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1. Introduction 

As part of normal organismal homeostasis, the human body loses various types of cells like 
hepatocytes, keratinocytes and certain types of blood cells and needs to replace them. These 
cells are replaced using stem cells as the source. Many different names are used for cells 
with stem cell-like properties, such as precursor cells, progenitor cells, somatic stem cells 
and adult stem cells. Stem cells are unique cells that have the ability to renew themselves 
through mitotic cell division and differentiate into a diverse range of specialized cell types. 
In addition, stem cells, with few notable exceptions, are cell types that show telomerase 
activity and therefore, actively maintain telomere length to some degree. The ability to 
maintain telomere length allows them to have an extended proliferative capacity compared 
to somatic cells. 
There are three kinds of stem cells: Embryonic, germinal and somatic or in other terms adult 
stem cells. The differentiation potential of stem cells varies according to type from 
totipotency to unipotency. Cells such as the fertilized oocytes, up to the 8-cell blastocyst, are 
considered to be totipotent since they can differentiate and generate a complete organism. 
Embryonic stem (ES) cells are derived from the inner cell mass of a blastocyst. ES cells 
posses all the characteristics of true stem cells. In addition to the self-renewal capacity, they 
are pluripotent, being able to produce derivates of all three germ layers (endoderm, 
mesoderm and ectoderm) but not the complete organism (Burdon et al., 2002). A high 
telomerase activity prevents the ES cells from undergoing crisis and reaching senescence, 
which is an advantage for long-term culturing. ES cells have furthermore been shown to 
retain their developmental identity even after reintroduction into the blastocyst (Beddington 
& Robertson, 1989). Somatic stem cells are differentiated forms of embryonic stem cells that 
are known as multipotent stem cells. They are capable of self-renewal and are responsible 
for the regenerative property of the e.g. hematopoietic system and the gastrointestinal 
system. These cells can be isolated from the developing organism (the fetus and the 
postnatal organism) as well as from the adult organism. Depending on their origin, the 
offspring of the somatic stem cells is also specific to the original tissue. A stem cell is said to 
be unipotent like the epidermal stem cells if they can persistently give rise to only a specific 
cell type. It has for many years been known that stem cells – contrary to other cell types – 
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can perform asymmetric cell divisions, whereby one daughter cell remains undifferentiated, 
while the other is committed to differentiation. It is important to also note that through 
transdifferentiation, somatic stem cells are also able to produce progeny different from their 
tissue of origin. These cells can be isolated from the developing organism in fetal and 
postnatal stages as well as the fully developed organism. Examples of somatic stem cells will 
include; stem cells which are harvested from the brain which are capable of differentiating 
into the three lineages of the central nervous system (CNS) (neurons, astrocytes and 
oligodendrocytes). Another example of somatic stem cells is the bone marrow stem cells that 
include hematopoietic and mesenchymal stem cells which are able to repopulate the blood 
and the bone cell systems. 
In this chapter, we will focus on Mesenchymal Stem Cells (MSCs), their therapeutic 
potential, risks of neoplastic transformation of Mesenchymal Stem Cells (MSCs) during 
expansion, issues related to the use of MSC during therapeutic use and possible ways of 
addressing these issues.  

2. Mesenchymal stem cells 

2.1 Properties and isolation of mesenchymal stem cells 

Bone marrow contains a supporting tissue called the stroma which was thought of as a 
simple structural framework for the hematopoietic system. It is now known to have very 
diverse functions. One of its most important aspects is that it contains mesenchymal stem 
cells (MSCs). These cells are strongly adherent and therefore, they can be isolated by 
culturing marrow on a special substrate, which allows the other cells to be washed off 
(Dennis et al., 2004; Pittenger et al., 1999; Terskikh et al., 2006). Their properties were 
described as early as 1968 by Friedenstein (Friedenstein, 1968). The human mesenchymal 
stem cells (MSCs) are multipotent precursor cells and can differentiate into various types of 
mesenchymal tissue cells. Mesenchymal stem cells (MSCs) undergo self-renewing divisions 
but also give rise to more committed progenitor cells, which can differentiate into cells of 
the mesodermal lineage, such as adipocytes, osteocytes and chondrocytes, as well as cells of 
other embryonic lineages (Jiang et al., 2002).  
In addition to bone marrow, MSC-like cells have been shown to be present in a number of 
other adult and fetal tissues, including circulating blood (Zvaifler et al., 2000), cord blood 
(Weiss & Troyer, 2006), placenta (Miao et al., 2006), amniotic fluid (Tsai et al., 2004) heart 
(Chen et al., 2008), skeletal muscle (Peault et al., 2007), adipose tissue (Zuk et al., 2001) 
synovial tissue (De Bari et al., 2001) and pancreas (Di Rocco et al., 2008). In addition to 
healthy tissue, MSC-like cells have even been isolated from pathological tissue like 
rheumatoid arthritic joints (Marinova-Mutafchieva et al., 2000). Cells that carry MSC 
characteristics might be present in nearly all postnatal organs and tissues (Chamberlain et 
al., 2007). Historically, the broad variety of tissue sources from which MSCs are isolated, in 
conjunction with disparate culture conditions like media formulations and plating density, 
has led to a lack of consensus regarding the phenotype of the MSC. However, recent reports 
are pointing to a strong consensus regarding the morphology of fresh MSCs, irrespective of 
the method by which they were isolated. This morphology of MSCs has been described as 
large cells with a prominent nucleoli and bleb-like projections. These projections extend 
further as MSCs adhere. The morphology is different from the spindle-shape of typically 
shaped MSCs (Jones & McGonagle, 2008). Despite the historic variation in reported 
phenotypes of MSCs, it is widely accepted that cultured cells, regardless of the methods 
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employed in their isolation and culture, lack expression of prototypic hematopoietic antigens 
including CD45, CD34, CD11b and CD14 and express SH2 (CD105), SH3/SH4 (CD73), 
CD29, CD44, CD90, CD71, CD106, CD166, STRO-1, GD2, and CD146 (Martinez et al., 2007; 
Pittenger et al., 1999; Shi & Gronthos, 2003; Simmons & Torok-Storb, 1991; Sordi et al., 2005).  
The methodology used in the isolation and enrichment of human mesenchymal cells is 

essentially based on the ability of these cells to adhere to and subsequently proliferate on 

tissue culture plastic with 10% fetal calf serum. The cells might experience a lag phase but 

then divide rapidly. The doubling time of the MSCs in vitro depend on the donor and the 

original plating density (Chamberlain et al., 2007). Indeed, culture selection is still widely 

employed as a means of MSC isolation. Pre-enrichment through cell separation strategies 

using cocktails of antibodies that deplete the bone marrow of specific cell populations 

(negative selection) (Louis et al., 2001; Reyes et al., 2001) or FicollTM separation are most 

widely used as an initial step in MSC isolation. To date no single and unique marker 

allowing for MSC isolation has been reported thus a range of composite cell surface 

phenotypes are being used. Enriched populations of MSCs have been isolated from human 

bone marrow aspirates using a STRO-1 monoclonal antibody in conjunction with antibodies 

against VCAM-1/CD106 (Simmons & Torok-Storb, 1991), CD271 (Quirici et al., 2002), D7-

Fib30 and CD49a.31. In order to harvest and isolate MSCs, a needle is used to aspirate the 

bone marrow from the trabecular of the bone. The bone marrow can then be manipulated 

within the laboratory to remove the red blood cells, macrophages, and other extraneous 

material (Boiret et al., 2005). MSCs can then be enriched by their adherence to a plastic 

culture dish. They can also be sorted via flow cytometry based on MSC surface proteins and 

viewed under a microscope to determine that the cells look like MSCs (Campagnoli et al., 

2001; Li et al., 2006; Quirici et al., 2002). MSCs have also been isolated from other species 

such as mice, rat, cats, dogs, rabbits and baboons with varying success. However, MSCs 

from different species do not express the same molecules as the human cells (Javazon et al., 

2004).  

2.2 Therapeutic potential of mesenchymal stem cells 

MSCs have many desirable characteristics that make them great therapeutic tools for many 

diverse illnesses. MSCs can be isolated from adult donors and can easily be expanded in 

culture without greatly compromising genetic stability; an in depth discussion on genetic 

stability and neoplastic transformation will be presented in the following section. Their lack 

of immunogenicity allows for allogenic transplantation and their homing capacity creates 

room for treatment with minimal invasion (Teng, 2010). Isolation of MSCs has been discussed 

in greater detail in the previous section. They can be isolated not only from blood tissue but 

also from many diverse tissues such as adipose tissue and trabecular bone and placenta.  
Many studies have been performed using MSCs. These studies were mainly based on site-
directed and/or systemic administration of MSCs and both delivery methods of hMSC have 
shown their ability of engraftment in a number of tissues after injury (Barbash et al., 2003; 
Horwitz et al., 2002; Orlic et al., 2001; Ortiz et al., 2003). In order for a stem cell to work as an 
effective therapeutic tool it must be able to access the target organ to deliver their therapeutic 
effect. Access to the target organ might not be a problem in some cases, however, if the 
illness is systemic in nature or if the target organ is not anatomically accessible effective 
delivery might become a problem. MSCs provide us with a very valuable tool in the latter 
two scenarios as they have been shown to spread to various tissues after their intravenous 
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administration (Devine et al., 2003). These systemically administered MSCs home to the site 
of injury and aid in functional recovery. In earlier studies, cultured MSCs have been infused 
into patients to support bone marrow transplant for osteogenesis imperfecta and glycogen 
storage disease where the therapeutic options are limited (Pittenger & Martin, 2004). They 
have also been used in graft versus host disease and their role in the treatment of Crohn’s 
disease is being explored (Mittal et al., 2009). MSCs are also used in diverse variety of clinical 
trials for ischemic stroke, multiple sclerosis, acute leukaemia, critical limb ischemia, articular 
cartilage and bone defects.  
Although the exact mechanism is not well understood, introduction of MSCs into the 
infarcted heart directly or through intravenous administration, have resulted in improved 
recovery and prevented deleterious remodeling (Pittenger & Martin, 2004). The ability  
of MSCs to repair damaged tissue is thought to be primarily from their capacity to  
secrete paracrine mediators such as interleukin-10, interleukin-1ra, keratinocyte growth 
factor and prostaglandin (Matthay et al., 2010). However, the mechanisms underlying 
migration/homing of hMSC have yet to be clarified, even though there are some evidence 
suggesting the involvement of chemokines and their receptors (Kortesidis et al., 2005; Von 
Luttichau et al., 2005; Wynn et al., 2004). In addition to cellular adhesion molecules, the 
following chemokine/receptor pairs have been implicated in MSC migration; SDF-1/CXCR4, 
SCF/c-Kit, HGF/c-Met, VEGF/VEGFR and PDGF/PDGFr. However, the migration to the 
tumor site is believed to be non-specific since the administered MSCs have been shown to 
localize to lung, bone marrow and lymphoid organs. Additionally, it was observed that 
whole body irradiation increases the distribution of MSCs to multiple organs (Momin et al., 
2010). 
Because of their stem cell properties, facilitation of engraftment of the transplanted 
hematopoietic stem cells and promotion of the structural and functional repair of damaged 
tissues are some of the first studies the scientists have focused in the MSC field. However, 
because of the immunomodulatory properties of MSCs, they might have potential uses in 
immune-related diseases as well (Uccelli et al., 2008). One of the advantages of using MSCs 
as therapeutic agents is their poor immunogenicity in vitro, in preclinical trials and in 
human studies. This would allow the use of MSCs from allogenic donors. There still remains 
the possibility of using autologous MSCs even in autoimmune conditions. (Bartholomew et 
al., 2002; Le Blanc et al., 2004; Murphy et al., 2002; Tse et al., 2003). Recently reported findings 
present the observation that MSCs derived from the bone-marrow suppress T-cell 
proliferation (Uccelli et al., 2008). MSCs have been shown to have a role in both innate and 
adaptive immunity. In innate immunity, MSCs can decrease the pro-inflammatory response 
potential of dendritic cells by inhibiting their production of tumor-necrosis factor (TNF). 
They have also been shown to have an inhibitory effect on the maturation of monocytes and 
cord-blood and CD34+ hematopoietic progenitor cells (Jiang et al., 2005; Li et al., 2008; Nauta 
et al., 2006; Ramasamy et al., 2007). Neutrophils, an important part of innate immunity, can 
also be regulated by MSCs. The MSCs, through an IL-6 regulated mechanism, can dampen 
and delay the spontaneous apoptosis of resting and activated neutrophils (Raffaghello et al., 
2008). In adaptive immunity, T cells are maintained in a state of quiescence through an 
MSC-mediated anti-proliferative effect, which can be partially reversed through IL-2 
stimulation (Zappia et al., 2005). It has also been suggested that MSCs are able to modulate 
the intensity of immune system response through an inhibition of antigen-specific T-cell 
proliferation and cytotoxicity and through promotion of regulatory T cell generation (Hwa 
Cho et al., 2006; Pevsner-Fischer et al., 2007; Tomchuck et al., 2008).  
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2.3 Limited proliferation capacity of hMSCs 

Most of the human somatic cells can undergo 60-70 population doublings on average, and 
then enter senescence (Meyerson, 2000). Cellular senescence is the process by which normal 
cells lose the ability to divide. This limited number of cell divisions is called the “Hayflick 
limit” (Hayflick, 1976) (Figure 1, top panel). 
 

 

Fig. 1. Hayflick limit, senescence and telomerase reactivation 

In normal cells, cell divisions are preceded by replicating the DNA to form two daughter 
molecules each having an original strand from parent cell and one newly synthesized strand. 
Replication of the leading DNA strand is simple and complete, but on the lagging strand 
replication uses small Okazaki fragments, to ensure 5’ to 3’ addition of bases. This results in 
the incomplete replication of the extreme ends of the lagging strand of chromosomes, and 
loss of genes. This is called the “end replication problem”. The normal senescence involves 
the p53 and pRb pathways and leads initially to the arrest of cell proliferation (Campisi, 
2005). The telomere signal that activates the senescence program operates through the Rb 
and p53 pathway. Rb and p53 deficient primary cells that continue cellular growth beyond 
the Hayflick limit exhibit severe telomere shortening, marked genetic instability and 
massive cell death—this period is referred to as crisis (Counter et al., 1992; Shay et al., 1991). 
It is thought that senescence plays an important role in the suppression of cancer emergence. 
Once the telomeres reach a critical short length, by means of the end replication problem, 
the cell enters the M1 stage (mortality 1) and goes into senescence (Kim et al., 1994). If the 
cell escapes senescence and continues to proliferate with further shortening of telomeres, it 
will undergo crisis or mortality 2 (M2). Cells that overcome M1 and M2 by acquiring 
mutational changes become immortal. Most cancers are the result of "immortal" cells that 
have evaded programmed cell death. At this point the cells will have acquired telomerase 
reactivation to maintain a constant length of telomeres (Fig 1).  
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Despite their stem cell characteristics when pressed to proliferate strongly, mesenchymal 
stem cells can also suffer from replicative senescence with critically short telomeres (Kim et 
al., 1994). This brings about certain limitations in therapeutic use of stem cells. One of these 
limitations is as mentioned above, the limitation in proliferative capacity, which undoubtedly 
can be overcome by introduction of certain genes that will enable them to continue to 
proliferate. It has been shown that there are numerous genes like the TERT gene that are 
capable of extending the proliferative capacity (Fig 1) and immortalizing the stem cells or 
progenitor cells, however, with the risk that malignant transformation may occur. Therefore, 
telomere dynamics becomes an important issue in stem cell function especially when 
expanding a population of stem cells is needed.  
Considering the fact that stem cells in general tend to give rise to a high number of daughter 
cells, one would expect, that stem cells would express telomerase to maintain telomere 
length. But the real picture is inconsistent. In primary stem cells the replicative capacity is, 
however, limited. The telomere length pattern (also termed the telomere profile) can be 
monitored until the cells reach replicative arrest after approximately 10 population 
doublings (PD) and it has been shown that the telomere profile is conserved for this number 
of doublings. In addition, the possible conservation of profile has been studied in 
telomerase-immortalized mesenchymal stem cells where these cells were grown for 205 
PD’s and still they maintained the profile. This surprisingly long term conservation of the 
telomere profile clearly suggests that also in mesenchymal stem cells there is a very low 
degree of random fluctuation in the telomere dynamics, as previously suggested in 
lymphocyte progenitor cells. Overall, there is a general agreement, that adult stem cells have 
very low levels of telomerase, thus telomeres are slowly shortened during life. The primary 
mesenchymal stem cells have also been shown to obtain a diminished mean telomere length 
during long term culturing periods (Serakinci et al., 2007). (Fig2). Serakinci et al. have shown 
that the mean telomere length of the primary cells is 8 kb and the length is continuously 
decreasing with the population doubling level. 
 

 

Fig. 2. Deccreased telomere length in primary hMSC with population doubling levels (PDL)  
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3. MSC expansion for therapeutic purposes: Neoplastic transformation 

Within the last decade, human mesenchymal stem cells have been validated as potential 
tools in different therapeutic approaches. Many of these therapeutic potentials for MSCs 
have been discussed in the previous section in detail. Initial results were promising but there 
are some challenges for the use of MSCs in clinical applications. During the isolation 
process, only 1 in every 105 cells is MSCs and there is also the issue of low grafting efficiency 
and potency of MSCs. Although hMSCs have great potential in therapeutic use the main rate 
limiting factor is that hMSCs exhibit limited mitotic potential, especially considering that, in 
a human system very many cells are needed for injection. Therefore, a need for large scale 
MSC expansion is obvious (Momin et al., 2010; Teng, 2010). To overcome this proliferative 
limitation introduction of the TERT gene has been highlighted. Hence, telomere dynamics is 
an important issue in stem cell function especially when expanding a population of stem 
cells. Serakinci et al. by introducing a retrovirus carrying the hTERT gene has established an 
immortalized hMSC-telo1 cell-line, which maintain their stem cell characteristics and have an 
expanded life span (Serakinci et al., 2007). But extending the proliferative capacity of stem 
cell populations through manipulation of the telomere-telomerase system brings certain 
risks that are associated with the possibility that stem cells may show increased 
susceptibility to carcinogenesis. This manipulation bypasses the naturally built-in controls 
of the cell that govern the delicate balance between cell proliferation and senescence and 
carcinogenesis. 
Given the critical role of telomere dynamics and telomerase in tumor progression and the 
fact that the cancer cells rely on telomerase for its survival, it is not surprising that telomeres 
are rather unique structures in a given cell. On one hand they have a role in protecting the 
chromosome ends from being recognized as DNA double strand breaks by the DNA repair 
machinery. On the other hand telomeres, when critically shortened, can lead to cellular 
senescence, which can be regarded as a barrier against cancer formation via the so-called 
telomere-mediated checkpoints. However, in the cells that manage to avoid being 
destroyed, dysfunctional telomeres can affect the genomic stability through initiating the so 
called Break-Fusion-Break (BFB) cycles leading to severe genomic aberrations and 
ultimately to cancer development (Furlani et al., 2009; Serakinci et al., 2008) (Fig 3). These 
events have been reported in literature in adipose-derived human MSCs (Rubio et al., 2005) 
and bone marrow-derived mouse MSCs (Miura et al., 2006; Tolar et al., 2007; Zhou et al., 
2006). These MSCs showed phenotypic and genotypic alterations such as chromosome 
instability, rapid cell proliferation, loss of contact inhibition, gradual increase in telomerase 
activity and increased c-myc activity (Furlani et al., 2009).  
Besides the immortalized cell line examples, there are also studies in both rodent models 
and human mesenchymal stem cells that have suggested that during long-term culturing 
mesenchymal stem cells acquired chromosomal aberrations and subsequently exhibited a 
malignant transformation (Rubio et al., 2005; Zhou et al., 2006). Such studies raised the 
concerns that hMSCs that are forced into extensive expansion can undergo spontaneous 
transformation. Several groups have shown results showing spontaneous transformation of 
human mesenchymal stem cells that are expanded long term (Serakinci et al., 2004; Rubio et 
al., 2005; Momin et al., 2010; Wang et al., 2005). Most studies have been done in mouse but 
Rubio et al., have shown that adipose tissue–derived human MSC populations, after a long-
term in vitro expansion, can transform spontaneously. Rubio et al. further characterized the 
molecular mechanisms implicated in the spontaneous transformation. They have shown that 
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the transformation process occurred after the hMSC had bypassed senescence by up 
regulating c-myc and repressing p16 levels. Then, through acquisition of telomerase activity, 
deletion at the Ink4a/Arf locus and hyperphosphorylation of Rb followed (Rubio et al., 2008). 
It was also reported by Wang et al. that human MSCs derived from the bone marrow would 
produce a sub-population of cells when cultured. These cells would have high levels of 
telomerase activity, chromosomal aneuploidy and translocations and were able to form 
tumors in multiple organs in NOD/SCID mice (Momin et al., 2010; Wang et al., 2005). 
Contrary to these studies, several groups have reported no transformation of hMSC after 
long-term culture (Bernardo et al., 2007; Meza-Zepeda et al., 2008). Using comparative 
genomic hybridization, karyotyping and subtelomeric fluorescent in situ hybridization 
analysis Bernardo et al. performed extensive studies on the genetic changes in the hMSCs at 
different stages of the long-term culture but they did not find any evidence for spontaneous 
transformation of hMSCs during long term culture (Bernardo et al., 2007). In addition, there 
are studies demonstrating that telomerase-immortalized hMSC accumulate various genetic 
and epigenetic changes in spite of maintaining a normal karyotype, and ultimately showed 
spontaneous transformation (Burns et al., 2005; Serakinci et al., 2004). These studies 
supported the existence of neoplastic transformation of hMSCs during in vitro expansion. 
However, the spontaneous transformation potential of hMSCs is still a controversial issue 
and more evidence is needed. In addition to in vitro expansion studies, there are studies 
suggesting a role for hMSC in the carcinogenesis progression. Recent evidence thus suggests 
that exogenously administrated hMSCs can be recruited to the stroma of developing tumors 
when systemically infused in animal models for glioma, colon carcinoma, ovarian carcinoma, 
Kaposi’s sarcoma and melanoma (Lazennec & Jorgensen, 2008).  
Christensen et al have investigated and shown that the telomerase expression in long-term 

cultured telomerase-immortalized hMSCs (hMSC-telo1 cells) did not give rise to a tumor 

formation (Christensen et al., 2008). Telomerase activation most often occurs at the transition 

to cancer which is highly specific to cancer cells. Neoplastic transformation occurred when 

the cells were subjected to 2.5 Gy of gamma irradiation and subsequently cultured long-term. 

We, therefore, could conclude that transducing hMSC with hTERT did not unmask the 

neoplastic potential on its own but subsequent DNA damage such as irradiation-induced 

damage contributes to mesenchymal tumor development (Fig 3). These findings are in 

agreement with observations made by a number of other groups. Thus, it appears that using 

telomerase to help production of large numbers of cells is effective but it has impact on 

neoplastic transformation. Therefore, more information about adult stem cells and how their 

growth is regulated is required. Thus, close monitoring is crucial for clinical applications. 
 

4. Two-faces of mesenchymal stem cells in cancer 

It has been shown that exogenously administered hMSC may contribute to tumor stroma 

formation in animal tumor models by promoting angiogenesis or by creating a niche to 

support cancer stem cell survival (Sullivan & Hall, 2009). These tumor models include 

melanomas, colon adenocarcinomas, lung cancer, multiple myelomas and glioblastomas 

(Momin et al., 2010). The reason for this is thought to be the immunosuppressive ability of 

MSCs. As the MSCs interact with many of the cells of the innate and acquired immune 

system and suppress them, the tumor cells may get the chance to better evade the immune 

surveillance (Lazennec & Jorgensen, 2008; Momin et al., 2010).  
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Recently, Correa et al. has induced the development of a gastric cancer by Helicobacter felis 

infection in a C57BL/6 mouse model where normal bone marrow was replaced with bone 

marrow cells tagged with either beta galactosidase or GFP. With this study, they could 

demonstrate that in this model cancer cells are directly derived from bone marrow stem 

cells. During the helicobacter inflammation, these cells have been recruited to the site, where 

the gastric cancer later occurred (Correa & Houghton, 2007). Similar results have recently 

been achieved in a rat model of Barrett’s metaplasia (Sarosi et al., 2008). In addition to 

these examples, there is substantial literature in rodent models, demonstrating the ability of 

MSCs’ homing and transdifferentiation to inflammatory lesions at extra-medullar sites 

(Hayashi et al., 2008; Kahler et al., 2007; Serikov et al., 2007; Suzuki et al., 2008).  

 

 

Fig. 3. Illustration of the sequence of events during the neoplastic transformation of hMSCs 

Another face of the cancer and MSC interplay is that, the stromal cells of the tumor might 
exert transforming effects on the mesenchymal stem cells. It is thought that after a 
prolonged exposure to the tumor-conditioned media the MSCs can assume a carcinoma 
associated fibroblast (CAF)-like phenotype. CAF are known to support the growth of cells 
and angiogenesis in breast cancer. These observations have lead us to consider that upon 
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exposure to the tumor environment, MSCs could transform into CAFs and may help in 
tumor growth and even spread (Momin et al., 2010). However, the current animal models 
are not enough to help us understand this complex relationship that exists between MSCs 
and tumors. The animal models used now rely on harvesting the human tumor cells and 
culturing them in vitro before grafting them into the animal. The problem with this approach 
is that during the culturing process the cells are away from the tumor stroma and the 
epithelial cells. And even when the cells are inside the animals the stroma will be formed 
from the animal’s own cells leading to a chimeric tumor that would not reproduce the 
interaction between the MSCs and the tumor stroma. Perhaps the new generation of 
immunocompromised mice such as the NOG mouse will be able to help in the investigation 
of this relationship as it is better able to accept heterologous cell populations (Hahn & 
Weinberg, 2002; Ito et al., 2002; Kim et al., 2004; Momin et al., 2010; Rangarajan & Weinberg, 
2003; Rosen & Jordan, 2009). 
Today, cancer still remains as one of the most challenging diseases with regards to 

treatment. One of the biggest problems is that there is really no selective killing towards 

tumor cells. Thus, therapies that are more specifically directed towards cancer stem cells 

might result in much more durable responses and even might also cure the metastatic 

tumors. While hMSCs play a role in supporting tumor formation, based on their homing 

abilities hMSC have been used as cellular vehicles for local delivery of biological agents to 

brain tumors. Human MSCs were transduced with a lentivirus expressing secretable TRAIL 

(S-TRAIL) and mCherry (red fluorescent protein) and injected into established intracranial 

glioma tumors in mice. The genetically modified hMSCs were able to inhibit tumor growth, 

resulting in significantly longer animal survival. Thus, the study demonstrated the 

therapeutic efficacy of hMSC S-TRAIL cells and confirmed that hMSCs can serve as a 

powerful cell-based delivery vehicle for the site-specific release of therapeutic proteins 

(Menon et al., 2009). In earlier experiments looking at targeted delivery, MSCs genetically 

engineered to secrete IFN-β were able to successfully home and engraft at melanomas 

growing in mice lungs and locally deliver IFN-β. When delivered locally, IFN-β was able to 

inhibit the growth of malignant cells both in vivo and in vitro. The same effect could not be 

achieved with systemically delivered IFN-β or IFN-β produced away from the tumor site 

(Studeny et al., 2002; Studeny et al., 2004). In a recent experiment, MSCs were shown to be 

recruited to and incorporated into the prostate epithelium during prostate regrowth (after 

testosterone reintroduction). The incorporated MSCs were used to deliver frizzled related 

protein-2 (SFRP2) to antagonize the Wnt-mediated cancer progression by reducing tumor 

growth, increasing apoptosis and causing potential tumor necrosis (Placencio et al., 2010). 

hMSC having the potential to home to the tumor stroma allows them to be a promising 

tool for the delivery of anticancer drugs to the tumor microenvironment. This strategy has 

been shown to work by the observation of specific homing of intravenously administered 

hMSCs, engineered to produce interferon-β (IFN-β), to tumors with subsequent tumor 

regression in a xenogenic mouse model (Studeny et al., 2004). This study showed that 

mesenchymal stem cells expressing IFN-β could inhibit the growth of tumor cells in vivo. 

The approach required integration of the hMSC at the tumor site, because non-tumor site 

integrated or systemic delivery of IFN-β did not have enough tumor regressing effect. These 

findings have recently been supported by Serakinci et al. where they have shown that hMSC 

can home to tumor site and furthermore could deliver a therapeutic agent to the site 

(Serakinci et al, in press). 
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Besides the abovementioned studies, Seo et al. have demonstrated that IL-12M-expressing 
MSC injection directly into the tumor had the strongest antitumor effect compared with 
other injection routes such as intravenous or subcutaneous. In addition to the inhibition of 
solid tumor growth, the same study also demonstrated anti-metastatic effects for MSCs/IL-
12M when embedded in the Matrigel (Seo et al., 2011). Furthermore, Correa et al. have 
demonstrated that gastric cancers may originate from hMSCs (Correa & Houghton, 2007). 
Based on these and similar studies, we can suggest that hMSCs can modulate the tumor 
growth, although this issue still remains controversial and not fully understood.  
It seems that to incorporate cancer-fighting genes inside stem cells grown from a patient's 

bone marrow mesenchymal stem cells are promising therapeutic and newly emerging 

approaches. Success of such approaches is dependent on well designed vectors or viruses 

carrying therapeutic agents. Then those vectors or viruses can be inserted into stem cells e.g. 

mesenchymal stem cells, which are grown from a sample of a patient's bone marrow. Such 

stem cells would not be rejected as foreign objects by the immune system when they are 

injected back into the patient. Once inside the patient's bloodstream, the stem cells would 

migrate to tumor site and release the anti-carcinogenic agent. The basic approach would be 

to harvest MSCs, modify them such that they secrete an anti-neoplastic compound and as 

the last step, administer them into an animal that has a tumor. To date, various stem cells 

have been modified to secrete several different compounds that would either reduce the 

tumor size or prolong the survival of the organism. These compounds had varying degrees 

of success (Aboody et al., 2008; Momin et al., 2010).  

Gene and viral therapies for cancer have shown some therapeutic effects, but there has been 

a lack of real breakthrough. Based on others and our studies it seems that the identification 

of reservoirs of multipotential stem cells within adult tissue provides exciting prospects for 

developing novel vehicle for stem cell-mediated gene therapy. This new strategy seems to 

produce stronger and more specific anti-tumor effects. But considering that one of the 

hallmarks of cancer development is continued cell growth, which is most often correlated 

with activation of telomerase, the question must be raised if there is a potential cancer risk of 

genetically engineered cells. Critical to such approaches will be an ability to remove or 

inactivate the genetically engineered stem cells that homed to tumor site at the time of 

delivery of the targeted treatment.  

One approach might be to use telomerase inhibitors that may be a way to stop proliferation 

of these particular cells. Since the telomerase is essential to the life of a cell, treatments with 

modified structures called telomerase inhibitors will eventually lead to cell death. But this 

approach might face another problem namely that some of these cells will escape the cell 

death and this will lead to genomic instability, ultimately causing development of a new 

cancer. Another and perhaps safer approach might be that after delivery of the targeted 

treatment, the vehicle cells should be engineered to commit suicide. Such a strategy has 

been used in connection with the tumor-selective viruses that mediate oncolytic effects on 

tumors due to genetically modified viruses, which is engineered to replicate in and kill 

targeted cancer cells. Such viruses have been engineered with tumor-specific transcriptional 

response elements based on the telomerase promoter sequence thereby attacking 

telomerase-positive cells (Abdul-Ghani et al., 2000; Bilsland et al., 2005; Komata et al., 2001b; 

Plumb et al., 2001). These studies have suggested that combinational therapy approaches 

(genetically engineered vehicle stem cell therapy and the suicide gene therapy) might 

improve targeted therapies and at the same time reduce the risk of secondary tumors. 
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Numerous clinical trials have been published involving MSCs. In many of these studies the 
MSCs were evaluated only in a non-cancerous context like myocardial infarctions or the role 
of MSCs in graft versus host disease (Momin et al., 2010). No acute or long-term effects have 
been reported so far including any reports of carcinogenesis. The longest follow up reported 
in these studies is 3 years. However, more information and studies are needed regarding 
these studies as carcinogenesis might be a long process. Another point to consider is that 
most of these studies were carried out on patients with poor prognosis which might be 
masking any adverse effects from MSCs. Furthermore, there has been no appropriate 
imaging methods used in clinical trials to look for carcinogenesis in the body. The last point 
we will need to keep in mind regarding the use of MSCs in therapy is that so far not many 
genetically-modified MSCs have been used in clinical trials published to date (Momin et al., 
2010). Carcinogenesis issues remain a hot topic with regards to MSCs and will always need 
to be carefully evaluated. The risk from the illness, the risk of not getting a treatment will 
have to be weighed against the risk of transformation of MSCs, which may lead to 
carcinogenesis. 

5. Future directions 

Considering the neoplastic transformation risk of genetically engineered hMSC and their 
role in tumor formation different systems should be devised to address this risk during the 
conduction of therapeutic approaches. It is critical to place a fail-safe system that will 
remove or inactivate the genetically engineered stem cells once they have homed to the 
tumor site and delivered the therapeutic agent. To overcome the expansion related risks 
Momin et al. have suggested using MSCs from different sources to reach to a larger number 
of cells with fewer number of passages. Another approach might be to use telomerase 
inhibitors in an effort to stop the proliferation of the genetically modified MSCs once they 
were done with delivery. Since the telomerase is essential to the life of these telomerased 
cells, treatment with telomerase inhibitors will eventually lead to cell death. However, this 
approach might raise yet another problem; namely, some of these cells might escape cell 
death which will lead to genomic instability and ultimately cause the development of a new 
cancer. Alternatively, another and perhaps safer approach might be to cause the vehicle cells 
to commit suicide after delivery of the targeted treatment. This strategy has been used in 
connection with tumor-selective genetically modified viruses that mediate oncolytic effects 
on tumors by replicating in and killing cancer cells in a targeted manner. These viruses 
contain transcriptional response elements based on the telomerase promoter sequence 
thereby attacking telomerase-positive cells, which includes the genetically modified MSCs in 
this case (Abdul-Ghani et al., 2000; Bilsland et al., 2005; Komata et al., 2001a; Plumb et al., 
2001).  
Taken together, studies on the impact of neoplastic transformation of the hMSC and the 
studies on impact of using telomerase to help production of large numbers of cells, one 
could conclude that caution is warranted for stem cell-based therapies. However, this does 
not mean that these studies need to be put off. Thus, considering their susceptibility to 
neoplastic transformation and potential to home to tumor site one of the key questions that 
still needs to be addressed is; how safe is to use hMSC for targeted cancer therapy? And the 
answer to this question is that there is to date good indications that human bone marrow 
MSC, which will be isolated from individuals and in vitro expanded, can be used for cancer 
therapy especially as delivery vehicles targeting tumor stroma after a careful safety 
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monitoring and preclinical tests. Still, for successful clinical applications more information 
about human mesenchymal stem cells and their growth regulation is still required. 
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