
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



20 

Carbon Nanotubes in Passive RF Applications 

Ahmed M. Attiya and Majeed A. Alkanhal 
King Saud University, Electrical Engineering Dept 

Saudia Arabia 

1. Introduction 

Carbon nanotubes are characterized by unique electrical properties which make them good 
candidates for different applications in electronics and electrical engineering. In this chapter 
we focus mainly on electrical properties of single wall conducting carbon nanotubes in high 
frequency, electromagnetic waves interaction with carbon nanotubes and the possible 
passive RF applications. The term “high frequency” here refers to the frequency band from 
gigahertz to terahertz. This chapter starts from microscopic view by discussing 
electrodynamics of carbon nanotubes to show the mechanism of time varying 
electromagnetic field interaction with carbon nanotubes (Slepyan et al., 1999; Slepyan et al., 

2008; Mikki & Kishk 2008). Based on these electrodynamics properties, an equivalent 
dynamic surface conductivity is developed to represent a macroscopic view for the 
interaction of high frequency electromagnetic fields with carbon nanotubes (Hanson, 2005). 
This equivalent surface conductivity of carbon nanotube is characterized by complex value 
with negative imaginary part. This negative imaginary part represents an inductive effect in 
carbon nanotubes. This inductive effect is due to chiral property of the electric current flow 
along the carbon nanotube (Slepyan et al., 1998; Miyamoto et al. 1999). This inductivity has a 
significant effect on reducing the wave velocity of electromagnetic wave propagation along 
carbon nanotube. This wave velocity reduction corresponds to decreasing the wavelength. 
This property is quite important in passive RF applications like passive circuits and 
antennas, since the dimensions of these applications depend mainly on the wave length 
(Slepyan et al., 1999; Slepyan et al., 2008; Attiya, 2009).  
Based on the macroscopic surface conductivity of carbon nanotube, the problems of 
electromagnetic fields interaction with carbon nanotubes can be presented in similar ways to 
conventional problems related to cylindrical structures with finite surface conductivity. In 
this way the problem of carbon nanotube antennas can be presented as an electric field 
integral equation problem which can be treated numerically by method of moments 
(Hanson, 2005; Hao & Hnason, 2006). Similarly, the problem of surface wave propagation 
along carbon nanotubes can be presented as a boundary value problem where the difference 
between the tangential magnetic fields on the two sides of the wall of the carbon nanotube 
would equal the induced current on the wall of the carbon nanotube. This induced current 
depends on the tangential electric field along the carbon nanotube and the surface 
conductivity. This boundary value problem is solved to obtain the field distribution and the 
complex propagation constants of the surface wave modes propagating along carbon 
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nanotube (Slepyan et al., 1999; Shuba et al. 2007; Slepyan et al., 2008; Attiya, 2009). This 
surface wave propagation is characterized by highly attenuation coefficient at microwave 
frequency band. This property makes carbon nanotubes are not suitable for antenna design. 
However, this high attenuation property is more suitable for other applications which are 
based on absorbing or attenuating electromagnetic waves like transparent electromagnetic 
shielding (Xu et al., 2007) and microwave heating in biomedical applications (Mashal et al., 
2010). On the other hand, at higher frequency bands in the range above 100 GHz, this 
attenuation coefficient is decreased and carbon nanotubes can be a good candidate to design 
low loss antenna structures of much smaller size compared with operating free space wave 
length (Huang et al. 2008 & Attiya, 2009).  
Another common approach for simulating electromagnetic wave propagation along carbon 
nanotube is based on electron fluid model (Burke, 2002; Chiariello et al., 2006a; Miano & 
Villone 2006). This model is more suitable for simulating transmission line sections of 
carbon nanotubes. In this case the inductive effect of current flow along the carbon nanotube 
transmission line is modeled as an additional kinetic inductance in the equivalent circuit 
model of this transmission line (Burke, 2002; Chiariello et al., 2006b; Miano & Villone 2006; 
Maffuci et al. 2008; Maffuci et al. 2009). This kinetic inductance has much greater value than 
the conventional magnetic inductance of conventional transmission lines. This increase in 
the total inductance introduces two main effects; decreasing the wave velocity along the line 
and increasing the characteristic impedance of the line. To improve the properties of carbon 
nanotube transmission lines, bundles of carbon nanotube are used instead of a single carbon 
nanotube (Plombon et al., 2007; Rutherglen et al. 2008). Extensive studies are presented in 
literature about the possibility of using carbon nanotube bundles as interconnects in high 
speed integrated circuits (Massoud & Nieuwoudt, 2006; Naeemi & Meindl, 2009).  
Recently, another new approach is discussed for solving the interaction between Maxwell’s 
equation and Schrödinger equation numerically by using finite difference method to obtain 
electromagnetic field interaction with nanodevices like those which are based on carbon 
nanotubes (Pierantoni et al.; 2008, Pierantoni et al.; 2009 & Ahmed et al.; 2010). This method is 
based on space-time discretization. The electromagnetic source is modeled by means of time 
dependent vector and scalar potentials which are added to the quantum potential profile of 
the carbon nanotube. Then Schrödinger equation is solved by using a finite difference 
scheme to obtain the wave equation of electron flow along the carbon nanotube. 
The aim of the present chapter is to introduce to the reader an updated view for the 
problems of electromagnetic field interaction with carbon nanotube with emphasis on the 
possible passive RF applications. Section 2 presents the electrodynamics of carbon nanotube 
and the concept of equivalent macroscopic surface conductivity. Section 3 presents the 
electron fluid model of carbon nanotube and how it can be used to obtain equivalent circuit 
parameters of carbon nanotube transmission lines. Section 4 presents finite difference time 
domain method as numerical technique for studying electromagnetic interaction with 
carbon nanotubes. Section 5 presents detailed analysis of surface wave propagation along 
carbon nanotubes. Section 6 introduces the electric field integral equation formulation of 
carbon nanotube antenna and presents sample results for this problem. Section 7 discusses 
the possibility of using carbon nanotubes in some passive RF circuits. Finally, Section 8 
introduces some possible applications of carbon nanotubes based on their absorbing 
properties in microwave frequencies.  
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2. Dynamic conductivity of carbon nanotubes 

Dynamic conductivity of a carbon nanotube represents a macroscopic quantity relating the 
disturbance of electron flow along the nanotube due to an incremental temporal variation in 
the applied electric field along it. For conventional carbon nanotube structures, the length of 
the nanotube is much greater than its circumference. Thus, for most practical cases, it is 
assumed that the equivalent current along the surface of the nanotube is transversely 
symmetric and parallel to the axis of the nanotube. In the following analysis the geometry of 
the nanotube is assumed to be presented in cylindrical coordinate system, where the axis of 
the nanotube lies along the z-axis. Thus, the proposed dynamic conductivity in this case is 
the relation between the surface current density zJ  and the applied electric field zE .  
The applied field is presented as a time harmonic propagating wave along the axis of the 
nanotube as follows: 

  0( , ) Re j t z
z zE z t E e     (1) 

where 0
zE  is the amplitude of the incident field,   is the angular frequency and   is the 

complex propagation constant along the nanotube. This complex propagation constant is 
discussed in detail in Section 5. However, in the present case, the dependence of the electric 
field on z can be assumed to be constant by taking the limit where an incremental length of 
the nanotube is considered. Thus, for a very small part of the nanotube, the incident field is 
assumed to be  0( ) Re j t

z zE t E e  .  
This applied electric field introduces a disturbance in the electron distribution function 
along the nanotube. At equilibrium, the electron distribution function is given by: 

   ( ) 1 / 1 exp ( ) / BF k T     p p  (2) 

where z zp p  p a a  is the electron’s two-dimensional quasi-momentum, Bk  is Boltzman 
constant, T  is the absolute temperature and ( ) p  is the electron energy with respect to the 
Fermi level in the lattice of the carbon nanotube. By applying an axial time harmonic electric 
field on the nanotube, this distribution function along an incremental length is modified as 
follows: 

  ( , ) ( ) Re j tf t F f e  p p  (3) 

This dynamic distribution function is governed by Boltzman kinetic equation (Dressel & 
Grüner, 2003). By taking into consideration that the problem is transversely symmetric, the 
applied field is only along the axis of the nanotube one can obtain Boltzman kinetic equation 
for the carbon nanotube as follows: 

  1
vz z

z

f f f
eE F f

t p z 
  

   
  

  (4) 

where   is the electron relaxation time in the lattice of the carbon nanotube, v ( ) /z zp  p  
is axial electron velocity and ( ) p  is the electron energy function. This relaxation time is 
nearly 3 ps in carbon nanotube (Hanson 2006). By applying the time harmonic electric field 
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and the dynamic distribution function of Equation (3) into Equation (4), one can obtain the 
incremental disturbance in the distribution function as 

 
0
z

z

jeE F
f

j p


 



 

 (5) 

where 1 /v   is the relaxation frequency and e  is the electron charge. The amplitude of 
the time harmonic current density along the surface of the nanotube can be obtained by 
using this disturbance function in the electron distribution function as follows: 

 
st

0
2

1 BZ

2
vz z z

e
J f dp dp

h
   (6) 

where h  is Planck’s constant. The range of integration in Equation (6) refers to the first 
Brillouion zone of the carbon nanotube lattice. By inserting Equation (5) into Equation (6), 
one can obtain a linear relation between the amplitude of the incident time harmonic electric 
field and the resulting surface current density as follows:  

 
0 0
z zz zJ E   (7) 

where the equivalent axial conductivity zz  is given by 

 
st st

22 2

2 2
1 BZ 1 BZ

2 ( ) ( ) 2 ( )
zz z z

z z z

j je F e F
dp dp dp dp

j p p j ph h
 

   
    

   
      

 
p p p

 (8) 

It should be noted that the azimuth momentum p  has discrete values in nanotube since 
electron energy in this case is a periodic function of  . Thus, the double integration in 
Equation (8) is converted into a finite series of single finite integration.   
The key difference between the conductivities of the different types of the carbon 
nanotube lies in the corresponding electron energy function E(p). This electron energy 
function depends mainly on the chiral vector of the carbon nanotube. Each chiral vector is 
a combination of integer multiplications factors, m and n, of the two basis lattice vector for 
a graphite sheet. For a zigzag carbon nanotube, where the indices of the chiral vector of 
the carbon nanotube lattice are m  0 and n = 0  and, The electron energy function is given 
by: 

 2
0

3 33
( ) 1 4 cos cos 4 cos

/ / /
z

zigzag

bp bpbp

h h h

 
  

    
                 

p  (9-a) 

where 1.42Ab 


  is the interatomic distance in a graphite sheet, 0 2.7 3.0eV    is the 
characteristic energy of the graphene lattice and the azimuth momentum in this case is 
given by:  

  / 3 , 1,2,3,.....,p hs mb s m    (9-b) 
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For the case of an armchair carbon nanotube where the indices of the chiral vector are equal, 
m=n, the electron energy function is given by: 

 2
0

3 3 3
( ) 1 4 cos cos 4cos

/ / /
z z

armchair

bp bp bp

h h h


  

    
                 

p   (10-a) 

where the azimuth momentum in this case is given by:  

  / 3 , 1,2,3,.....,p hs mb s m     (10-b) 

By inserting Equations (9) and (10) into Equation (8) and evaluating the required integration 
one can obtain the axial conductivity for both zigzag and armchair carbon nanotubes. For 
the cases of small values of m (where m<60), these integrals can be evaluated approximately 
in closed forms. Zigzag carbon nanotubes have conducting properties for values of m which 
are integer multiple of three. In this case, the dynamic conductivity of zigzag carbon 
nanotube is given by: 

 
 

2
0

_ 2

8 3
, 3 , 0zz zigzag

e
j m N n
mh j

 
 

   


  (11-a) 

On the other hand, armchair carbon nanotubes are always conductor for all values of m. The 
dynamic conductivity of armchair carbon nanotube is given by: 

 
 

2
0

_ 2

8
,zz armchair

e
j m n
mh j

 
 

  


 (11-b) 

For a chiral carbon nanotube where m  n and n  0, the carbon nanotube is conducting if  
2m + n = 3N where N is an integer value. In this case the dynamic conductivity of the carbon 
nanotube is given by: 

  
 

2
0

_ 2 2 2

8 3
, 2 3zz chiral

e
j m n N
h m mn n j

 


 
   

  
  (11-c) 

Equation (11) represents the dynamic conductivity for the different types of conducting 
carbon nanotubes. It should be noted that this conductivity corresponds to a surface 
conductivity. Thus the unit here is Siemens. It can be noted that these dynamic 
conductivities are complex values of negative imaginary part while for conventional 
conductor the conductivity is usually a real part. This negative imaginary part in the 
conductivity of carbon nanotube corresponds to an additional inductive effect in the 
mechanism of the electron current flow along it. This inductive effect introduces slow wave 
propagation along the carbon nanotube as it is discussed in the following section. This slow 
wave property corresponds to a decrease in the wavelength along the carbon nanotube. 
Since the dimensions of RF circuits and antennas depend on the electrical length, this 
reduction in wave velocity along the carbon nanotube is expected to be quite useful for size 
reductions of RF circuits and antennas.   
For the sake of comparison (Hanson 2005) introduced the equivalent surface conductivity of 
a hollow copper nanotube as: 
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 
2 2

_
2 _ ( )

d
e cu

d cu
e cu

e N
j
m jv

 


 


  (12) 

where 2 19 2
_ 1.9271 10 electrons/md

e cuN    is the surface electron density and 
319.1 10  kgem    is the mass of the electron and 41.667 THzcuv   is the electron 

relaxation frequency of copper. Figure 1 shows a comparison between the dynamic 
conductivity of armchair carbon nanotubes for different values of m. It can be noted that the 
conductivity of the carbon nanotube decrease by increasing m. The imaginary part of the 
conductivity is zero at dc and it has a beak value around 50 GHz. The real part of the 
conductivity is decreasing by increasing the operating frequency.  
 

 

Fig. 1. Dynamic conductivity of armchair carbon nanotube for various m values. Solid lines 
are Re( ) ; dashed lines are Im( ) . (Hanson 2005). 

 

 
Fig. 2. Comparison between the conductivity of an armchair carbon nanotube of m = 40 and 
the conductivity of an infinitely thin copper tube of the same radius (2.712 nm) (Hanson 
2005) 

Figure 2 shows a comparison between the conductivity of an armchair carbon nanotube of m 
= 40 with the surface conductivity of a hollow copper tube of the same radius. It can be 
noted that the imaginary part of the copper conductivity is negligible from dc up to 1 THz. 
Below 100 GHz, the real part of the conductivity of carbon nanotube is greater the 
conductivity of copper. However, at higher frequencies both the real and imaginary parts of 
the conductivity saturate at much smaller values.   
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3. Electron fluid model of carbon nanotube transmission line 

In this section electron fluid model is presented as an alternative representation to describe 
the linear response of a single wall metallic carbon nanotube to an applied electromagnetic 
field. This method is based on presenting the problem in the classical form of moving point 
charges in electric field with using appropriate effective mass for the moving electrons to 
include the effect of the carbon nanotube lattice. The nanotube is modeled as a continuous 
infinitesimally thin cylinder shell S of radius rc and length l. The cylinder is oriented along 
the z-axis as shown in Figure 3. In thermodynamic equilibrium the -electrons are 
distributed uniformly where the applied electromagnetic field perturbs this equilibrium 
distribution of the -electrons. 
 

 
Fig. 3. Carbon nanotube geometry 

The collective motion of the perturbed  -electrons is modeled by considering them as a 
charged fluid. Assuming that v ( , )z s tr  is the mean velocity of the electron fluid, where sr  is 
the position vector of an arbitrary point on the surface S; 0 ( ; )sn n n t  r  is the surface 
number density of the electron fluid, where 0n  is the equilibrium value; 0 ( ; )sp p p t  r is 

the “two-dimensional” pressure of the electron fluid, where 0p  is the equilibrium value. The 
incremental pressure perturbation is related to the incremental electron density perturbation 
by the relation 2

eff sp m c n   where sc is the thermodynamic speed of sound of the electron 
fluid if it is neutral and effm  is the mean effective mass of the  -electrons. This 
thermodynamic speed equals nearly electron Fermi velocity 5

03 / 8 10 /s Fc v b h m s     
The motion of  -electron fluid follows the law of momentum conservation which can be 
presented in the present case as  

 0 0 0
v

vz
eff eff z z

p
n m vn m n eE

t z


  

 
  (13) 

This momentum conservation equation can be presented in terms of the longitudinal current 
2 vz c zI r en  and the surface charge density  2 cq r en  as follows 

 
2

2 02z c
z s z

eff

qI r n e
vI c E

t z m


  

 
  (14) 

The parameter 0 / effn m  takes into account the influence of the atomic crystal field. This 
parameter is obtained for the case of a conducting armchair carbon nanotube by using 
semiclassical model based on Boltzmann equation as 0 / 4 /eff F cn m v hr . 
This representation corresponds to an equivalent distributed series RL per unit length with 
shunt quantum capacitance per unite length as shown in Figure 4, where 
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1z

z k z
q

qI
E L RI

t C z


  

 
 (15) 

The elements of this equivalent circuit are the kinetic inductance per unit length 
2/8k FL h e v , the quantum capacitance per unit length 28 /q FC e hv   and the ohmic 

resistance per unit length 2/8 FR vh e v   respectively.  Typical values of kinetic inductance 
and quantum capacitance are  4nH/ mKL   and 400 F/ mQC a   respectively. 
 

 
Fig. 4. Circuit model for electron flow along carbon nanotube 

It is interesting to note that the series elements of this equivalent distributed circuit of 
carbon nanotube can be directly obtained by using the equivalent surface conductivity of 
armchair carbon nanotube which is discussed in the previous section as follows: 

 
1

2s k
c zz

Z R j L
r


 

     (16) 

However, the parallel quantum capacitance element cannot be obtained directly from this 
surface impedance since we neglected the longitudinal derivative of the electron 
distribution function in the derivation of the equivalent surface conductance. It would be 
shown in the following discussion that the wave propagation on carbon nanotube is mainly 
dominated by the kinetic inductance and the loss resistance. Thus, the approximation used 
in deriving surface conductance does not have a significant effect on studying 
electromagnetic wave propagation along carbon nanotube.  
For the case of a carbon nanotube transmission line above a PEC ground plane as shown in 
Figure 5, the equivalent distributed circuit would be a combination of the equivalent circuit 
for electron current flow along the carbon nanotube and the conventional distributed 
transmission line circuit which is based on electrostatic capacitance and magnetostatic 
inductance of the transmission line structure. In the present case the distributed elements of 
the equivalent circuit of the transmission line per unit length are  

  0( / 2 )ln 2 /M cL d r    (17-a) 

  02 /ln 2 /E r cC d r    (17-b) 

where d is the separation distance between the carbon nanotube line and the ground plane 
and r  is the relative permittivity of the supporting substrate. A typical value of substrate 
thickness is between 100

o
A  and 1 m  (Burke 2002) and Silicon dioxide substrate has a 

dielectric constant 4r  . For a Silicon dioxide substrate of 0.2 m  thickness, typical values 
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of single wall carbon nanotube transmission line equivalent circuit parameters would be 
50 F/ mESC a  , and 1pH/ mML  .  

 

 
Fig. 5. Carbon nanotube transmission line above a PEC ground plane 

In this case the effective inductance and resistance of the equivalent distributed circuit of the 
carbon nanotube transmission line above a ground plane are given by   

    / 1 /eff M k E QL L L C C     (18-a) 

  / 1 /eff E QR R C C   (18-b) 

while the effective capacitance in this case is the conventional electrostatic capacitance EC . 

In addition to this equivalent distributed circuit, two additional contact resistances should 
be included at the two ends of the equivalent circuit of the carbon nanotube transmission 

line. The value of this contact resistance is given by 2/8cR h e .  

By comparing these values, it can be noted that the kinetic inductance is much larger than 
the magnetostatic inductance of transmission line section where the ratio of 

3/ 4 10k ML L   . This means that the kinetic inductance has the dominant inductive effect 

on the equivalent distributed circuit. On the other hand, the quantum capacitance is nearly 
of the same order of the electrostatic capacitance of the transmission line section. This 
property has two main effects on electromagnetic wave propagation along the carbon 
nanotube transmission line; slow wave propagation and high characteristic impedance. The 
complex propagation constant, phase velocity and characteristic impedance in this case are 
given by: 

  E eff effj j C R j L          (19-a) 

 

 2 4 2 2 2 2 2

1 /
1
2

lim lim
eff eff eff eff

p eff E
R L R L

E eff E eff E eff

v L C

C L C L C R 



   
 

 
  (19-2) 

  /c eff eff EZ R j L j C     (19-c) 

The phase velocity in this case is nearly of the same order of Fermi velocity vF which is 
nearly two-order less than free space light speed. This means that the wavelength along 
carbon nanotube transmission line is nearly two-order less than conventional transmission 
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lines. This property has a significant importance in RF applications since the dimensions of 
passive circuits like filters, couplers and power dividers are comparable with operating 
wave length. However, these additional inductance and capacitance introduce high 
characteristic impedance of order 12.5 k . Recently, parallel carbon nanotubes and carbon 
nanotube bundle have been introduced to overcome this disadvantage. The effective 
distributed elements of the equivalent circuit for a carbon nanotube bundle are simply the 
parallel combination of the circuit for a single carbon nanotube. Thus, both the effective 
inductance and resistance are divided by N and the effective quantum capacitance is 
multiplied by a factor N where N is the number of the nanotubes in the bundle.  Different 
experimental results have shown that using parallel carbon nanotube decreases both the DC 
and RF impedance. However, it increases the wave velocity and subsequently the wave 
length. Thus, a compromise between the required wave velocity and characteristic 
impedance should be considered to select the appropriate number of carbon nanotubes in 
the bundle. On the other hand, the attenuation coefficient has a significant effect at the 
operating frequencies less than electron relaxation frequency where /eff effR L   . Thus 

at lower frequency band below relaxation frequency, carbon nanotube presents a good 
candidate for an absorbing structure more than a guiding structure. 

4. Finite difference analysis of coupled Maxwell-Schrödinger equations 

In this section we present another approach which is useful to study electromagnetic 
interaction with nanodevices like carbon nanotubes. This approach is based on coupling 
Schrödinger equation which describes the motion of charged particles along the nanodevice 
with Maxwell’s equations which describe the electromagnetic waves in the region of the 
nanodevice. Both Schrödinger and Maxwell’s equations can be presented as partial 
differential equations which can be solved numerically by using finite difference scheme 
based on specific sources and boundary conditions. This approach is quite useful to study 
electromagnetic field interaction with short nanotubes of length less than 100 nm where the 
electron transport is nearly ballistic.  
The quantum motion of electrons along a nanodevice can be presented by Schrödinger 
equation as follows: 

  
2

2
2

( , )
( , )

2 8

h t h
j V t

t m

 
 

 
       

r
r r   (20) 

where ( , )t r  is the complex state variable of the electron on the nanodevice and  V r  is the 

static potential along this nanodevice. The key difference between different nanodevices lies 
in this static potential. In the presence of time-varying electromagnetic fields, Schrödinger 
equation is modified as follows: 

 

 

  

2
2

2

2 2

( , ) 1
( , ) ( , ) ( , )

2 2 24

                                 ( , ) ( , ) | ( , )| ( , )
2

                          ( , ) ( , ) ( , )

h t h he
j t j t t

t m

he
j t t e t t

e t t V t

  
 

 


  


      

   


 

r
r A r r

A r r A r r

r r r r

  (21) 
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where ( , )tA r  is the applied magnetic vector potential, ( , )t r  is the applied scalar electric 
potential and e  here represents the absolute  value of the electron charge.  The resulting 
quantum current density along the nanodevice can be presented in terms of this electron 
state variable as follows: 

  
2

2 *( , ) | ( , )| * ( , ) ( , ) ( , ) ( , )
4

e he
t t j t t t t

m m
    


    J r r A r r r r   (22) 

On the other hand, electromagnetic fields are related by Maxwell’s equations as follows: 
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( , ) ( , )
t

t t
t
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H r J r   (23-a) 
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 
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
H r

E r   (23-b) 

where the electric and magnetic field components can be presented in terms of the scalar 
electric potential and vector magnetic potential as: 
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t

t t
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
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 H r A r   (24-b) 

The scalar electric potential and the magnetic vector potential are related by Lorentz 
condition: 
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t

t
t





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
r

A r  (25-a) 

and the magnetic vector potential is related to the current density by non-homogenous wave 
equation: 

 
2

2
2

( , ) 1 1
( , ) ( , )

t
t t

t  


  

A r

A r J r   (25-b) 

By solving Equations (21)-(25), one can obtain electromagnetic interaction with the proposed 
nanodevice. Numerical solution of these coupled partial differential equations can be obtained 
by using finite difference method. This method is based on approximating the differential 
operator by a difference operator to obtain the required quantities on the nodes of a discrete 
mesh in the space ( , , )i x j y k z   at discrete steps in time ( )n t . To simplify the problem, the 
complex state variable of Equation (21) is divided into real and imaginary parts as follows: 

 ( , ) ( , ) ( , )R It t j t   r r r   (26) 

Thus, Equation (21) can be reformulated as two coupled partial differential equations of 
pure real variables: 
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  (27-b) 

For the case of a carbon nanotube where the length of the nanotube is usually much larger 
than its diameter, the problem can be presented as 1-D problem along the length of the 
nanotube. In this case the   operator in the above equation can be simply replaced by 

/ zz  a .  

The scalar electric potential and magnetic vector potentials are assumed to be known at the 
time steps n  and 1 / 2n  . Thus by discretizing Equation (25-b) one can obtain the update 

equation of the magnetic vector potential at time step 1n   as follows: 
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 (28) 

Based on the result of Equation (28) and the previously stored electric potential and vector 
potentials, one can obtain the update equation for the electric field along the nanotube at the 
time step 1 / 2n   by discretizing Equation (24-a)  
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  (29) 

The update equations of the electric fields at the time step n + 1/2 in the remaining domain 
outside the nanotube can be obtained by using conventional FDTD formulation for the 
differential form of Ampere’s law, Equation (23-a),  

 1/2 1/2( , ) ( , ) ( , )n n nt
t t t


  

  E r E r H r   (30) 

It should be noted that we assumed here the present current density is limited to the 
nanotube structure only which is already included in Equation (29). Thus Equation (30) does 
not include an electric current term. Similarly, the update equations of the magnetic fields at 
the time step n + 1 are obtained by using conventional FDTD formulation for the differential 
form of Faraday’s law, Equation (23-b), 
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 1 1/2( , ) ( , ) ( , )n n nt
t t t


 

  H r H r E r   (31) 

The update equations of the scalar electric potential function at the time step n+1 can be 
obtained by discretizing Equation (25-a) as follows: 
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  (32) 

To obtain the above quantities at the following time step, it is required to update the 
potential functions and the current density to the time step n+3/2. To do this it is required to 
use Schrödinger equation to update the state variable and consequently the current density 
and the potential functions. Assuming that the state variables are known at time steps n and  
n+1/2, one can obtain the temporal update equation of the real and imaginary parts of the 
complex state function at the time step n+1 in the following forms: 
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(33-a) 
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Based on this complex state variable, one can obtain the current density at the time step  
n+1by discretizing Equation (22) as follows: 
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At this point we have 1( )n k  , 1( )n
zA k , 1( )n

R k  , 1( )n
I k   and 1( )n

zJ k  in addition to the 
previously calculated quantities. By repeating the same steps from Equations (32) to (34) and 
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Equation (28), one can obtain state parameters, current density and potential functions at  
n+3/2 time step. Thus we obtain scalar electric potential and magnetic vector potentials at 
the time steps n+1 and n+3/2. Then by repeating the same steps of Equations (28) to (31) one 
can obtain the electric and magnetic fields in the following time step. 
The above analysis represents the core of the finite difference time domain formulation of 
the coupled Maxwell-Schrödinger equations for solving electromagnetic coupling with 
nanodevice with emphasis on simple linear nanodevices like carbon nanotube. It should be 
noted that there are many other problems in this method which require more investigation 
like absorbing boundary conditions for Schrödinger equation, stability and dispersion. 
(Pierantoni et al.; 2008, Pierantoni et al.; 2008 & Ahmed et al. 2010)   

5. Surface wave propagation along carbon nanotubes 

Carbon nanotubes can also be considered as cylindrical guiding structures of finite 
conductivity. This section shows how to determine the complex propagation constant of this 
guiding structure based on its macroscopic conducting properties. Since we are mainly 
concerned with the longitudinal conductivity, the propagating wave along the nanotube 
would be mainly TM wave. In this case the total field can be represented in terms of the 
axial TM Hetezian potential e as follows: 

   2
0e eE k     


  (35-a) 

 o eH j 


  (35-b) 

where the TM Hertezian potential is determined by solving the wave equation  

 2 2
0 0e ek       (36) 

For a cylindrical configuration, the general solution of wave equation can be presented as 
Bessel functions. The field inside the cylinder is finite in the range 0    r  where r is the 
radius of the proposed cylinder. Thus the field in this region is represented by Bessel 
function of first kind. On the other hand, the field outside the cylinder is finite at  = r and is 
exponentially decaying for  = r. Thus, the field in this region is represented by Hankel 
function of second kind. Hence, the general solution of the TM Hertizian potential in carbon 
nanotube (single or a circular bundle) can be represented as: 
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By using this Hertezian potential in Equation (35) and applying the boundary condition 
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one can obtain the dispersion equation for surface wave propagation as follows:  
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The longitudinal propagation constant is given by: 

 2 2
0k    where Im( ) 0   (40) 

It would be useful here to study the limit of the above dispersion equation for the zero-order 
mode at small argument limit. In this case the Bessel function combination of the right hand 
side can be approximated as: 
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  (41) 

Unlike Bessel function, the logarithmic function in the right hand side of Equation (41) can 
be represented by a slowly convergent series for small argument. However, for gigahertz 
frequency band, the average value of this logarithmic function is nearly around minus ten. 
Thus, an approximate value of the zero order mode complex surface wave propagation 
coefficient along a carbon nanotube is given by: 
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/ 2 10zz
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 
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  (42) 

It can be noted that, by increasing the longitudinal conductivity of the tube the surface wave 
propagation constant approaches the free space propagation constant.  
  

 
Fig. 6. Surface wave propagation on carbon nanotube bundles of different values of N. The 
bundle is composed of armchair carbon nanotubes with lattice parameters 40m n  . 
(Attiya 2009) 

Figure 6 shows complex wave propagation constant of TM surface waves along a carbon 
nanotube circular bundle for different values of N where N is the number of carbon nanotubes 
in the bundle. The present results are based on armchair carbon nanotubes of m = n = 40. For 
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this configuration, the radius of the nanotube is cr  = 2.7nm. For a closely backed bundle 

composed of N carbon nanotubes arranged in a single circular shell the radius of the bundle is  

 2 /cr Nr    (43-a) 

In this case the effective axial surface conductivity of this shell can be approximated by 

 /b cn
zz zz cN r r    (43-b) 

It can be noted that the attenuation coefficient increases by decreasing the operating 
frequency as shown in Figure 6. The effect of this attenuation coefficient is negligible in the 
frequency range from 100 to 1000 GHz. On the other hand, this attenuation coefficient has a 
significant effect in the frequency band below 100 GHz. 

6. Carbon nanotube antenna 

Carbon nanotube can also be a good candidate for antenna structures. Slow wave property 
of electromagnetic propagation along carbon nanotube is expected to play an important role 
in reducing the size of resonant carbon nanotube antenna. From the mathematical point of 
view, carbon nanotube antennas can be treated as an antenna composed of finite-conducting 
cylinders. In this case the dynamic conductivity derived in Section 2 is used to include the 
electrical properties of carbon nanotube in the mathematical modeling of the corresponding 
antenna structure. This electromagnetic formulation can be presented in any form like 
integral equation, finite difference or finite element. However, for simple wire antenna 
configuration, electric field integral equation method may be the most appropriate method. 
Thus we would focus on this method in the following part of this section. 
For the case of a simple dipole antenna oriented along the z axis, the relation between the 
excitation field and the current distribution can be presented by Hallen’s integral equation 
as follows: 
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   (44) 

where r  is the radius of the dipole ( cr r for single nanotube) and zz  is the effective 
surface conductivity of the dipole, 0z is the location of the feeding point, C is a constant that 
would be determined to satisfy the current vanishing at the edges of the dipole and L is the 
half length of the dipole. The effect of the carbon nanotube in this integral equation lies in 
surface conductivity and the radius of the nanotube. This formulation can be used to 
simulate a dipole antenna composed of single carbon nanotube or a bundle of carbon 
nanotubes. In the case of a carbon nanotube bundle, the corresponding radius and surface 
conductivity are obtained by Equation (43).    
This integral equation can be solved numerically by using method of moments to find out 
the current distribution and subsequently the input impedance, radiation pattern, radiation 
efficiency and other antenna parameters. This method is based on expanding the unknown 
current distribution as a finite series of known basis functions of unknown amplitudes. To 
determine these amplitudes, Equation (44) is weighted by a set of weighting functions 
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which equals the number of the unknown amplitudes. Thus, Equation (44) is converted into 
a system of equations which is solved to obtain the unknown amplitudes of the current 
distribution functions. Details of solving this integral equation numerically by using method 
of moments can be found in (Elliot 2003).  
Figure 7 shows the complex input impedance of a dipole of a carbon nanotube for two cases 
as functions of the operating frequency. The present results are based on conducting 
armchair carbon nanotubes of m = n = 40. The length of the dipole is assumed to be 30 m 
and 1 mm for the first and second case respectively. It can be noted that the first case has a 
first resonance at nearly 160 GHz. However, the second case does not have any resonance.  
Figure 8-a shows the current distribution along the 10 mdipole antenna at its first 
resonance frequency due to a unity voltage source at its feeding point. It can be quite clear 
that the dipole in this case corresponds to a half-guided-wave length dipole. It can also be 
noted that the length of the first resonant carbon nanotube antenna is nearly 0.0107 times the 
length of conventional half-wave length dipole at this frequency. This represents an 
important feature of carbon nanotube antenna. It can also be noted the corresponding input 
impedance in this case is nearly 11 kΩ which is much greater than the conventional input 
impedance of a half-wave dipole which is nearly of order 75Ω. On the other hand, the 
current distribution along the 1 mm dipole antenna has different properties as shown in 
Figure 8-b, where the real and imaginary parts of the current are concentrated around the 
center of the dipole and highly damped at its ends. It can be concluded from this result that 
the problem of carbon nanotube antenna at different frequency ranges cannot be directly 
obtained by simple scaling as the case in perfect electric conductor.  
Figure 9 shows the input impedance of a dipole of a carbon nanotube bundle for different 
values of N. The length of the dipole is taken to be 30 m and 3000 m. It can be noted that 
the 30 m dipole has a first resonance, that corresponds to a half-guided-wave length dipole 
for N = 8, at 280 GHz. The resonance impedance in this case is nearly 2100 Ohms. By  
 

 
(a) The length of the dipole is 10 m              (b) The length of the dipole is 1 mm 

Fig. 7. Input impedance for a carbon nanotube antenna. The carbon nanotube is armchair of 
lattice parameters m=n=40.  
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comparing this length with free space half-wave at this frequency it can be noted that this 
carbon nanotube antenna has a reduction scale factor of nearly 0.056 compared with 
conventional half-wave length dipole. Increasing the number of nanotubes in the bundle 
decreases the total surface impedance of the dipole. This has two effects, increasing the 
resonance frequency for a specific length and decreasing the resonance impedance as shown 
in the case where N is increased to twenty. In this case the first resonance frequency is 404 
GHz and the resonance impedance is 840 Ohms. The scale reduction factor in this case is 
nearly 0.081.  For a hundred nanotube bundle of the same length, the resonance frequency 
would be 740 GHz and the resonance impedance would be 174 Ohms. In this case the scale 
reduction factor is nearly 0.15. It can be noted that by increasing the number of carbon 
nanotubes in the bundle, both resonance frequency and reduction factor are increased while 
the input impedance is decreased. On the other hand, the 3000 m dipole does not introduce 
resonance behavior for any value of N as it is shown in Figure 9-b. This result is quite similar 
to the results of a single carbon nanotube antenna shown in Figure 7.  
 

 
(a) The length of the dipole is 10 m and  
the operating frequency is 160 GHz

(b) The length of the dipole is 1 mm and  
the operating frequency is 10 GHz 

Fig. 8. Current distributions along carbon nanotube dipole antennas due to a unity voltage 
source. 

 

  

(a) L = 30 m     (b) L = 3000m  

Fig. 9. Input impedance of bundle dipole. The bundle is composed of armchair carbon 
nanotubes with lattice parameters m = n = 40. Numbers of nanotubes in the bundles are 
N=8, N=20 and N=100 (Attiya 2009) 

www.intechopen.com



 
Carbon Nanotubes in Passive RF Applications 

 

489 

It is noted that the inverse reduction factors of the resonant bundle dipoles equals nearly the 
ratio of the surface wave propagation constant with respect to the free space wave number 
shown in Figure 6 for the same bundles. These results show the relation between the 
resonant dipole length and the surface wave velocity on its arms. On the other hand, by 
studying the surface wave complex wave propagation constant, it can be noted that the 
attenuation coefficient increases by decreasing the operating frequency as shown in Figure 
6. The effect of this attenuation coefficient is negligible in the frequency range from 100 to 
1000 GHz. Thus, the main behavior of the input impedance of the dipole antenna is nearly 
the same of traditional dipole antenna with taking into account scaling reduction factor due 
to the slow surface wave velocity. However, in the band from 1 to 10 GHz, the wave 
propagating on the arms of the dipole is attenuated. Thus, the reflected wave does not add 
completely at the feeding point which means the inductive effect due to the delayed 
reflected signal does not compensate completely the capacitive effect of the dipole arms. 
This explains the capacitive behavior of CNT dipoles in Figures 7-b and 9-b. In this case, the 
wave propagating on the arms of the dipole is highly attenuated, such that the active part of 
the dipole is much smaller than the physical length of the dipole itself. Thus, the dipole 
would always be a short dipole in this case and it is not resonant in any case. This result 
shows that the advantage of size reduction combined with surface wave propagation can be 
used only in high frequency bands above 100 GHz. 

7. Carbon nanotubes in passive RF circuits 

Recent advances in carbon nanotubes make them competitive elements in many RF 
applications. New fabrication techniques can be used to synthesize and electrically contact 
single carbon nanotube up to nearly 1 cm (Li et al. 2007). In addition using solubilized 
carbon nanotube and dielectrophoresis can be used to accumulate hundreds to thousands of 
carbon nanotubes in parallel (Rutherglen et al. 2008). These advances in fabrication 
techniques open the door for more research on different configurations of carbon nanotubes 
which are believed to be visible in near future. 
On the other hand, metallic single-wall carbon nanotube transmission line shows an 
important advantage of slow electromagnetic wave propagation compared with free space 
wave velocity. This wave velocity reduction is due to the additional kinetic inductance and 
quantum capacitance in the equivalent circuit model of the nanotube transmission line 
circuit. In this case the wave velocity along the single-wall carbon nanotube transmission 
line has the same order of Fermi velocity which is nearly 8 x 105 m/s. This means that the 
wave velocity in this case is nearly two-order less than free space wave velocity. Thus the 
wavelength along the single-wall carbon nanotube transmission line is nearly two-order 
smaller than free space wave length. This property is quite useful to reduce the physical 
dimensions of microwave circuits to be in hundred-micrometer scale instead of centimeter 
scale. However, these additional inductance and capacitance introduce high characteristic 
impedance of order 12.5 k . In addition, the single-wall carbon nanotube transmission line 
has an intrinsic resistance of 6.5 k and Ohmic contact resistance of order 20 k which 
introduce high attenuation coefficient. These parameters make carbon nanotube 
transmission line is not suitable for microwave applications from the point of view of 
characteristic impedance and attenuation. 
Recently, parallel carbon nanotube and carbon nanotube bundle have been introduced to 
overcome these disadvantage (Attiya & Kanhal, 2009). Different experiments introduced by 
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different authors have shown that using parallel carbon nanotube decreases both the DC 
and RF impedance; for example a bundle composed of ten parallel single wall carbon 
nanotube shows a DC impedance around 750 while hundreds of parallel single wall 
carbon nanotubes show an AC impedance from 60 to 40 in the frequency range from few 
MHz to 20 GHz (Rutherglen et al. 2008). These experimental results introduced the 
possibility of using parallel single wall carbon nanotubes to obtain nearly matched 
transmission line sections with low wave velocity. Parallel carbon nanotube transmission 
line sections can be used to replace traditional printed transmission line sections in 
microwave circuits to have a significant reduction in the total size of these circuits. 
However, one should consider the lossy and mismatch effects of parallel carbon nanotube 
transmission line. Further theoretical and experimental investigations are still required to 
study the possibility of using parallel carbon nanotube transmission lines in passive 
microwave circuits like hybrid couples, power dividers, filters… etc.   
Other RF and microwave applications like switches, filters and resonators can also be 
obtained by using electromechanical propertied of carbon nanotubes. (Demoustier et al. 
2008) introduced an RF nanoswitch based on vertically aligned carbon nanotubes. It consists 
of carbon nanotube perpendicular to the substrate. Two different architectures are proposed 
for this carbon nanotube switch; series-based switch using ohmic contact between carbon 
nanotubes and a capacitive-based switch implemented in shunt configuration. RF ohmic 
switch is designed by implementing carbon nanotubes in two sides of a coplanar waveguide 
discontinuity as shown on Figure 10-a. By applying dc voltage on the two sides of the 
coplanar waveguide discontinuity, an electrostatic force is introduced between the two arms 
of the carbon nanotube switch. This electrostatic closes the switch and the RF signal is 
transmitted across the coplanar waveguide as shown in Figure 10-b. On the other hand, 
shunt switch is based on two nanotube capacitive contacts between the inner line and the 
two sides of the ground planes of the coplanar waveguide as shown in Figure 11-a. By 
applying dc voltage between the inner and outer sides of the coplanar waveguide, the 
electrostatic field introduces a short circuit between the inner and the outer sides as shown 
in Figure 11-b. This short circuit reflects the propagating wave along the coplanar 
waveguide which corresponds to switching off the RF signal.  To achieve the expected 
performance in the required operating frequency band, two inductive sections are added 
along the coplanar waveguide in series with nanotube to perform a series LC resonance at 
the center of operating frequency band. This resonant LC circuit introduces higher isolation 
level in the switch isolation state. 
 

  
(a) Isolation state    (b) Transmission state 

Fig. 10. Architecture of Carbon nanotube ohmic switch (Demoustier 2008) 
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. 
(a) Transmission state    (b) Isolation state 

Fig. 11. Architecture of Carbon nanotube shunt capacitive switch (Demoustier 2008) 

Another application for carbon nanotubes in passive RF circuits based on their 
electromechanical properties is the microwave resonator and filter (Dragoman 2005). It is 
found that carbon nanotube has a mechanical resonance in the frequency range from 1 to 3 
GHz with quality factor of 1000. The basic theory of carbon nanotube filter is based on 
coupling the electromagnetic fields of the incident signal to a perpendicular array of carbon 
nanotubes. This can be obtained by inserting this array of carbon nanotubes inside a 
coplanar waveguide as shown in Figure 13. In this case the coplanar waveguide transmits 
only the signals which are resonant with carbon nanotube array. To introduce the coupling 
between the incident electromagnetic wave and the carbon nanotube array, it is required to 
produce electric charges on the carbon nanotube. These electric charges are obtained by 
applying a dc electric field parallel to the direction of electromagnetic wave propagation and 
orthogonal on carbon nanotubes as shown in Figure 13. The presence of these electric 
charges introduces Coulomb forces between the carbon nanotubes and the electric field of 
the incident wave. The resonance of this filter is controlled by the value of the applied dc 
voltage. The vibration of the excited tubes located near the input electrode is propagating 
along the entire array like an acoustic excitation.   
 

 
Fig. 13. Architecture of an RF bandpass filter based on a carbon nanotube array.   
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8. Carbon nanotubes composites for RF absorbing and shielding 
applications 

From the above discussions about the possibility of using carbon nanotubes in microwave 
circuits it can be concluded that the high attenuation coefficient of wave propagation along 
carbon nanotube represents a main limiting factor in these application which may be 
overcome by using bundle of carbon nanotubes. However, this attenuation property is quite 
important in other microwave applications like absorbing and shielding. For these 
applications it is not required to arrange the carbon nanotubes in a bundle like the cases of 
antennas, transmission lines and interconnects. However, carbon nanotubes in these cases 
are mixed with other materials in a random form. 
The effective dielectric constant of a dielectric mixture including conducting particles can be 
formulated by using Maxwell-Granett mixing rule as follows (Koledintseva 2009): 
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where b  is the relative permittivity of the base dielectric, i  is the permittivity of the 
inclusion particles, if  is the volume fraction occupied by the inclusion, ikN  is the 
depolarization factor of the inclusions and the index 1,2,3k   corresponds to ,x y  and z  in 
Cartesian coordinates.  The depolarization factors for an ellipsoid inclusion of radii a,b  and c 
in ,x y  and z  directions are given by: 
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For the case of a carbon nanotube inclusion a = b= rc and c corresponds to the half-length of 
the carbon nanotube. To simplify the formulation it is assumed that all nanotube inclusions 
are directed parallel to the z axis. In this case the depolarization effect of the inclusions 
would be mainly dominating in the z direction while the dielectric constant in transverse 
directions would be the same as the base dielectric. In this case the dielectric constant of the 
carbon nanotube inclusion is defined as 3 /i Dj     where the equivalent 3D conductivity 

of carbon nanotube is related to the surface dynamic conductivity of carbon nanotube as 

3 / 2D zz cr   (Mikki & Kishk 2009). Different experimental researches have been 

introduced to study the electrical prosperities of carbon nanotube composites. We 
demonstrate two specific cases in this following part of this section as examples for these 
carbon nanotube composites.   
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In microwave hyperthermia applications, it is required to an increase electromagnetic power 
dissipation in the specific region that is required to be more heated than other regions. 
Carbon nanotubes are found to be a good candidate for this application. To verify the 
applicability of carbon nanotube in this application (Mashal et al. 2010) demonstrated an 
experiment based on mixing tissue mimicking materials with carbon nanotubes and 
measuring their electrical properties and their heating response to incident electromagnetic 
wave. These tissue mimicking materials are constructed from oil-in-gelatin dispersions. The 
dielectric properties of these materials are customized to mimic the properties of a variety of 
human soft tissues by controlling the concentrations of gelatin, safflower oil, kerosene, and 
preservatives. The carbon nanotubes used in their experiments were 1-2 nm in diameter and 
5-30 μm in length, and were composed of mainly single wall carbon nanotubes. Figure 14 
shows the measured relative permittivity and effective conductivity of the corresponding 
composite for different concentrations of carbon nanotubes. It can be noted that both the 
permittivity and effective conductivity of the tissue mimic materials increase by increasing 
concentration of the carbon nanotubes. 
The electromagnetic heating responses of this tissue mimic composites with carbon 
nanotube were examined by inserting a sample inside a WR-284 rectangular wave guide of 
an inner cross section 72 mm 34 mm and applying a 3-GHz CW signal of power 1 Wt. The 
source generator is turned on for 3 minutes to heat the sample and turned off for 5 minutes 
to cool the sample. Figure 15 shows the measured heating responses for different values of 
carbon nanotube concentrations. It can be noted that the maximum temperature of the tissue 
mimic mixture increases by increasing the concentration of carbon nanotubes. 
It can be concluded from these results that low concentrations of carbon nanotubes 
significantly impact the dielectric properties and heating response of tissue mimicking 
materials. For example, at 3 GHz, carbon nanotubes concentrations as small as 0.22% by 
weight increased the relative permittivity of the tissue mimicking material by 37% and the 
effective conductivity by 81%. This concentration of carbon nanotubes led to an average 
steady-state temperature rise that was 6 oC higher than the rise observed in the tissue 
mimicking material without carbon nanotubes. These results suggest that carbon nanotubes 
may enhance contrast for microwave imaging and facilitate selective microwave heating for 
treatment of breast cancer (Mashal et al. 2010). 
 

             
 (a) Relative permittivity                  (b) effective conductivity 

Fig. 14. Electrical properties of tissue-mimicking  mixtures with varying concentrations of 
single wall carbon nanotubes measured from 0.6 to 20 GHz. (Mashal et al. 2010) 
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Fig. 15. Microwave heating response of tissue mimic materials with various concentrations 
of carbon nanotubes. Each curve shows the temperature profile of a sample that was heated 
via 3-GHz microwave illumination for 3 min and allowed to cool for 5 min. (Mashal et al. 
2010) 

Another important application of carbon nanotube composites is optical-transparent 
electromagnetic shielding composite film. Thin films of conducting single wall carbon 
nanotube of a thicknesses less than 300 nm on polyethylene terephthalate substrates are 
good candidate for this application. (Xu et al. 2007) introduced an experimental study to 
characterize the shielding properties of these composite films. Their study is based on 
measuring the reflection coefficient of a coaxial annular ring resonator placed above the 
carbon nanotube layer by using a vector network analyzer. Based on this reflection 
coefficient they obtained the equivalent impedance of the composite film. This impedance 
includes the impedance of the carbon nanotube film and the impedance of the holding 
substrate. To extract the impedance of the substrate, they measured the reflection coefficient 
of the coaxial annular resonator on the substrate only. After extracting the impedance of the 
substrate, they obtained the impedance of the carbon nanotube layer. This impedance is 
used to determine the equivalent complex conductivity of the carbon nanotube layer. Then 
the problem is treated as a two-layered structure of specific values of permitivities and 
conductivities to determine the transmission coefficient of this structure.   
Figure 16 shows the shielding effectiveness in dB as a function of frequency for different 
thicknesses of carbon nanotube films. It is noted that this shielding effectiveness is 
proportional to log (1/). For the 10 nm film, the shielding effectiveness varies from 43 to 28 
dB in the range of 10 MHz–30 GHz. The dependence of the shielding effectiveness on the 
thickness of the carbon nanotube layer t0 is nearly proportional to log (t0). On the other 
hand, Figure 17 shows the optical transmission coefficient at wavelength of 550 nm as a 
function of the thickness of the carbon nanotube film. For a 30 nm thickness film, the optical 
transmittance is about 80% and the shielding effectiveness are 33 dB at 10 GHz, 36 dB at 1 
GHz, and 46 dB at 10 MHz. This shielding effectiveness of carbon nanotube films satisfies 
requirements for commercial applications like cell phones which require approximately 20 
dB shielding effect.  For high shielding requirements such as for magnetic resonant imaging 
window where 60 dB shielding effectiveness is required, carbon nanotube films still need to 
be improved. 
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Fig. 16. Microwave shielding effectiveness of a carbon nanotube film for different values of 
thicknesses. (Xu et al. 2007) 

 

 
Fig. 17. Optical transmission coefficient at wavelength of 550 nm as a function of the 
thickness of carbon nanotube film. (Xu et al. 2007) 

9. Conclusion  

This chapter introduced different techniques for studying interaction of high frequency 
electromagnetic fields with carbon nanotubes. Boltzman kinetic equation is used to 
introduce an equivalent surface conductivity and electron fluid model is used to introduce 
an equivalent circuit model for carbon nanotube transmission line. Another model is 
introduced based on coupling Maxwell’s equation with Schrodinger equation. Finite 
difference time domain is discussed as an efficient numerical technique for solving coupled 
Maxwell-Schrodinger equations to obtain a full wave analysis for electromagnetic 
interaction with carbon nanotubes.  
These models show that carbon nanotubes are characterized by high inductive effect due to 
the additional kinetic inductance. This high inductive effect reduces wave velocity along 
carbon nanotubes and increases its corresponding characteristic impedance. Reduction of 
wave velocity has a significant importance in reducing the size of RF components, passive 
circuits and antenna structures. On the other hand, parallel carbon nanotubes can be used to 
reduce the characteristic impedance. Analytical analysis of surface wave propagation along 
circular carbon nanotube bundle is discussed based on the equivalent surface conductivity. 
Resulting complex wave propagation constant along carbon nanotube bundles shows slow 
wave propagation which is consistent with the transmission line model introduced by 

www.intechopen.com



  
Carbon Nanotubes Applications on Electron Devices 

 

496 

electron fluid model. In addition, attenuation coefficient is found to be increased by 
decreasing the operating frequency. Carbon nanotubes are also found to be a good 
candidate for dipole antennas at operating frequencies above 100 GHz. At lower frequencies 
the high attenuation coefficient of wave propagation along the carbon nanotube structure 
makes it not suitable to obtain resonant antenna. Further theoretical and experimental 
studies are still required to investigate the possibility of using parallel carbon nanotubes in 
RF circuits and antennas. In addition electro-mechanical properties of carbon nanotubes can 
be also be useful in RF applications like filtering and switching. On the other hand, the high 
attenuation at lower frequencies below 100 GHz makes carbon nanotubes good candidate 
for absorbing and shielding applications. Absorbing properties of carbon nanotubes can be 
quite useful in medical applications such as microwave imaging and selective microwave 
heating for cancer treatment. Thin film of carbon nanotubes above a polyethylene substrate 
is also found to good candidate for transparent shielding surface up to 20dB. Higher 
shielding effectiveness combined with high transparence is still under investigation.          
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