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1. Introduction 

Graphenes have attracted many physicists and/or chemists because of the beautiful 
structure and tunable electronic states. One of the remarkable properties is the high carrier 
mobility due to the famous Dirac point, in which the effective mass is theoretically zero 
(Novoselov, et al., 2004, 2005). The motion of electrons is described by pseudo relativistic 
effect, and new aspects on physics and chemistry of two-dimensional systems have been 
developed as nano-scale technology. Nowadays, there has been increasing interest of 
modified graphenes toward thin films, nano particles, adsorbance agents, and so on, as well 
as possible micro-electronic devises.  
On the other hand, magnetism of graphenes is another interesting theme, related to the early 
studies on so-called graphene ribbons. That is, some graphene derivatives are promising 
candidates for organic ferromagnets. The magnetic properties depend on topological 
conditions such as edges, pores, and defects. Toward a new type of ferromagnets, chemical 
modification of graphene is a highly challenging theme. Paramagnetism of graphitic 
polymers itself has been theoretically predicted, relating to the edge states, pores, and 
defects. However, it was not until band structures of modified graphenes revealed the 
existence of flat bands at the frontier levels that robust ferromagnetism has been highly 
expected from graphene-based skeletons. The edges, pores, and defects in these systems 
should be ordered so as to cause completely flat bands in the Hückel level. Hückel analysis 
on modified graphenes gives a good perspective toward the flat-band ferromagnetism. In 
this chapter, graphene-based ferromagnetism is analyzed by crystal orbital method. Recent 
advances in magnetic graphenes are reviewed in view of their electronic states.  

2. Methylene-edged graphenes 

It is well known that graphene ribbons with peculiar type of edges have polyradical 
character, of which flat bands cause ferromagnetic interactions. Fig. 1 shows three types of 
graphene ribbons. Fig. 1a is the famous graphene ribbons with two-sided acene (zigzag) 
edges. The magnetic ordering has been predicted based on the band structures. The HOCO 
(highest occupied crystal orbital) and LUCO (lowest unoccupied crystal orbital) contact and 
become flat at the wavenumber region |k|>2π/3 (Fujita et al., 1996). Thus, at least within 

www.intechopen.com



 
Graphene Simulation 

 

102 

the same edge, ferromagnetic interactions are expected. However, total magnetism in the 
acene-edged graphene ribbons is probably small, because spin moments at both sides tend 
to cancel each other. This is intuitively deduced from the conventional Heisenberg model. 
To avoid the spin-cancellation, hydrogen, oxygen and fluorine passivations have been 
suggested (Kusakabe & Maruyama, 2003; Maruyama & Kusakabe, 2004).  
Instead, Klein suggested methylene-edged graphene ribbons shown in Fig. 1b (Klein, 1994; 
Klein & Bytautas, 1999). Nowadays, these are called Klein edges. At least within the same 
edge, the Klein-edged graphenes are also expected to show ferromagnetic interactions due 
to the flatness of frontier bands at |k|<2π/3 (not |k|>2π/3). In this case, however, spin 
cancellation is also expected due to spin alternation in the bipartite lattice. While two-sided 
Klein edges cause spin cancellation, one-sided Klein edges shown in Fig. 1c are expected to 
show robust ferromagnetic interactions, because ferrimagnetic spin-polarized structures can 
be drawn by classical valence-bond theory. Although some studies predicted the 
antiferromagnetic states of the one-sided Klein edges with twisted or partially substituted 
methylene groups (Maruyama & Kusakabe, 2004), conservation of the planarity probably 
makes them ferromagnetic non-Kekulé polymers, and the electronic states are described by 
Wannier functions rather than conventional Bloch functions (Hatanaka, 2010a). Then, there 
appears one non-bonding band at the frontier level. The non-bonding band is completely 
flat within the Hückel approximation. Each Wannner function spans common atoms 
between the adjacent cells. This is necessary and sufficient condition for ferromagnetic 
interactions in conjugated π systems, similar to triplet biradicals. Non-cancelled spin 
alignment and itinerant ferromagnetism are expected due to the flat band.  
 

(a) (b) (c)

 

Fig. 1. Graphenes with (a) acene (zigzag)-, (b) two-sided Klein-, and (c) one-sided Klein 
edges.  

For simplicity, we first consider a small non-Kekulé polymer shown in Fig. 2. There are non-
bonding crystal orbitals (NBCOs) at the frontier level. They are completely degenerate 
under Hückel approximation. Each NBCO can be transformed into Wannier functions 
localized around each cell, as formulated below. 
We consider Bloch functions corresponding to the NBCO band:  
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(1) 

where the wavenumber k runs from –π to π, Ǎ is the cell index, N is the number of cells, and 

r is the index of atomic orbitals. Here we adopt the real part of Cr(k): 
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This procedure minimizes the exchange integral of the system. The Wannier function 
localized at the ǎ-th call is expressed by Equations (3) and (4): 
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where 

 .   (5) 

Each Wannier coefficient is a function of the integer Ǖ, which represents the difference from 
the ǎ-th cell. The Wannier functions should be normalized using a proper normalization 
factor, because the linear combinations of Bloch coefficients in Equation (2) are not always 

normalized to unity. Under Hückel approximation, the normalization factor is:  
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Wannier functions in the original paper are not normalized (Hatanaka, M. & Shiba, R., 2007; 
Hatanaka, 2010a). In the present review, however, we adopt the renormalized Wannier 
functions, and the exchange integrals are recalculated. Since each Wannier function 
coefficient ar(Ǖ) localizes at one or a few unit cells around the ǎ-th cell, ar(Ǖ) with |Ǖ|≥2 can 
be ignored. Then, the exchange integral Kij between the i-th and j-th Wannier functions is 
nontrivial only when |i-j| = 1: 
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(7) 

where (rs|tu) denotes the electron-repulsion integrals, and only one-centered integrals were 
taken into account in the approximation. The last expression results from Equation (2). From 
Equation (7), the exchange integrals of non-bonding extended systems are deduced from the 
amplitude pattern of their Wannier functions. The Bloch and Wannier functions can be 
calculated by usual secular equations and numerical integrals (Hatanaka, M. & Shiba, R., 
2007).  
The ǎ-th Wannier function ψǎ is schematically shown in Fig. 2. In general, Wannier functions 

decay rapidly with increase in distance from the central cell. However, in this case, we see 
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that the ǎ-th and (ǎ+1)-th Wannier functions span common atoms between the adjacent 

region. Then, the two-electron wavefunction ψǎψǎ+1 contains so-called ionic terms, in which 

two electrons are accommodated to the same atomic orbitals. While simultaneous 

occupation of two electrons with antiparallel spins is allowed in the same atomic orbital, 

occupation of electrons with parallel spins is forbidden due to the Pauli principle. Thus, in 

this system, high-spin state is preferred rather than low-spin state due to reduction of 

Coulomb repulsion.  

Klein-edged graphenes with n ladders are similarly analyzed as non-Kekulé polymers, as 

shown in Fig. 3. In these systems, amplitudes of the Wannier functions are mainly spread at 

upper and lower edges. When the number of ladders n increases, the amplitudes inside the 

graphene plane become small, and highly localize at the edges. Nevertheless, even if the 

number of ladders becomes infinite, each Wannier function spans common atoms between 

the adjacent cells, and thus, the ferromagnetic interactions are always positive. This means 

that the high-spin stabilities are attributed to itinerant character of edge states, which is 

described by the Wannier functions. Nowadays, it has been theoretically shown that the 

Wannier functions in such degenerate systems should be symmetric with respective to the 

central cell, and minimize the exchange integral of the systems (Hatanaka, 2011). Then, the 

exchange integral is calculated from square of the amplitude pattern of the two-electron 

wavefunction ψǎψǎ+1, as schematically shown in Fig. 4. The exchange integral K versus the 

number of ladders n is shown in Fig. 5. The exchange integral is calculated from the 

Wannier coefficients, taking count of one-centered integrals. The exchange integral 

converges to a positive value, and thus, the system is expected to be ferromagnetic in the 

balk order. For chemical stability, carbonyl edges isoelectonic with methylene groups are 

promising. 

 

ψȤ ψȤ  +1

 ψȤψȤ  +1

-0.577 -0.577-0.239-0.239 -0.239 -0.239

0.717 0.717
-0.139-0.139-0.139 -0.139

N

 

Fig. 2. Wannier functions of the simplest non-Kekulé polymer.  This is a simple model for 
Klein-edged graphenes.  
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Fig. 3. Wannier functions of one-sided Klein edges with the number of ladders n=0, 1, 2, 3, 5, 
and 10. 
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Fig. 4. Construction of two-electron wavefunstions from adjacent Wannier functions of one-
sided Klein edges.  
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Fig. 5. Exchange integral K of one-sided Klein-edges per unit versus the number of ladders n. 

3. Porous graphenes 

Fig. 6 shows porous graphene. This compound was synthesized as a two-dimensional 
nanostructure (Bieri et al., 2009). They synthesized porous graphene by aryl-aryl coupling 
reactions on Ag (111) surface, and observed STM (scanning tunneling microscope) image of 
the honeycomb structures. In 2010, band structures of porous graphenes were investigated 
by several workers (Du et al., 2010; Hatanaka, 2010b; Li et al., 2010). The Hückel-level 
dispersion and DOS (density of states) are shown in Figs. 6 and 7 (Hatanaka, 2010b). The 
dispersion suggests semi-conductive band gaps, and the frontier bands are so flat as to be 
available for ferromagnetism. It is interesting that both HOCO and LUCO become flat at all 
the wavenumber region. Thus, this material is expected to show ferromagnetism when it is 
oxidized or reduced by proper dopants.  
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Fig. 6. Porous graphene and the dispersion based on Hückel level of theory. 
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Fig. 7. DOS (density of states) of porous graphene based on Hückel level of theory. 

The flat bands result from nodal character of phenylene units. Fig. 8 shows amplitude 
patterns of selected Hückel molecular orbitals of cyclohexa-m-phenylene, which is 
considered as a unit group in the porous graphene. We see that the HOMO and LUMO have 
nodes at each phenylene unit. Orbital interactions between node-node linkages are zero 
within the Hückel approximation. Thus, both HOCO and LUCO in porous graphene 
become flat at the frontier levels. It is interesting that eigenvalues ε of HOMO (ǂ+0.618ǃ) and 
LUMO (ǂ-0.618ǃ) in cyclohexa-m-phenylene are identical to those of butadiene. Indeed,  
 

HOMO 

ε=Ș+0.618ș
LUMO 

ε=Ș-0.618ș

LUMO+11

ε=Ș-1.618ș
HOMO-11
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Fig. 8. Selected molecular orbitals of cyclohexa-m-phenylene. There are nodes at the 
peripheral sites. ǂ and ǃ are Coulomb and resonance integral, respectively. 
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apart from the normalization factors, amplitude patterns of butadiene’s HOMO and 

LUMO spread between each phenylene unit. Moreover, eigenvalues of HOMO-11 

(ǂ+1.618ǃ) and LUMO+11(ǂ-1.618ǃ) of cyclohexa-m-phenylene are identical to those of the 

first and fourth orbitals in butadiene. These orbitals also cause flat bands in porous 

graphene at eigenvelues (ǂ±1.618ǃ). In porous graphene, additional flat bands 

coincidently appear at eigenvalues (ǂ±1.000ǃ). These bands come from nodal character of 

e1g orbitals in each benzene fragment. 

Porous graphene ribbons with various edges are also of interest, despite the coupling 
directions are not unique and some defects of the coupling reactions may cause diversity of 
molecular-weight distribution. Fortunately, it has been proved that the frontier non-bonding 
level of any porous oligomer is invariant with respect to molecular weight and/or coupling 
direction due to the zero-overlap interactions of the phenylene units. Thus, porous 
graphenes including porous ribbons are promising precursors toward organic ferromagnets.  
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Fig. 9. Porous graphene ribbons Xn (n=1-5) with n ladders cut along the x axis. μ is the lattice 
vector. 
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Porous structures including boron and/or nitrogen are also interesting in that the hetero 

atoms serve as dopants, which increase or decrease the number of electrons in the frontier 

levels. 
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Fig. 10. Dispersions of Xn (n=1-5) under Hückel level of theory. 

Fig. 9 shows porous graphene ribbons cut along the x axis. The systems are classified by the 

number of porous ladders n, as denoted as X1-X5. The edges have bay areas consisting of 

seven carbon atoms, and resemble acene edges of conventional graphene. Fig. 10 shows 

dispersion of X1-X5. We see that the HOCOs and LUCOs are completely flat, similar to the 

two-dimensional porous graphene. Flat bands at (ǂ±1.618ǃ) are also conserved due to the 

nodal character of phenylene units. Interestingly, HOCOs and LUCOs in each system are n-

fold degenerate, respectively. That is, HOCO and LUCO in X1 are single flat bands, and 

HOCO and LUCO in X2 are doubly degenerate. Similarly, three-, four-, and five-fold 

degenerate HOCOs and LUCOs appear in X3, X4, X5, respectively. These degeneracies come 

from the systematic increase of the porous ladders. The resultant flat bands are also 

available for possible ferromagnetic interactions. 
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Fig. 11 shows porous graphene ribbons cut along the y axis. The systems are also classified 

by the number of porous ladders n, as denoted as Y1-Y5. The edges have bay areas consisting 

of twelve carbon atoms, and resemble so-called phenanthrene edges of conventional 

graphene. Fig. 12 shows dispersion of Y1-Y5. The HOCOs and LUCOs are completely flat, 

similar to X1-X5.  Flat bands at (ǂ±1.618ǃ) also appear. HOCOs and LUCOs in each system 

are also n-fold degenerate, respectively.  
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Fig. 11. Porous graphene ribbons Yn (n=1-5) with n ladders cut along the y axis. μ is the 
lattice vector. 
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Fig. 12. Dispersions of Yn (n=1-5) under Hückel level of theory. 
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Fig. 13. DOS of X5 and Y5 under Hückel level of theory. 

Fig. 13 shows DOS of X5 and Y5. There are main peaks corresponding to the flat bands. The 
largest peaks are due to the systematic degeneracies of HOCOs and LUCOs, and thus, 
photoelectron spectroscopy experiments will give a major peak at ca. 9.1 eV. Theoretical 
predictions on the magnetism of porous graphenes await experimental confirmations.  

4. Defective graphenes 

Recently, ferromagnetism of HOPG (highly oriented pyrolytic graphite) was found at room 

temperature (Červenka, et al., 2009; Esquinazi & Höhne, 2005; Mombrú et al., 2005). HOPGs 

often have defects, which form grain boundaries between the polycrystals. Laterally and 

longitudinally slipped defects in acene-edged HOPGs are particularly interesting in that the 

resultant defects are analyzable by graphene-based model (Hatanaka, 2010c). Fig. 14 shows 

definition of defects, in which the lateral and longitudinal displacements are represented by 

Δx and Δz. Fig. 15 shows extended-Hückel dispersion of acene-edged graphenes with 

laterally and longitudinally slipped defects. The number of honeycomb ladders is fixed to be 

19. The bold lines and dotted lines represent π and ǔ bands, respectively. In laterally slipped 

defects (Δx > 0), flatness of the frontier bands is lost with increase in the displacements, and 

the resultant double occupation of electrons leads to antiferromagnetic ground state. On the 

other hand, in longitudinally slipped defects (Δz > 0), flatness of the frontier bands is 

conserved even if the displacement becomes infinity, and the resultant electronic state 

resembles that of polycarbene, in which π and ǔ spins coexist with ferromagnetic 

interactions.  
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Here we consider simple models of defects by using graphene ribbons with 3 ladders. Fig. 

16 shows change of orbital pattern for the laterally slipped graphenes. We note that the 

effective displacement of lateral slip is smaller than the lattice period a. Frontier Bloch 

functions (HOCO and LUCO at k= π/a) of non-distorted graphene is localized at the edges 

(Fig. 16a), and contact at k= π/a. π-Frontier Bloch functions in laterally slipped graphene 

are doubly degenerate and also contact at k= π/a under all the displacements (Fig. 16b). 

The amplitudes are localized inside the fault as well as at the acene edges. With increase 

in the lateral displacement, there appears a peculiar ǔ band, of which amplitude is shown 

in Fig. 16c. We see that this band consists of weak interacted dangling bonds in the 

slipped fault. The weak interaction causes crossing of frontier bands, as shown in the 

middle of Fig. 15, and thus, the magnetism due to acene-edged graphenes is considered to 

disappear.  
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Fig. 14. Laterally and longitudinally slipped defective graphenes. 
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Fig. 15. Dispersion of defective graphenes based on extended Hückel level of theory. EF is 
the Fermi levels. 
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Fig. 16. Selected Bloch functions of acene-edged graphene with laterally slipped faults. (a) 

Δx=0, HOCO and LUCO at k=π/a, (b) Δx=1.21Å, HOCOs and LUCOs at k=π/a, and (c) 

Δx=1.21Å, dangling ǔ crystal orbital at k=0. 

Fig. 17 shows π-frontier Bloch functions of longitudinally slipped graphene. Contrary to the 

laterally slipped graphene, amplitudes of the HOCO and LUCO always spread at the edges, 

 and thus, their dispersions contact at k= π/a (Fig. 17a). When the longitudinal displacement 

becomes large, carbene-type ǔ bands also appear at the frontier level (Fig. 17b). These 

orbitals accommodate magnetic electrons of the carbene sites, and thus, longitudinally 

displacement causes another type of magnetism within the fault. This is considered to be the 

reason why HOPGs often exhibit weak ferromagnetism. When the displacement is small, it 

has been shown that energy cost for longitudinal slip is smaller than that of lateral slip 

(Hatanaka, 2010c), and the energy cost is perhaps compensated by the high-spin stability.  

Thus, as rough estimation, we guess that ferromagnetism observed in HOPGs is attributed 

to longitudinally slipped defects, which form grain boundaries including multilayers of 

graphene planes. Indeed, topographies corresponding to the longitudinally slipped defects 

were recorded in HOPGs by AFM (atomic force microscope) and MFM (magnetic force 

microscope) techniques (Červenka et al., 2009).  
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Fig. 17. Selected Bloch functions of acene-edged graphene with longitudinally slipped faults. 

(a) Δz=1.20Å, HOCO and LUCO at k=π/a, and (b) Δz→∞, dangling ǔ crystal orbitals at 
k=π/a. 

5. Conclusion 

Some graphene-based ferromagnets were analyzed in view of their electronic states. There 

appear flat bands at the frontier levels, in which the Wannier functions span common atoms 

between the adjacent cells. If geometry conditions such as edges, pores, and defects are well 

controlled by chemical modification, graphene-based ferromagnets will be realized through 

the flat bands. Amplitudes of the Wannier functions have non-bonding character, and the 

frontier electrons are itinerant around each central cell. The degeneracy of frontier flat bands 

and the positive exchange integrals play key roles for ferromagnetic interactions of 

graphene-based ferromagnets.  
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