 8 (d), which corresponds to the dispersion relation graphic of
Fig 7 (b) with the waveguide thickness is d = 1cm.
Another interesting property of the guided modes is that the absence of fundamental TE0
mode for any parameters of the NZPIM waveguide, which is a novel property different from
that in conventional waveguide. The unique property is similar as the guide modes of electron
waves in graphene waveguide, where the fundamental mode is absent in the Klein tunneling
case (Zhang et al., 2009). For the TE modes, we can write the dispersion relation Eq. (27) as

κxd = mπ + 2φ, m = 0, 1, 2, ... (30)

where
φ = arctan (

µ1α

µ2κx
), (31)

is negative (angular frequency is smaller than the Dirac point, µ2 < 0, corresponding
Klein tunneling in graphene), which represents the phase retardation upon the total internal
reflection at the interface between air and the NZPIM. From Eq. (30), we know that for the
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Fig. 8. (Color online) The wave function of guided modes as a function of distance of NZPIM
waveguide corresponding to the intersection in Fig. 7 when ω < ωD. (a) TE2: κxd = 3.41; (b)
TE3: κxd = 6.87; (c) TE4: κxd = 10.49; (d) TE1: κxd = 1.03.

fundamental mode (m = 0), it does not meet with the required dispersion relation. In fact, the
condition for the guided waves to exist in a slab waveguide, has a simple physical meaning:
the round-trip accumulation of phase due to wave propagation across the layer, 2φprop,
including the phase retardation upon the total internal reflection, 2φre f l, should be equal to
a multiple of 2π (Shadrivov et al., 2005). When the angular frequency is smaller than the
Dirac point (the permittivity and the permeability are both negative, NZPIM can be treated as
left-handed material), the total phase change does not satisfy the required dispersion relation
of Eq. (30), and no fundamental guided modes exist (Shadrivov et al., 2003; 2005). This result
is also shown in Fig. (11), where we plot the propagation constant of the guided modes as
a function of incident frequency near the DP. It is obviously that the dispersion of TE0 mode
only exist when ω > ωD.
Case 2: ω > ωD. The critical angle is defined as

θc = sin−1
[

2
(

1 − ωD

ω

)]

(32)

with the necessary condition ωD < ω < 2ωD (Chen et al., 2009). Similarly, we obtain the
guided modes of the NZPIM waveguide by using the graphical method, as shown in Fig.
9. It is shown that when ω > ωD, the properties of the NZPIM waveguide can be treated
as a conventional dielectric waveguide. From Fig. 10, we can see that the fundamental odd
and even guided modes can coexist with higher-order modes within the same waveguide for
general parameters, which is very different from the case when ω < ωD. Under this condition,
it corresponds to the guided modes in graphene waveguide in classical motion (Zhang et al.,
2009).
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Fig. 9. (Color online) Graphical determination of κxd for fast wave guided modes when
ω > ωD. The solid and dashed curves correspond to tan (κxd) and F(κxd), respectively. The
initial parameters are ωD = 2π × 10GHz, ω = 4ωD/3 which means the total reflection angle
is θc = 30◦, the thickness of the core is d = 10cm.

−0.1 0 0.1 0.2
0

5

10

15

20

x

E
(x

)

TE
0
 

(a) 
−0.1 0 0.1 0.2

−10

−5

0

5

10

x

E
(x

)

TE
1
 

(b) 

−0.1 0 0.1 0.2

−6

−4

−2

0

2

4

6

x

E
(x

)

TE
2
 

(c) −0.1 0 0.1 0.2
−5

0

5

x

E
(x

)

TE
3
 

(d) 

Fig. 10. (Color online) The wave function of guided modes as a function of distance of
NZPIM waveguide corresponding to the intersection in Fig. 9 when ω > ωD. (a) TE0:
κxd = 3.03; (b) TE1: κxd = 6.06; (c) TE2: κxd = 9.07; (d) TE3: κxd = 12.07.

In order to show further the unique properties of guides modes near the DP in NZPIM
waveguides, we plot the dispersion of the guided modes when the incident frequency varies
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from ω < ωD to ω > ωD in Fig. 11. As discussed above, we can see that TE0 mode only
exist when ω > ωD. In addition, another important and interesting property of the guided
modes is that there exists an asymmetric forbidden band for the dispersion. The band will also
become wider when the order of the guided modes increases with increasing the incidence
angle. The result indicates that the modes are not continuous near the DP. This behavior on
the forbidden band discussed here is very similar to the transmission gap in the NZPIM slab
(Chen et al., 2009). It seems that the guided modes near the DP are quite different from the
negative refractive index metamaterial waveguides discussed in Ref. (Shadrivov et al., 2003),
though one can divide NZPIM two parts with positive index and negative index respectively
by DP, which corresponds to ω > ωD and ω < ωD.

TE0
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TE2
TE2

Ω � ΩD

5.8� 1010 6.0� 1010 6.2� 1010 6.4� 1010 6.6� 1010 6.8� 1010
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220

Ω

Β

Fig. 11. (Color online) The propagation constant β versus the incident frequency ω near the
DP in the NZPIM waveguide.

3.3 Slow wave guided modes

We also find that when ω < ωD, the NZPIM waveguide can propagate surface guided
modes-slow wave. In this case, the function of the modes in core become sinh and cosh with
the imaginary transverse κx , and the electric fields in three regions can be written as

ψA(x) =

⎧

⎨

⎩

Aeαxeiβy, x < 0,
[B cosh(κxx) + C sinh(κxx)] eiβy, 0 < x < d,
De−α(x−d)eiβy, x > d,

(33)

where κx is the transverse decay constant in the core region, and β2 = κ2
1 + κ2

x is the

propagation constant of the slow wave guided modes, and α =
√

β2 − κ2
2 is the decay constant

in the cladding region.
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Fig. 12. (Color online). The wave function of guided modes as a function of distance of
NZPIM waveguide. The initial parameters are ωD = 2π × 10GHz, ω = 0.69ωD, and the
thickness of the core is d = 10cm.(a) TE0: κxd = 13.8109; (b) TE1: κxd = 13.8112.

Similarly, we obtain the corresponding dispersion equation of this system

tanh(κxd) = − 2µ1µ2ακx

µ2
2κ2

x + µ2
1α2

. (34)

Write Eq. (34) in dimensionless form as follow

F(κxd) = − 2µ1µ2(κxd)
√

(κ1d)2 + (κxd)2 − (κ2d)2

µ2
2(κxd)2 + µ2

1[(κ1d)2 + (κxd)2 − (κ2d)2]
. (35)

As discussed above, we also propose a graphical method to solve the surface guided modes.
We find that only fundamental odd and even surface guided modes can exist in the waveguide
for some parameters. As shown in Fig. 12, higher-order surface modes are forbidden except
the TE0 and TE1 surface guided modes. These results obtained here also predict the surface
mode of electrons and holes in graphene waveguide.
We emphasize that these results discussed here do extend the investigations (Shadrivov et al.,
2003; 2005) and applications (Tsakmakidis et al., 2007) of the waveguide containing only
left-handed material. On one hand, we can control the properties of guides modes for the
potential applications by adjusting the angular frequency with respect to the DP. On the other
hand, our work will also motivate the further work to simulate many exotic phenomena in
graphene with relatively simple optical benchtop experiments, based on the links between
Klein paradox and negative refraction (Güney and Meyer, 2009).

4. Tunable band gap near the Dirac point in nonlinear negative-zero-positive index

metamaterial waveguide

The optical-like behaviors of electron waves in graphene have also drawn considerable
attention recently, for example, graphene based electronic fibre and waveguide. In Sec.
3, we have studied the guided modes in NZPIM waveguide (Shen et al., 2010a), in which
the properties of the guided modes are analogous to the propagation of electron waves in
graphene waveguide (Zhang et al., 2009). However, the nonlinearity may affect the properties
of guided modes near the DP in a special manner. In this section, we investigate systemically
the guided modes in nonlinear NZPIM waveguide. When the nonlinearity is self-focusing,
there exists an asymmetric forbidden band near DP which can be modulated by the strength
of the nonlinearity. However, the self-defocusing nonlinearity can completely eliminate the
asymmetric band gap.
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Fig. 13. (Color online) Schematic structure of the NZPIM waveguide with a nonlinear
substrate, the core thickness is d.

4.1 Model and basic equation

Considering a nonlinear NZPIM waveguide structure, as shown in Fig. 13. The core of the
waveguide is conventional dielectric medium with the thickness d, the permittivity and the
permeability are ǫ2 and µ2. The substrate is the nonlinear medium with the permittivity and
the permeability are ǫNL

1 = ǫL
1 + α|E1|2 and µ1, where ǫL

1 is the linear refractive index and α is
the nonlinear coefficient index, α > 0 (α < 0) corresponding to self-focusing (self-defocusing)
nonlinearity. The cladding is NZPIM with the permittivity and the permeability are ǫ3 = µ3 =
1 − ω2

D/ω2 (Shen et al., 2010a; Wang et al., 2009a).
We only consider the transverse electric (TE) nonlinear guided modes. When the substrate
has a self-focusing nonlinearity α > 0, the electric fields in three regions can be written as

ψ(x) =

⎧



⎨



⎩

k1
k0

√

2
αµ1

sech[k1(x − x0)], x < 0,

Aeik2(x−d)+ Be−ik2(x−d), 0 < x < d,
Ce−k3(x−d), x > d,

(36)

where k2
1 = β2 − k2

0ǫL
1 µ1 and k2

3 = β2 − [2(ω − ωD)/c]2 are the transverse decay indexes in
substrate and cladding, k2

2 = k2
0ǫ2µ2 − β2 is the transverse wave vector of the guided modes

in core and it is real, β is the propagation constant of the nonlinear fast wave guide modes.
For convenience, we assume the nonlinear substrate and the core are non-magnetic medium
with µ1 = µ2 = 1.
Applying the continuity of wave function at the interfaces x = 0 and x = d, we obtain the
corresponding dispersion equation as follow:

tan(k2d) =
µ1µ2k2k3 − µ2µ3k1k2 tanh(−k1x0)

µ1µ3k2
2 + µ2

2k1k3 tanh(−k1x0)
, (37)

where x0 = − 1
k1

sech−1
[

k0
k1

√

αµ1
2 (cos k2d +

µ2k3
µ3k2

sin k2d)C

]

is the position of the maximum of

the amplitude in nonlinear substrate, C being the amplitude of the electric field at the interface
x = d. In the whole paper, we make the assumption C = 1. Next, we will discuss the
properties of the nonlinear guided modes by using the graphic method (Shen et al., 2010a;
Zhang et al., 2009) near DP in two cases ω < ωD and ω > ωD, respectively.
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Fig. 14. (Color online) Guided modes in nonlinear NZPIM waveguide when
ω = 0.8ωD < ωD, α = 0.003, ǫL

1 = 1.2 and ǫ2 = 2. (a) TE1: κ2d = 0.93864, d = 1cm; (b) TE2:
κ2d = 3.46529, d = 10cm; (c) TE3: κ2d = 6.95257, d = 10cm; (d) TE4: κ2d = 10.5005, d = 10cm.

4.2 Nonlinear fast wave guided modes

Case 1: ω < ωD, and ǫ3 = µ3 < 0. As shown in Fig. 14, we find that the fundamental TE0
mode is absent for any parameters of the nonlinear NZPIM waveguide. The unique property
is very different from the case of conventional nonlinear waveguide where the lowest-order
TE0 guided mode is always exist (Stegeman et al., 1984). The lowest-order guided mode
of the nonlinear NZPIM waveguide is TE1 mode, which can not coexist with higher-order
guided modes for some waveguide parameters. For the TE0 guided modes, it should satisfy
the condition k2d = 2φre f l1 + 2φre f l2 (Shadrivov et al., 2003; 2005; Shen et al., 2010a), where
2φre f l1 and 2φre f l2 are the phase retardation upon the total internal reflection at the interface
between core and cladding and at the interface between core and substrate. In previous works
(Shadrivov et al., 2003; 2005; Shen et al., 2010a), both 2φre f l1 and 2φre f l2 are negative, then the
TE0 mode does not exist. In a linear waveguide with left handed material cover, 2φre f l1 is
negative but 2φre f l2 is positive, which may support the TE0 mode with appropriate physical
parameters. However, the nonlinear physical mechanism in this work is different from the
linear dynamics (Wang et al., 2008). We emphasize that the nonlinear NZPIM waveguide can
not support the TE0 mode due to the nonlinear dispersion when the angular frequency is
smaller than DP.
Case 2: ω > ωD, and ǫ3 = µ3 > 0. In Fig. 15, we plot the nonlinear guided modes when the
angular frequency is larger than DP. It is shown that the properties of the nonlinear NZPIM
waveguide can be treated as a conventional nonlinear dielectric waveguide. From Fig. 15, we
can see that the nonlinear NZPIM can support the fundamental guided mode [Fig. 15 (a)],
though it can not coexist with higher-order modes within the same waveguide for general
parameters. This result is different from the case that the nonlinear NZPIM waveguide can not
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Fig. 15. (Color online) Guided modes in nonlinear NZPIM waveguide when
ω = 4/3ωD > ωD, α = 0.003, ǫL

1 = 1.2 and ǫ2 = 2. (a) TE0: κ2d = 0.960548, d = 0.4cm; (b)
TE1: κ2d = 3.23447, d = 10cm; (c) TE2: κ2d = 6.47046, d = 10cm; (d) TE3: κ2d = 9.70986,
d = 10cm.

support the fundamental mode when the angular frequency is smaller than DP. Although the
physical mechanism of nonlinear dispersion is different from the linear case, we can see that
the nonlinear guided modes can also be treated as electronic wave in graphene waveguide
(Zhang et al., 2009), corresponding to the Kelin tunneling (lack of fundamental mode) and
classical motion (support fundamental mode), respectively.
Since the maximum of the magnitude at the interface between a nonlinear media and a linear
media locates inside the nonlinear media (Shadrivov et al., 2004), the guided modes not only
have mode energy in the core, but also a peak mode energy in the nonlinear substrate region,
as shown in both Fig. 14 and Fig. 15. This result is identical with the conventional nonlinear
waveguide (Stegeman et al., 1984).
We further show the unique properties of nonlinear guides modes near DP in the nonlinear
NZPIM waveguide with the angular frequency varying from ω < ωD to ω > ωD in Fig. 16
when the nonlinearity is self-focusing [Fig. 16 (a) and (b)] and self-defocusing [Fig. 16 (c) and
(d)], respectively. When the nonlinearity is self-focusing, like the behaviors of light in linear
NZPIM (Chen et al., 2009; Shen et al., 2010a), there also exists an asymmetric forbidden band
for the dispersion [Fig. 16 (a)] which means the nonlinear guided modes are not continuous
near DP. The band will become narrower when the order of the guided modes increases which
is opposite to the case that the band will become wider when the order of the guided modes
increases in linear NZPIM waveguide (Shen et al., 2010a). Another important and interesting
phenomenon is that the bang gap can be modulated by the strength of the nonlinearity. It is
obviously that the band gap will become wider when the nonlinear index α increases [Fig.
16 (b)]. The band gap will also become wider with the increase of the wave intensity when

285Nonlinear Plasmonics Near the Dirac Point 
in Negative-Zero-Positive Index Metamaterials – Optical Simulations of Electron in Graphene

www.intechopen.com



18 Will-be-set-by-IN-TECH

the nonlinear index α is fixed (not shown). However, the self-defocusing nonlinearity can
eliminate the asymmetric band gap, leading to the continuation of the guided modes near
DP, as shown in Fig. 16 (c) and (d). The field in the core of the NZPIM waveguide with
self-defocusing nonlinearity is represented in the form of csch function, and its dispersion can
be obtained in the same way. The tunable gap may have potential application in electron wave
filters in nonlinear graphene fibre optics (Chen and Tao, 2009).

Fig. 16. (Color online) The propagation constant β versus the incident frequency ω near the
DP in the nonlinear NZPIM waveguide, the core thickness is d = 0.1, ǫL

1 = 1.2, ǫ2 = 2, and
the nonlinearity are (a) α = 0.0001, (b) α = 0.0008, (c) α = −0.0001, and (d) α = −0.0008.

4.3 Nonlinear surface guided modes

We also find that when ω < ωD, the nonlinear NZPIM waveguide can propagate nonlinear
surface guided modes-slow wave. In this case, the wave vectors in core, substrate and
cladding are all imaginary. The electric fields in three regions can be written as

ψ(x) =

⎧



⎨



⎩

k1
k0

√

2
αµ1

sech[k1(x − x0)], x < 0,

A cosh[k2(x − d)] + B sinh[k2(x − d)], 0 < x < d,
Ce−k3(x−d), x > d,

(38)
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where k2
1 = β2 − k2

0ǫL
1 µ1, k2

2 = β2 − k2
0ǫ2µ2, and k2

3 = β2 − [2(ω − ωD)/c]2 are the transverse
decay wave vectors in the substrate, core, and cladding, β is the propagation constant of the
slow wave guided modes.
Similarly, we obtain the following dispersion relation

tanh(κ2d) = −µ1µ2k2k3 − µ2µ3k1k2 tanh(−k1x0)

µ1µ3k2
2 − µ2

2k1k3 tanh(−k1x0)
. (39)

where x0 = − 1
k1

sech−1
[

k0
k1

√

αµ1
2 (cosh k2d +

µ2k3
µ3k2

sinh k2d)C

]

is the position of the maximum

of the amplitude in nonlinear substrate, C being the amplitude of the electric field at the
interface x = d.
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Fig. 17. (Color online) Slow wave guided modes in nonlinear NZPIM waveguide when
ω = 0.7ωD < ωD, the nonlinearity is α = 0.003, ǫL

1 = 1.2, ǫ2 = 2. (a) TE0: κ2d = 7.25054,
d = 0.5cm; (b) TE0: κ2d = 7.8406, d = 1cm; (c) TE1: κ2d = 3.36844, d = 1cm; (d) TE1:
κ2d = 3.42543, d = 5cm.

We plot the nonlinear slow waves guided modes in Fig. 17. We find that only the lowest order
even (TE0) or odd (TE1) surface guided modes can exist in the nonlinear NZPIM waveguide
which crucially depend on the physical parameters. When the core thickness is smaller, the
waveguide can only support TE0 mode surface wave [Fig. 17 (a)]. When the core thickness
getting bigger, the waveguide can support both the TE0 mode and the TE1 mode surface
waves [Fig. 17 (b) and (c)]. However, when the core thickness is larger, the waveguide
can only support the TE1 mode surface wave[Fig. 17 (d)]. Recent research showed that
the optically discrete and surface solitons in honeycomb photonic lattices can be regarded
as an optical analog of graphene nanoribbons (Molina and Kivshar, 2010). Surface solitons
(Savin and Kivshar, 2010a) and vibrational Tamm states (Savin and Kivshar, 2010b) at the
edges of graphene nanoribbons have also been reported recently. We hope that our results
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obtained here may also predict the nonlinear surface mode of electrons and holes in nonlinear
graphene waveguide.

5. Further work on optical DP in NZPIM

In the recent years, graphene supperlatices with periodic potential structures has drawn
considerable attention due to the fact that superlattices are very successful in controlling
the electronic structures of many conventional semiconducting materials (Tsu, 2005). Many
theoretical (Park et al., 2008a;b) and experimental (Sutter et al., 2008) works have been focus
on the devices of graphene-based superlattices. Wang et al. have presented the result on
a new DP which is exactly located at the energy which corresponds to the zero-averaged
wavenumber inside the one-dimensional (1D) periodic potentials (Wang and Zhu, 2010a;
Wang and Chen, 2011). The gap for the zero-averaged wavenumber is quite different from the
Bragg gap, which is analogous to the case of the one-dimensional PCs containing left-handed
and right-handed materials (Bliokh et al., 2009; Wang and Zhu, 2010b).
Based on the rapid developments in both theoretical and experimental works on
graphene-based superlattices, and the analogy phenomena between electron waves in
graphene and optics in NZPIM, the optical propagation in one-dimensional PCs containing
NZPIM will be an interesting and challenge task in the future. We will study the
transmission of optics through an one-dimensional PCs containing NZPIM, and predict
some novel properties, such as Goos-Hänchen shifts (Chen et al., 2009), zero-averaged index
gap (Wang and Zhu, 2010b), new Dirac gap, and Bragg gap etc. The propagation of
one-dimensional NZPIM PCs containing a nonlinear defect will be another significative
question as well.

6. Conclusion

In summary, we have investigated the nonlinear plasmonics in NZPIM and shown that the
dynamics of electron wave in graphene can be simulated by the analogy of optics in NZPIM.
The unique propagation of optics near the DP in NZPIM, such as frequency threshold of
nonlinear surface waves, and tunable band gap of the nonlinear guided modes, will lead to the
potential applications in guided wave optics, integral optics and optical-based devices. Our
results will also give the deeper understanding of several exotic phenomena in graphene. We
hope our work will motivate the further work to simulate and predict many exotic phenomena
in graphene with relatively simple optical experiments.
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ISSN 0034-6861

Cheianov, V. V.; Fal’ko, V. & Altshuler, B. L. (2007). The focusing of electron flow and a veselago
lens in graphene p-n junctions. Science, Vol. 315, No. 5816, Mar -2007, 1252-1255, ISSN
0036-8075

Chen, X. & Tao, J.-W. (2009). Design of electron wave filters in monolayer graphene by tunable
transmission gap. Appl. Phys. Lett., Vol. 94, No. 26, Jun -2009, 262102 (1-3), ISSN
0003-6951

Chen, X.; Wang, L.-G. & Li, C.-F. (2009). Transmission gap, Bragg-like reflection, and Goos-
Hänchen shifts near the Dirac point inside a negative-zero-positive index metamate-
rial slab. Phys. Rev. A, Vol. 80, No. 4, Oct -2009, 043839 (1-5), ISSN 1050-2947

Chen, X.; Wei, R.-R.; Shen, M.; Zhang Z.-F. & Li, C.-F. (2010). Bistable and negative lateral
shifts of the reflected light beam from Kretschmann configuration with nonlinear
left-handed metamaterials. Appl. Phys. B, Vol. 101, No. 1-2, May -2010, 283-289, ISSN
0946-2171

Darancet, P.; Olevano, V. & Mayou, D. (2009). Coherent electronic transport through graphene
constrictions: Subwavelength regime and optical analogy. Phys. Rev. Lett., Vol. 102,
No. 13, Mar -2009, 136803 (1-4), ISSN 0031-9007

Ghosh, S. & Sharma, M. (2009). Electron optics with magnetic vector potential barriers in
graphene. J. Phys.: Condens. Matter, Vol. 21, No. 29, Jul -2009, 292204 (1-8), ISSN 0953-
8984

Güney D. Ö. & Meyer, D. A. (2009). Negative refraction gives rise to the Klein paradox. Phys.
Rev. A, Vol. 79, No. 6, Jun -2009, 063834 (1-4), ISSN 1050-2947

Haddad L. H. & Carr, L. D. (2009). The nonlinear Dirac equation in Bose-Einstein condensates:
Foundation and symmetries. Phys. D, Vol. 238, No. 15, Jul -2009, 1413-1421, ISSN
0167-2789

Hendry, E.; Hale, P. J.; Moger, J.; Savchenko, A. K. & Mikhailov, S. A. (2010). Coherent
Nonlinear Optical Response of Graphene. Phys. Rev. Lett., Vol. 105, No. 9, Aug -2010,
097401 (1-4), ISSN 0031-9007

Katsnelson, M. I.; Novoselov, K. S. & Geim, A. K. (2006). Chiral tunnelling and the Klein
paradox in graphene. Nature Physics, Vol. 2, Feb -2006, 620-625, ISSN 1745-2473

289Nonlinear Plasmonics Near the Dirac Point 
in Negative-Zero-Positive Index Metamaterials – Optical Simulations of Electron in Graphene

www.intechopen.com



22 Will-be-set-by-IN-TECH

Kivshar, Y. S. (2008). Nonlinear optics: The next decade. Opt. Exp., Vol.16, No. 26, Dec-2008,
22126-22128, ISSN 1094-4087

Mikhailov, S. A. (2007). Non-linear electromagnetic response of graphene. Europhys. Lett., Vol.
79, No. 2, Jul -2007, 27002 (1-4), ISSN 0295-5075

Molina, M. I. & Kivshar, Y. S. (2010). Discrete and surface solitons in photonic graphene
nanoribbons. Opt. Lett., Vol. 35, No. 17, Sep -2010, 2895-2897, ISSN 0146-9592

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva,
I. V. & Firsov, A. A.(2004). Electric field effect in atomically thin carbon films. Science,
Vol. 306, No. 5696, Oct -2004, 666-669, ISSN 0036-8075

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Grigorieva, I. V.; Dubonos, S. V. & Firsov,
A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature
(London), Vol. 438, Nov -2005, 197-200, ISSN 0028-0836

Park, C.-H.; Yang, L.; Son, Y.-W.; Cohen, M. L. & Louie, S. G. (2008). Electron beam supercol-
limation in graphene superlattices. Nano Lett., Vol. 8, No. 9, Aug -2008, 2920-2924,
ISSN 1530-6984

Park, C.-H.; Yang, L.; Son, Y.-W.; Cohen, M. L. & Louie, S. G. (2008). Anisotropic behaviours of
massless Dirac fermions in graphene under periodic potentials. Nature Physics, Vol.
4, No. 3, Feb -2008, 213-217, ISSN 1745- 2473

Peleg, O.; Bartal, G.; Freedman,B.; Manela, O.; Segev, M. & Christodoulides, D. N. (2007).
Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett.,
Vol. 98, No. 10, Mar -2007, 103901 (1-4), ISSN 0031-9007

Ruppin, R. (2000). Surface polaritons of a left-handed medium. Phys. Lett. A, Vol. 277, No. 1,
Nov -2000, 61-64, ISSN 0375-9601

Savin, A. V. & Kivshar, Y. S. (2010). Surface solitons at the edges of graphene nanoribbons.
Europhys. Lett., Vol. 89, No. 4, Mar -2010, 46001 (1-6), ISSN 0295-5075

Savin, A. V. & Kivshar, Y. S. (2010). Vibrational Tamm states at the edges of graphene
nanoribbons. Phys. Rev. B, Vol. 81, No. 16, Apr -2010, 165418 (1-9) , ISSN 1098-0121

Shadrivov, I. V.; Sukhorukov, A. A. & Kivshar, Y. S. (2003). Guided modes in
negative-refractive-index waveguides. Phys. Rev. E, Vol. 67, No. 5, May -2003, 057602
(1-4), ISSN 1539-3755

Shadrivov, I. V.; Sukhorukov, A. A.; Kivshar, Y. S.; Zharov, A. A.; Boardman, A. D. & Egan, P.
(2004). Nonlinear surface waves in left-handed materials. Phys. Rev. E, Vol. 69, No. 1,
Jan -2004, 016617 (1-9), ISSN 1539-3755

Shadrivov, I. V.; Sukhorukov, A. A. & Kivshar, Y. S. (2005). Complete band gaps in
one-dimensional left-handed periodic structures. Phys. Rev. Lett., Vol. 95, No. 19, Nov
-2005, 193903 (1-4), ISSN 0031-9007

Shen, M.; Ruan, L.-X. & Chen, X. (2010). Guided modes near the Dirac point in negative-zero-
positive index metamaterial waveguide. Opt. Exp., Vol. 18, No. 12, May -2010,
12779-12787, ISSN 1094-4087

Shen, M.; Ruan, L.-X.; Chen, X.; Shi, J.-L.; Ding, H.-X.; Xi, N. & Wang Q. (2010). Nonlinear
surface waves near the Dirac point in negative-zero-positive index metamaterial. J. of
Opt., Vol. 12, N, 8, Aug- 2010, 085201 (1-5), ISSN 2040-8978

Shen, M.; Ruan, L.-X.; Wang, X.-L; Shi, J.-L. & Wang Q. (2011). Tunable band gap near the Dirac
point in nonlinear negative-zero-positive index metamaterial waveguide. Phys. Rev.
A, (accepted), ISSN 1050-2947

290 Graphene Simulation

www.intechopen.com



Nonlinear Plasmonics Near the Dirac Point in Negative-Zero-Positive Index Metamaterials –Optical Simulations of Electron in Graphene 23

Smith, D. R.; Padilla W. J., Vier, D. C.; Nemat-Nasser, S. C. & Schultz, S. (2000). Composite
Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev.
Lett., Vol. 84, No. 18, 4184-4187, May-2000, ISSN 0031-9007

Sepkhanov, R. A.; Bazaliy, Y. B. & Beenakker, C. W. J. (2007). Extremal transmission at the Dirac
point of a photonic band structure. Phys. Rev. A, Vol. 75, No. 6, Jun -2007, 063813 (1-5),
ISSN 1050-2947

Stegeman, G. I.; Seaton, C. T.; Chilwell, J. & Smith, S. D. (1984). Nonlinear waves guided by
thin films. Appl. Phys. Lett., Vol. 44, No. 9, May -1984, 830-832, ISSN 0003-6951

Sutter, P. W.; Flege, J. I. & Sutter, E. A. (2008). Epitaxial graphene on ruthenium. Nature
Materials, Vol. 7, No. 5, May -2008, 406-411, ISSN 1476-1122

Tsakmakidis, K. L.; Boardman, A. D. & Hess, O. (2007). ’Trapped rainbow’ storage of light in
metamaterials. Nature (London), Vol. 440, Nov -2007, 397-401, ISSN 0028-0836

Tsu, R. (2005), Superlattice to Nanoelectronics, Elsevier, ISBN: 978-0-08-044377-5, Oxford.
Wang, L.-G.; Wang, Z.-G.; Zhang, J.-X. & Zhu, S.-Y. (2009). Realization of Dirac point with

double cones in optics. Opt. Lett., Vol. 34, No. 10, May -2009, 1510-1512, ISSN
0146-9592

Wang, L.-G.; Wang, Z.-G. & Zhu, S.-Y. (2009). Zitterbewegung of optical pulses near the Dirac
point inside a negative-zero-positive index metamaterial. Europhys. Lett., Vol. 86, No.
4, Jun -2009, 47008 (1-5), ISSN 0295-5075

Wang, L.-G.; Li, G.-X. & Zhu, S.-Y. (2010). Thermal emission from layered structures containing
a negative-zero-positive index metamaterial. Phys. Rev. B, Vol. 81, No. 7, Jan -2010,
073105 (1-4) , ISSN 1098-0121

Wang, L.-G. & Zhu, S.-Y. (2010). Electronic band gaps and transport properties in graphene
superlattices with one-dimensional periodic potentials of square barriers. Phys. Rev.
B, Vol. 81, No. 20, May -2010, 205444 (1-9), ISSN 1098-0121

Wang, L.-G. & Zhu, S.-Y. (2010), The reversibility of the Goos-Hänchen shift near the
band- crossing structure of one-dimensional photonic crystals containing left-handed
metamaterials. Appl. Phys. B: Lasers and Optics, Vol.98, No. 2-3, Feb.-2010, 459-463,
ISSN 0946-2171

Wang, L.-G. & Chen, X. (2011). Robust zero-averaged wave-number gap inside gapped
graphene superlattices. J. Appl. Phys., Vol.109, No.3, Feb.-2011, 033710 (1-8), ISSN
0021-8979

Wang, Q. & Awai, I. (1998). Frequency characteristics of the magnetic spatial solitons on the
surface of an antiferromagnet. J. Appl. Phys., Vol.83, No.1, Jan.-1998, 382-387, ISSN
0021-8979

Wang, Z.-H.; Xiao, Z.-Y. & Li, S. P. (2008). Guided modes in slab waveguides with a left handed
material cover or substrate. Opt. Commun., Vol.281, No.4, Feb.-2008, 607-613, ISSN
0030-4018

Williams, J. R.; Low, Tony; Lundstrom, M. S. & Marcus C. M. (2011). Gate-controlled guiding
of electrons in graphene. Nature Nanotechnology, Vol.281, No.4, Apr-2011, 222-225,
ISSN 1748-3387

Wu, X. (2011). Electronic fiber in graphene. Appl. Phys. Lett., Vol. 98, No. 8, Feb -2011, 082117
(1-3), ISSN 0003-6951

Xu, G.-D.; Pan, T.; Zang, T.-C. & Sun, J. (2009). Nonlinear surface polaritons in anisotropic
Kerr-type metamaterials. J. Phys. D: Appl. Phys., Vol. 42, No. 4, Jan -2009, 045303 (1-7),
ISSN 1361-6463

291Nonlinear Plasmonics Near the Dirac Point 
in Negative-Zero-Positive Index Metamaterials – Optical Simulations of Electron in Graphene

www.intechopen.com



24 Will-be-set-by-IN-TECH

Zhao, L. & Yelin, S. F. (2010). Proposal for graphene-based coherent buffers and memories.
Phys. Rev. B, Vol. 81, No. 11, Mar -2010, 115441 (1-4), ISSN 1098-0121

Zhang, Y.; Tan, Y.-W.; Stormer, H. L. & Kim, P. (2005). Experimental observation of the
quantum Hall effect and Berry’s phase in graphene. Nature (London), Vol. 438, Nov
-2005, 201-204, ISSN 0028-0836

Zhang, X. (2008). Observing Zitterbewegung for photons near the Dirac point of a
two-dimensional photonic crystal. Phys. Rev. Lett., Vol. 100, No. 11, Mar -2008, 113903
(1-4), ISSN 0031-9007

Zhang, F.-M.; He, Y. & Chen, X. (2009). Guided modes in graphene waveguides. Appl. Phys.
Lett., Vol. 94, No. 21, May -2009, 212105 (1-3), ISSN 0003-6951

Ziolkowski, R. W. (2004). Propagation in and scattering from a matched metamaterial having
a zero index of refraction. Phys. Rev. E, Vol. 70, No. 4, Oct -2004, 046608 (1-12), ISSN
1539-3755

292 Graphene Simulation

www.intechopen.com



Graphene Simulation

Edited by Prof. Jian Gong

ISBN 978-953-307-556-3

Hard cover, 376 pages

Publisher InTech

Published online 01, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Graphene, a conceptually new class of materials in condensed-matter physics, has been the interest of many

theoretical studies due to the extraordinary thermal, mechanical and electrical properties for a long time. This

book is a collection of the recent theoretical work on graphene from many experts, and will help readers to

have a thorough and deep understanding in this fast developing field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ming Shen and Linxu Ruan (2011). Nonlinear Plasmonics Near the Dirac Point in Negative-Zero-Positive Index

Metamaterials–Optical Simulations of Electron in Graphene, Graphene Simulation, Prof. Jian Gong (Ed.),

ISBN: 978-953-307-556-3, InTech, Available from: http://www.intechopen.com/books/graphene-

simulation/nonlinear-plasmonics-near-the-dirac-point-in-negative-zero-positive-index-metamaterials-optical-

simu



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


