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1. Introduction 

The emergence of cancer stem cell (CSC) theory has profound implications for cancer 

prevention and therapy. Although a large majority of chemotherapeutic drugs can 

considerably shrink tumor sizes (Reya et al. 2001), they often fail to eradicate tumors due to 

the inability to effectively kill CSCs (Reya et al. 2001; Hambardzumyan et al. 2006; Shafee et 

al. 2008; Korkaya et al. 2009). The cancer may eventually develop drug resistance and 

recurrence (Williams et al. 1987; Lippman 2000; Stockler et al. 2000; Reya et al. 2001; Zhou, B. 

B. et al. 2009). Therefore, the CSC population has become a promising target for cancer 

prevention and therapy (Zhou, B. B. et al. 2009).  
Since a large number of epidemiological studies have demonstrated an association between 
consumption of fruits and vegetables and the reduced risk of various cancers, naturally-
occurring dietary components have received considerable attention for their effects in cancer 
chemoprevention (Smith-Warner et al. 2003). The anti-cancer activities of many dietary 
components against various types of cancer have been reported for both in vitro and in vivo 
studies (Chinni et al. 2001; Mukhopadhyay et al. 2001; Choudhuri et al. 2002; Lamartiniere et 
al. 2002; Li and Sarkar 2002; Gupta, S. et al. 2003; Hastak et al. 2003; Li et al. 2003). Recently, 
a number of studies have found that several dietary components can directly or indirectly 
affect CSC self-renewal pathways (Kawasaki et al. 2008), and thus may have potential 
impact on CSCs. This chapter reviews current attempts to target CSCs with bioactive dietary 
components, with a special emphasis on our work. 

2. Self-renewal pathways of CSCs  

CSCs produce the tumor mass through continuous self-renewal and differentiation, which 

may be regulated by similar signaling pathways occurring in normal stem cells (Reya et al. 

2001; Liu, S. et al. 2005). Understanding the mechanisms that underlie the self-renewal 

behavior of CSCs is of greatest importance for discovery and development of agents 

targeting CSCs. So far, several major pathways including Wnt/ǃ-catenin, Hedgehog, and 

Notch have been identified to play pivotal roles in CSC self-renewal (Smalley and Dale 1999; 

Dontu et al. 2004; Liu, S. et al. 2006). 
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2.1 Wnt/β-catenin pathway 

Wnt/ǃ-catenin pathway was demonstrated to modulate cell proliferation, migration, 

apoptosis, differentiation, and CSC self-renewal (Akiyama 2000; Polakis 2000; Yamaguchi 

2001; Turashvili et al. 2006). It has been shown that Wnt/ǃ-catenin signaling is implicated in 

the maintenance of CSCs of leukemia (Ysebaert et al. 2006; Khan et al. 2007; Kawaguchi-

Ihara et al. 2008), melanoma (Chien et al. 2009), breast (Li et al. 2003; Woodward et al. 2007), 

colon (Schulenburg et al. 2007), liver (Yang, W. et al. 2008), lung (Teng et al. 2010) cancers. 

For example, over-expression of ǃ-catenin in stem cell survival pathway was shown to 

mediate the resistance of mouse mammary stem/progenitor cells to radiation (Woodward et 

al. 2007). Yang and his colleagues reported that Wnt/ǃ-catenin signaling promoted 

expansion of the hepatic progenitor cell population when it is over-expressed in 

transplanted rat oval cells and when it is transiently expressed in adult mice (Yang, W. et al. 

2008). Elimination of ǃ-catenin abrogated the chemo-resistant cell population endowed with 

progenitor-like features (Yang, W. et al. 2008). 

ǃ-Catenin, the essential mediator of canonical Wnt signaling, participates in two distinct 

functions in the cell, depending on its cellular localization. Membrane-localized ǃ-catenin is 

sequestered by the epithelial cell-cell adhesion protein E-cadherin to maintain cell-cell 

adhesion (Nelson and Nusse 2004). On the other hand, cytoplasmic accumulation of ǃ-

catenin and its subsequent nuclear translocation, followed by cooperation with  the 

transcription factors T cell factor/lymphoid enhancer factor (TCF/LEF) as a transcription 

activator, eventually leads to activation of Wnt target genes such as c-Jun, c-Myc, fibronectin, 

and cyclin D1 (He et al. 1998; Mann et al. 1999; Orsulic et al. 1999; Tetsu and McCormick 

1999; Lin, S. Y. et al. 2000; Liu, S. et al. 2005; Clevers 2006). Binding of Wnt proteins, a family 

of secreted proteins, to Frizzled receptors results in the cytoplasmic accumulation of  

ǃ-catenin (Schweizer and Varmus 2003). In the absence of Wnt signaling, ǃ-catenin forms a 

multi-protein complex with glycogen synthase kinase 3ǃ (GSK3ǃ), adenomatous polyposis 

coli, casein kinase1ǂ, and axin (Takahashi-Yanaga and Sasaguri 2008). When ǃ-catenin is 

phosphorylated at Ser33/Ser37/Thr41 by GSK3ǃ, it is immediately subject to ubiquitin-

proteasome degradation (Liu, C. et al. 2002; Takahashi-Yanaga and Sasaguri 2008).  

The link between Wnt/ǃ-catenin and PI3K/Akt pathway has been established by several 

studies. Activated Akt (i.e., phospho-Akt Ser473) was shown to be able to phosphorylate 

Ser9 on GSK3ǃ, which may decrease the activity of GSK3ǃ, thereby stabilizing ǃ-catenin 

(Yost et al. 1996; Pap and Cooper 1998; Cohen, P. and Frame 2001). Furthermore, Korkaya et 

al. demonstrated that PI3K/Akt pathway is important in regulating the mammary 

stem/progenitor cells by promoting ǃ-catenin downstream events through phosphorylation 

of GSK3ǃ (Korkaya et al. 2009). 

2.2 Hedgehog pathway 

Another critical pathway that is involved in CSC self-renewal is hedgehog signaling 

pathway (Cohen, M. M., Jr. 2003; Liu, S. et al. 2006; Clement et al. 2007; Charafe-Jauffret et 

al. 2008). For instance, Liu et al. have demonstrated that the hedgehog pathway plays a 

crucial role in regulating self-renewal of normal and malignant human mammary stem cells 

by utilizing both in vitro and mouse model systems (Liu, S. et al. 2006). Another recent study 

revealed the essential role of hedgehog-Gli signaling in controlling the self-renewal behavior 

of human glioma CSCs and tumorigenicity (Clement et al. 2007).    
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In the absence of hedgehog ligands (Sonic Hedgehog, Desert Hedgehog, and Indian 

Hedgehog), their transmembrane receptor Patched (Ptch) associates with Smoothened (Smo) 

and blocks Smo function (Cohen, M. M., Jr. 2003; Lewis and Veltmaat 2004; Liu, S. et al. 

2005). When secreted hedgehog ligands bind to Ptch, Smo is released, triggering dissociation 

of transcription factors, Gli1, Gli2, and Gli3 from Fused (Fu) and suppressor of Fused 

(SuFu), leading to transcription of an array of genes, such as cyclin D, cyclin E, Myc, and 

elements of EGF pathway (Cohen, M. M., Jr. 2003; Pasca di Magliano and Hebrok 2003; 

Lewis and Veltmaat 2004; Liu, S. et al. 2005).  

Sonic hedgehog pathway is also linked to transcription factor NF-κB signaling. NF-κB was 

suggested to be a prominent factor in controlling tumor growth and apoptosis resistance of 

pancreatic CSCs (Kallifatidis et al. 2009). Over-expression of sonic hedgehog is activated by 

NF-κB in pancreatic cancer and pancreatic cancer cell proliferation is accelerated by NF-κB 

in part through sonic hedgehog over-expression (Nakashima et al. 2006). Kasperczyk et al. 

further characterized sonic hedgehog as a novel NF-κB target gene and mapped minimal 

NF-κB consensus site to position +139 of sonic hedgehog promoter (Kasperczyk et al. 2009). 

2.3 Notch pathway 

Notch signaling is known to control cell proliferation and apoptosis to modulate the 

development of many organs (Wang, Z. et al. 2009). A number of recent studies have 

demonstrated that Notch-activated genes and pathways can drive tumor growth through 

the expansion of CSCs (Wilson and Radtke 2006; Charafe-Jauffret et al. 2008; Fan and 

Eberhart 2008; Kakarala and Wicha 2008; Peacock and Watkins 2008; Scoville et al. 2008; 

Wang, Z. et al. 2009). Notch pathway is believed to be dysregulated in CSCs, ultimately 

leading to uncontrolled CSC self-renewal (Wang, Z. et al. 2009). For example, Notch 

pathway was shown to play an important role in the self-renewal function of malignant 

breast cancer CSCs (Dontu et al. 2004; Farnie and Clarke 2007). 

Five Notch proteins, Notch-1 to Notch-4, have been identified to express as transmembrane 

receptors in a variety of stem/progenitor cells (Mumm and Kopan 2000). Binding of surface-

bound ligands (Jagged1, Jagged2, Delta-like1, Delta-like3, and Delta-like4) triggers serial 

cleavage events at the Notch proteins by ADAM protease family and Ǆ-secretase (Wu, J. Y. 

and Rao 1999; Mumm and Kopan 2000; Borggrefe and Oswald 2009). Subsequently, the 

intracellular domain of Notch is released and translocates into the nucleus, where it acts as a 

transcription co-activator of recombination signal sequence-binding protein Jκ (RBP-J) to 

activate downstream target genes, e.g., c-Myc, cyclin D1, p21, NF-κB (Oswald et al. 1998; 

Rangarajan et al. 2001; Ronchini and Capobianco 2001; Satoh et al. 2004; Palomero et al. 

2006; Weng et al. 2006; Borggrefe and Oswald 2009).  

Notch1 has been reported to be the upstream regulator of NF-κB pathway in diverse cellular 

situations (Oswald et al. 1998; Wang, J. et al. 2001; Nickoloff et al. 2002; Dontu et al. 2004; 

Jang et al. 2004; Wang, Y. et al. 2004; Shin et al. 2006; Wang, Z. et al. 2006; Chen et al. 2007). 

Specifically, Notch-1 is necessary for expression of several NF-κB subunits (Cheng et al. 

2001; Jang et al. 2004) and stimulates NF-κB promoter activity (Jang et al. 2004).  

3. Sulforaphane  

Numerous studies have substantiated the chemopreventive properties of high consumption 
of cruciferous vegetables, especially broccoli and broccoli sprouts, against various types of 
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cancer (Clarke et al. 2008). Cruciferous vegetables are characterized by their high content of 
glucosinolates (Herr and Buchler 2010; Fahey et al. 2001), which are converted to 
isothiocyanates by the action of myrosinase. The chemopreventive effects have been mostly 
attributed to the activity of these isothiocyanates (Zhang et al. 1992; Clarke et al. 2008). In 
particular, sulforaphane (Figure 1) is converted from glucoraphanin, the principal 
glucosinolate in broccoli and broccoli sprouts (Fahey et al. 1997). Sulforaphane has been 
shown to be not only effective in preventing chemically induced cancers in animal models, 
including colon, lung, breast, pancreatic, skin and stomach cancer (Zhang et al. 1994; Fahey 
et al. 1997; Chung et al. 2000; Fahey et al. 2002; Conaway et al. 2005; Gills et al. 2006; 
Kuroiwa et al. 2006; Xu et al. 2006), but also inhibit the growth of established tumors 
(Jackson and Singletary 2004; Singh, A. V. et al. 2004).  
 

 

Fig. 1. Chemical structure of sulforaphane 

Early research focused on inhibition of Phase 1 metabolism enzymes that convert 

procarcinogens to carcinogens and induction of Phase 2 metabolism enzymes that enhance 

elimination and excretion of carcinogens by sulforaphane (Clarke et al. 2008), which 

enhances the detoxification of carcinogens and “blocks” carcinogenesis at the initiation stage 

of cancer (Juge et al. 2007; Clarke et al. 2008).  
Subsequent studies suggest that sulforaphane provides protection against tumor 
development during the “post-initiation” phase by modulating diverse cellular activities 
including apoptosis, cell cycle, angiogenesis and metastasis (Zhang and Tang 2007; Clarke et 
al. 2008). Sulforaphane affects classical molecular targets involved in the apoptosis 
pathways such as down-regulation of anti-apoptotic Bcl-2 and Bcl-XL, up-regulation of pro-
apoptotic Bax expression, proteolytic activation of caspase-3, and the degradation/cleavage 
of poly(ADP-ribose) polymerase, induction of apoptotic protease activating factor-1 (Choi et 
al. 2007; Park, S. Y. et al. 2007). The ability of sulforaphane to induce cell cycle arrest is 
associated with regulation of many molecules including cyclins, Cdks, and p21 (Singh, S. V. 
et al. 2004; Herman-Antosiewicz et al. 2007; Zhang and Tang 2007). More recent studies 
demonstrate that sulforaphane is also capable of suppressing angiogenesis and metastasis, 
which are associated with transcriptional down-regulation of vascular endothelial growth 
factor (VEGF), hypoxia-inducible factor-1ǂ (HIF-1ǂ), c-Myc and matrix metalloproteinase-2 
(MMP-2), and MMP-9 (Bertl et al. 2006; Zhang and Tang 2007). 
Our studies have shown that sulforaphane is effective in targeting breast CSCs in vitro and 
in vivo (Li et al. 2010). Mammosphere culture was first used to isolate and expand mammary 
stem/progenitor cells by Dontu et al., based on the ability of stem/progenitor cells to grow 
in serum-free, non-adherent suspension as spherical clusters of cells while differentiated 
cells fail to survive under the same condition (Dontu et al. 2003). By employing this 
technique, we demonstrated that sulforaphane (0.5-5 µM) significantly suppressed the 
mammosphere formation of both SUM159 and MCF7 cells. A decrease in the number of 
sphere-forming cells in the 2nd and 3rd passages indicated a reduced self-renewal capacity 
of these stem/progenitor cells (Dontu et al. 2003). In breast carcinomas, a cell population 
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with high aldehyde dehydrogenase (ALDH) activity as assessed by the Aldefluor assay has 
been demonstrated to enrich tumorigenic stem/progenitor cells (Ginestier et al. 2007). This 
cell population is capable of self-renewal and generating tumors resembling the parental 
tumor (Ginestier et al. 2007). We found that sulforaphane (1-5 µM) was able to significantly 
decrease the tumor-initiating ALDH-positive cell population of SUM159 by 65% to 80% in 
vitro. Of special note, concentrations of sulforaphane which inhibit stem/progenitor cells in 
both mammosphere formation assay and Aldefluor assay had only minimal effects on the 
bulk population of breast cancer cell lines, implying that sulforaphane is likely to 
preferentially target stem/progenitor cells compared to the differentiated cancer cells.  
We further demonstrated that sulforaphane can inhibit breast CSCs in vivo (Li et al. 2010). 

The injection of human breast cancer cells into the mammary fat pad of immune-deficient 

NOD/SCID mice provides a reliable and sensitive in vivo system for studying human breast 

cancer (Al-Hajj et al. 2003; Dick 2003). Daily injection of sulforaphane for two weeks 

suppressed tumor growth in primary NOD/SCID mice and reduced ALDH-positive cell 

population of the tumors by more than 50%. Most importantly, we found that recipient 

NOD/SCID mice inoculated with tumor cells derived from sulforaphane-treated primary 

xenografts largely failed to develop tumor re-growth up to 33 days, whereas control tumor 

cells quickly initiated new tumors upon re-implantation. These results suggest that 

sulforaphane is able to eliminate breast CSCs in vivo, thereby abrogating tumor re-growth 

after re-implantation of primary tumor cells into the secondary mice.  

We also observed a down-regulation of Wnt/ǃ-catenin self-renewal pathway in 

sulforaphane-treated breast cancer cells (Li et al. 2010). Park et al. previously reported that  

ǃ-catenin was down-regulated by sulforaphane in human cervical carcinoma HeLa and 

hepatocarcinoma HepG2 cells (Park, S. Y. et al. 2007). In consistent with their study, we 

showed that sulforaphane was able to down-regulate Wnt/ǃ-catenin self-renewal pathway 

in breast cancer cells, and sulforaphane-induced ǃ-catenin phosphorylation 

(Ser33/Ser37/Thr41) and proteasome degradation was possibly through activation of 

GSK3ǃ. The down-regulation of Wnt/ǃ-catenin self-renewal pathway might contribute to 

the inhibitory effects of sulforaphane on breast CSCs. Further studies are warranted to 

establish the conclusive role of this down-regulation in inhibition of breast CSCs by 

sulforaphane. 

In addition, our recent work has revealed a new molecular target of sulforaphane. 

Sulforaphane inhibits heat shock protein 90 (Hsp90) function by blocking the interaction of 

Hsp90 with it cochaperone p50Cdc37, and we traced this activity to a novel interaction site of 

Hsp90, which fundamentally differs from the mechanism of other Hsp90 inhibitors 

(unpublished data). LC-MS peptide mapping identified a covalent adduct of sulforaphane 

with a short peptide IDIIPNPQER in Hsp90 N-terminal domain. NMR experiment with full-

length Hsp90 revealed sulforaphane interaction in sheet 2 and the adjacent loop in Hsp90  

N-terminal domain, in which this short peptide resides. Akt is a well-known Hsp90 client 

protein. Our and several other studies have reported the activity of sulforaphane to down-

regulate the protein level of Akt and Akt pathway in ovarian, prostate, and colorectal 

cancers (Chaudhuri et al. 2007; Shen et al. 2007; Shankar et al. 2008). PI3K/Akt pathway was 

recently demonstrated to play an important role in regulating breast stem/progenitor cells 

by promoting ǃ-catenin down-stream events through phosphorylation of GSK3ǃ (Korkaya 

et al. 2009). Therefore, inhibition of Hsp90 chaperone function by sulforaphane may 

contribute to the effect on Akt/GSK3ǃ/ǃ-catenin pathway. 
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The resistance of pancreatic cancer toward TRAIL (tumor necrosis factor-related apoptosis-
inducing ligand) is due to TRAIL-activated NF-κB signaling (Ibrahim et al. 2001). Kallifatidis 
et al. demonstrated that sulforaphane (10 µM) was able to deplete pancreatic CSCs 
(CD44+CD24-) by interfering with NF-κB binding and abrogating apoptosis resistance 
(Kallifatidis et al. 2009). They found that the presence of pancreatic TICs correlated with 
apoptosis resistance towards TRAIL due to the enhanced binding of NF-κB complexes to 
DNA. Sulforaphane alone or in combined with TRAIL reduced growth of TIChigh tumors in 
vivo without toxicity to normal tissue.  
Like TRAIL, sorafenib was also observed to strongly up-regulate NF-κB activity (Rausch et 
al. 2010). Sulforaphane (10 µM) completely abolished sorafenib-induced NF-κB binding in 
CSChigh cells, thereby synergistically inhibiting pancreatic CSC (CD44+CD24-) (Rausch et al. 
2010). The growth of pancreatic CSChigh tumor xenografts was synergistically inhibited by 
combination of sulforaphane and sorafenib, which involved induction of apoptosis, 
inhibition of proliferation and angiogenesis, as well as down-regulation of epithelial-
mesenchymal transition (EMT) related proteins (vimentin, Zeb-1, and Twist-2). EMT 
induction in cancer cells results in the acquisition of invasive and metastatic properties 
(Singh, A. and Settleman 2010; Gupta, P. B. et al. 2009; Klarmann et al. 2009; Sarkar et al. 
2009). CSCs undergoing metastasis usually express EMT markers (Tang et al. 2010). 
This same group then combined sulforaphane (5 µM) with several chemotherapeutic drugs 
and observed increased cytotoxicity toward pancreatic CSCs (CD44+CD24-) (Kallifatidis et 
al. 2011). Sulforaphane not only down-regulated basal Notch-1 expression in CSChigh cells, 
but also prevented the gemcitabine-induced Notch-1 up-regulation. There was no tumor 
growth in mice re-implanted with tumor cells derived from sulforaphane-treated or 
combination-treated xenografts.  
Another recent study also examined the molecular mechanisms by which sulforaphane 
inhibits growth and induces apoptosis of pancreatic CSCs (Srivastava et al. 2011). They 
demonstrated that sulforaphane (5-10 µM) inhibited self-renewal capacity of pancreatic 
CSCs (CD44+CD24+ESA+). Sulforaphane induced apoptosis by inhibiting the expression of 
Bcl-2 and XIAP, phosphorylation of FKHR, and activating caspase-3. Moreover, 
sulforaphane inhibited expression of EMT markers (ǃ-catenin, vimentin, Twist-1, and Zeb-
1), suggesting the blockade of early metastasis signaling. 
In summary, all of these findings strongly support that combination of sulforaphane or even 
broccoli/broccoli sprout preparations with chemotherapy may be a promising strategy to 
eradicate tumors and improve patient survival in different types of cancer. 

4. Curcumin 

Curcumin (Figure 2) is a dietary polyphenol present in the Indian spice turmeric, which is 
produced from rhizome of the plant Curcuma longa and usually used in preparation of 
mustard and curry (Park, C. H. et al. 2005). Curcumin has been studied as a 
chemoprevention agent in several cancer models (Mukhopadhyay et al. 2001; Shao et al. 
2002; Lin, J. K. 2007; Anand et al. 2008; Kunnumakkara et al. 2008; Strimpakos and Sharma 
2008).  
Curcumin has been shown to regulate many cellular pathways (Lin, J. K. 2007; Hatcher et al. 
2008; Kunnumakkara et al. 2008; Sa and Das 2008; Ravindran et al. 2009), some of which are 
associated with self-renewal signaling. Curcumin was suggested to induce caspase-3-
mediated cleavage of ǃ-catenin, leading to inactivation of Wnt/ǃ-catenin signaling in 
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Fig. 2. Chemical structure of curcumin 

HCT116 intestinal cancer cells (Jaiswal et al. 2002). The work of Park et al. strengthened the 
point that curcumin decreased ǃ-catenin/TCF transcription activity in all tested cancer cell 
lines, including gastric, colon, and intestinal cancer cells, which was attributed to the 
reduced amount of nuclear ǃ-catenin and TCF-4 proteins (Park, C. H. et al. 2005). Moreover, 
analysis of gene transcription profile revealed that the expression of Wnt receptor Frizzled-1 
was potently suppressed by curcumin (Yan et al. 2005). Curcumin was also shown to be able 
to attenuate response of ǃ-catenin to Wnt-3a in colon cancer cells through down-regulation 
of p300, a positive regulator of Wnt/ǃ-catenin signaling (Ryu et al. 2008). In addition, Wang 
and his colleagues demonstrated that curcumin down-regulated Notch-1 mRNA level in 
pancreatic cancer cells, indicating a transcriptional inactivation of Notch-1 by curcumin 
(Wang, Z. et al. 2006). AP-1 and NF-κB signaling pathways were shown to be inhibited by 
curcumin in glioblastoma cells (Dhandapani et al. 2007). Curcumin-induced inactivation of 
NF-κB DNA-binding activity was potentially mediated by Notch-1 signaling pathway 
(Wang, Z. et al. 2006).  
Kakarala et al. demonstrated that curcumin (5-10 µM) was able to target breast 
stem/progenitor cells, as evidenced by suppressed mammosphere formation along serial 
passage and a decrease in the percentage of ALDH1-positive cells (Kakarala et al. 2009). 
Similar to sulforaphane, the concentrations of curcumin inhibiting mammosphere formation 
was much lower compared to the concentrations of curcumin having impact on 
differentiated cells. Results from serial passaging suggest that curcumin interferes with 
breast CSC self-renewal. By utilizing a TCF-LEF reporter assay system in MCF7 cells, the 
authors confirmed that the effect of curcumin on breast cancer stem/progenitor cells was 
mediated through its potent inhibitory effect on Wnt/ǃ-catenin signaling (Kakarala et al. 
2009). These results support the work in other systems showing the ability of curcumin to 
inhibit Wnt signaling (Jaiswal et al. 2002; Ryu et al. 2008; Prasad et al. 2009). The effects of 
curcumin was further potentiated by piperine, another dietary polyphenol isolated from 
back and long peppers (Kakarala et al. 2009). Piperine was suggested to enhance the 
bioavailability of curcumin through inhibition of P glycoprotein-mediated efflux of 
curcumin (Shoba et al. 1998; Chearwae et al. 2004; Anand et al. 2007; Limtrakul et al. 2007). 
Curcumin and piperine, alone or in combination did not cause toxicity to differentiated cells 
(Kakarala et al. 2009). 
Side population (SP) cells, first identified for isolation of murine hematopoietic stem cells 
from bone marrow (Goodell et al. 1996; Zhou, S. et al. 2001; Hirschmann-Jax et al. 2004), can 
be used to enrich CSCs (Hadnagy et al. 2006; Wu, C. and Alman 2008). Curcumin inhibited 
SP of the rat C6 glioma at low concentration (5 µM) that had minimal effect on proliferation 
of C6 cells (Fong et al. 2010). Very recently, a polymeric nanoparticle formulation of curcumin  
(5-20 µM) was shown to significantly inhibit clonogenicity and depleted the CD133+ stem-
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like cell population from brain tumor cultures (Lim et al. 2011). They also found that Gli1 
and Ptch1B, two key components of hedgehog signaling, were significantly reduced in 
embryonal tumor derived cell line DAOY after curcumin treatment.  

5. Epigallocatechin-3-gallate (EGCG) 

Green tea is one of the most widely consumed beverages in the world. Epidemiological 
studies suggest an association between green tea consumption and chemopreventive effects 
against skin, lung, breast, colon, liver, stomach, and prostate cancers (Yang, C. S. et al. 2002; 
Landis-Piwowar et al. 2007). The various polyphenolic catechins contained in green tea are 
thought to contribute to its chemoprevention activity.  
 

 

Fig. 3. Chemical structure of EGCG 

In particular, numerous studies indicate that EGCG (Figure 3), the most abundant catechin 
in green tea, is the primary component for these activities (Fujiki 1999; Nagle et al. 2006). In 
vitro and in vivo studies have shown that EGCG modulates a wide array of molecular 
pathways, resulting in induction of apoptosis and cell cycle arrest, and inhibition of 
invasion, angiogenesis, and metastasis (Shankar et al. 2007; Shankar et al. 2008). 
Some studies have found that EGCG may directly or indirectly affect CSC self-renewal 
pathways. The basal NF-κB activity and ATP- or IL-1ǃ induced activation of NF-κB were 
negatively regulated by EGCG (Ahmad et al. 2000; Afaq et al. 2003; Guo, S. et al. 2006; Kim, 
S. J. et al. 2007; Sarkar et al. 2009). EGCG suppressed Akt activation in both colon cancer cell 
lines and in vivo mouse models (Ju et al. 2005; Shimizu et al. 2005; Peng et al. 2006; Bose et al. 
2007). In our previous study, EGCG was shown to inhibit the chaperoning function of 
Hsp90 by impairing the interaction between Hsp90 with its co-chaperones in pancreatic 
cancer cells, thereby down-regulating Hsp90 client proteins including Akt (Li et al. 2009). 
EGCG blocked Wnt signaling by stabilizing mRNA of HBP1, a suppressor of Wnt signaling, 
thereby reducing breast cancer cell tumorigenic proliferation as well as invasiveness (Kim, J. 
et al. 2006; Kawasaki et al. 2008). The nuclear import of ǃ-catenin was decreased in 
adenomas isolated from EGCG-treated ApcMin/+ mice, a widely used transgenic model 
recapitulating human colon cancer that bears an Adenomatous Polyposis Coli (APC) gene 
mutation (Ju et al. 2005; Bose et al. 2007).  
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Combination of EGCG and doxorubicin was suggested to eradicate putative prostate CSCs 

(CD44+) (Stearns et al. 2010). EGCG (30 and 60 µM), either alone or in combination with 

doxorubicin, reduced the colony-forming capability of human prostate cancer cell line  

PC-3ML. Relatively low dose of EGCG (57 mg/kg) in combination with nontoxic, sub-

therapeutic dosages of doxorubicin can eradicate established prostate tumors derived from 

CD44high tumor-initiating cells isolated from PCa-20a cells in NOD/SCID mice.  

Tang et al. have shown that EGCG either alone or in combination with quercetin can 

eliminate prostate CSC characteristics (Tang et al. 2010). EGCG inhibited the growth and 

self-renewal capacity of CD44+CD133+ CSCs contained in human prostate cancer cell lines 

and CD44+ǂ2ǃ1+CD133+ CSCs isolated from human primary prostate tumors, as measured 

by spheroid and colony formation assay. They also suggested that EGCG was able to induce 

apoptosis in prostate CSCs. In addition, EGCG was found to suppress EMT by inhibiting the 

expression of vimentin and nuclear ǃ-catenin, as well as the transcription factors slug and 

snail which are required for EMT induction. The inhibition of EMT markers by EGCG could 

retard early metastasis of prostate CSCs.  

6. Quercetin 

Quercetin (3,3’,4’,5,7-pentahydroxyflavone) (Figure 4) is a ubiquitous plant polyphenol, 
naturally occurring in most edible fruits and vegetables, with the high levels being found in 
apples, cranberries, and blueberries (Androutsopoulos et al. 2010; Guo, W. et al. 2009). Many 
studies have demonstrated that quercetin possess anti-oxidant, anti-inflammatory and anti-
cancer activities (Williamson and Manach 2005; Guo, W. et al. 2009). Quercetin has also been 
shown to enhance the anti-cancer effects of several chemotherapeutic drugs (Borska et al. 2010; 
Du et al. 2010; Shih et al. 2010; Wong and Chiu 2010; Limtrakul et al. 2005; Du et al. 2009). 
 

 

Fig. 4. Chemical structure of quercetin 

Several studies have indicated that quercetin may modulate self-renewal pathways. 

Quercetin was suggested to be a potent inhibitor of ǃ-catenin/TCF signaling in SW480 colon 

cancer cells, and the reduced ǃ-catenin/TCF transcriptional activity was due to the 

decreased nuclear ǃ-catenin and TCF-4 proteins (Park, C. H. et al. 2005). The inhibition of 

colon cancer cell growth by quercetin was related to the inhibition of cyclin D1 and 

surviving expression through Wnt/ǃ-catenin signaling pathway (Shan et al. 2009). 

www.intechopen.com



 
Cancer Stem Cells - The Cutting Edge 

 

416 

Zhou et al. demonstrated that quercetin (100-400 µM) mediated reduction of self-renewal 
capacity of pancreatic CSCs, decreased ALDH1 activity, overcame apoptosis resistance of 
pancreatic CSCs (CD44+CD24-), and diminished the expression of proteins involved in the 
EMT (vimentin and Twist-2) in CSChigh cells (Zhou, W. et al. 2010). Quercetin strongly 
reduced rapid growth of CSC-enriched xenografts, while no toxic side effects were observed 
(Zhou, W. et al. 2010). They further demonstrated that combination of quercetin with 
sulforaphane led to a synergistic reduction in self-renewal capacity and a complete 
abrogation of tumor growth in xenograft mouse model. Similarly, in another recent study, 
quercetin enhanced the inhibitory effects of sulforaphane on self-renewal capacity of 
pancreatic CSCs (CD44+CD24+ESA+) (Srivastava et al. 2011). Moreover, quercetin (20 µM) 
was found to synergize with green tea EGCG in inhibiting prostate CSCs (Tang et al. 2010). 
Quercetin not only potentiated the inhibitory effects of EGCG on self-renewal, migration 
and invasion capacities of prostate CSCs isolated from primary tumors, but also synergized 
with EGCG to induce apoptosis (Tang et al. 2010). 

 
Natural Dietary 

Compound 
Food Origins 

Cancer Stem 
Cells 

Potential Molecular Targets 

Sulforaphane 
Cruciferous 
vegetables 

Pancreatic cancer 
Breast cancer 

Wnt/ǃ-catenin; NF-κB binding; 
EMT markers; Notch-1 

Curcumin Turmeric 
Breast cancer 
Brain tumor 

Wnt/ǃ-catenin; Gli1 and 
Ptch1B 

EGCG Green tea Prostate cancer 
ǃ-catenin; EMT markers; slug 

and snail 

Quercetin 

Ubiquitous, 
e.g., apple, 
cranberry, 
blueberry 

Pancreatic cancer 
Prostate cancer 

Lung cancer 
EMT markers 

Piperine 
Black and 

long pepper 
Breast cancer  Wnt/ǃ-catenin; NF-κB 

Genistein Soy  
GSK3ǃ, ǃ-catenin, Wnt-5a; 

Notch-2 

Resveratrol 

Grapes, 
berries, 

plums, and 
peanuts 

 ǃ-catenin, GSK3ǃ; Notch-1 

Lycopene 

Tomatoes, 
watermelon, 
papaya, pink 

grapefruit 

 ǃ-catenin 

Vitamin D3 
Fish, egg 
yolk, beef 

liver 
 TCF-4, E-cadherin 

 

Table 1. Natural dietary components that potentially regulate self-renewal pathways and 
inhibit CSCs 

www.intechopen.com



 
Potential Application of Natural Dietary Components to Target Cancer Stem Cells   

 

417 

7. Conclusion 

Naturally-occurring dietary components are advantageous in several aspects as 

chemoprevention agents: (1) they are present in commonly consumed food, which is readily 

available to most people in daily life; (2) they usually have very low or no toxicity, in 

contrast to most chemotherapy drugs; (3) many of these compounds have shown potential 

as an adjunct to chemotherapy drugs in some clinical trials. Although the reports were very 

limited for dietary components to inhibit CSCs, many of them have been shown to be 

directly or indirectly involved in modulation of CSC self-renewal pathways. All of these 

studies stress the need for investigating the efficacy of dietary components against CSCs and 

elucidating the mechanisms of action. In Table 1, we summarize the compounds discussed 

in this chapter as well as some others dietary components that may affect the element(s) of 

self-renewal pathways. 

Since CSCs are more resistant to conventional therapies in comparison with differentiated 

cells constituting the tumor bulk, these studies will provide strong rationale for preclinical 

and clinical evaluation of the dietary components or potentially their native food extracts 

combined with chemotherapy. Combination of dietary intervention that are directed against 

CSCs and conventional chemotherapy would have the potential to eliminate CSCs, 

overcome tumor resistance, reduce recurrence, and eventually improve patient survival.  
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