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1. Introduction 

1.1 Definitions of ID and autism 

Intellectual disability (ID) is a common neurodevelopmental disorder that is characterized 
by an intelligence quotient (IQ) lower than 70, and deficits in at least two behaviors related 
to adaptive functioning diagnosed by 18 years of age (American Psychiatric Association, 
2000). Adaptive functioning behaviours can be defined as the ability to acquire skills that 
help an individual to live independently and to cope with everyday life, and involves skills 
such as language/communication, social skills, home living and safety. ID ranges in its 
severity and may either be present co-morbidly with many congenital syndromes, or may 
present alone. 
Autism is a severe, lifelong neurodevelopmental disorder characterized by impairments in 
three major domains: communication, socialization, and repetitive behavior. Leo Kanner 
first described this developmental disorder in 1943 as a social disorder featuring the innate 
inability to form typical, affective contact with others (Kanner, 1943). It is now known that 
the Autism Spectrum Disorder (ASD) includes a widely variable range of clinical 
phenotypes that have been grouped into individual disorders. Autistic disorder (autism), 
Asperger syndrome, pervasive developmental disorder not otherwise specified (PDD-NOS), 
Rett syndrome and child disintegrative disorder (CDD) are all currently separate diagnoses 
in the DSM-IV under the umbrella title “Pervasive Developmental Disorders”(American 
Psychiatric Association, 2000). These disorders differ from each other with regard to severity 
of symptoms, early development of language, deterioration in skills once they have 
developed, and cognitive development.  
Individuals with autism show severe deficits in all three major phenotypic domains and 
present with abnormal development before age 3 years. In addition, cognitive functioning is 
frequently delayed. Individuals with Broad Autism Phenotype (BAP) have some symptoms 
of autism, but do not meet the full criteria for autism or ASD (Hurley et al., 2007). BAP is 
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currently not a recognized diagnosis within the DSM-IV, however, it can be useful when 
looking at familiality in ASDs.  
Asperger syndrome is characterized by qualitative impairment in social interaction and 
restricted repetitive and stereotyped patterns of behavior, interests and activities. Language 
and cognitive development is relatively unaffected in these individuals, however pragmatic 
or social language is often delayed (McConachie & Diggle, 2007). Individuals with PDD-
NOS meet autism criteria and have later age of onset. These individuals may also show 
severe and pervasive impairment in one or two of the three core domains with or without 
cognitive or language delay. Rett syndrome occurs almost exclusively occurs in females and 
it is characterized by developmental arrest between 6 and 18 months of age, followed by loss 
of speech, stereotypical movements, microcephaly, seizures, and intellectual disability 
(Hagberg et al., 1983). CDD is characterized by normal development for at least the first two 
years (but up to 10 years) of life, followed by clinically significant loss of acquired skills. 
Individuals with CDD must not meet the diagnostic criteria for Rett syndrome or 
schizophrenia. They also must display at least two of the three diagnostic domains for 
autism.  
While ASDs are often associated with ID, it should be noted that not all individuals with 

ASD have cognitive deficits. The current DSM-IV statistic states that 75% of individuals with 

ASD have some degree of intellectual disability. However, this may be an outdated over-

estimate. More recent studies suggest an increasingly modest level; approximately 50-60% 

[71%(Chakrabarti & Fombonne, 2001) 63%(Bertrand et al., 2001); 40%(Baird et al., 2006), 

50%(Charman et al., 2011]. With increased awareness in the general population and a 

greater understanding of the problem by professionals, an increasing number of people with 

high functioning Autism and Asperger syndrome are diagnosed with the condition. This 

has probably changed the proportion of cases with identifiable ID among the ASD 

population. It is also possible that expanding the diagnostic criteria for ASDs, which 

historically were much more limited, might explain this decrease (Charman et al., 2011).  

The new DSM-V, which will be available in 2013, will define ASDs differently than the 

current version. The three behavioural domains will be condensed into two: Social 

communication and repetitive behaviours/narrow interests. In addition, the separate 

diagnoses within the spectrum will be removed. Autism, Rett syndrome, Asperger 

syndrome, PDD-NOS and CDD will all be classified as “autism spectrum disorder” with a 

specified etiology/syndrome if known (e.g. ASD with Rett syndrome; DSM-5 Proposed 

Revisions, 2010). In addition, a level of severity will be assigned to each diagnosis, which 

will reflect the functional level of the individual. The alteration in nomenclature reflects the 

clinical and interventional needs of the individuals and is intended to be more reflective of 

what is known of the pathology of the disorder (DSM-5 Proposed Revisions, 2010). 

1.2 Classification of ID by IQ and syndromic vs. nonsyndromic 

ID is currently subdivided into 5 categories based on intelligence quotient (IQ): mild, 
moderate, severe, profound and unable to classify (American Psychiatric Association, 2000; 
Table 1). However, epidemiological studies often use a simplified classification, grouping 
their subjects into mild ID (IQ50-70) and severe ID (IQ<50; Ropers & Hamel, 2005). IQ tests 
are a set of tasks which are administered to representative population samples for creation 
of norms. An IQ two standard deviations below the mean or lower is indicative of ID. The 
distribution of IQ in the population is normal in the main, apart from an increased number 
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of cases in the tail on the lower end of IQ. On that basis, the population prevalence of ID 
should be close to 3% at least. The studies looking at prevalence of ID were recently 
reviewed systematically. The range reported varied between 0.93 per 1000 and 156.03 per 
1000 (Maulik et al., 2011). Differences in rates of mild ID mainly account for this variation. 
The reasons are differences in definition of ID criteria, characteristics and setting of the 
sample studied and differences in methodology. The prevalence of severe ID is relatively 
stable (3-4 per 1000; (Roeleveld et al., 1997; Leonard & Wen, 2002; Emerson, 2007).  
 

Severity IQ Proportion of ID Functional Level 

Borderline 70-84 N/A Can live independently; May require 
low level support 

Mild 50-69 85% Can often live independently with 
social support 

Moderate 35-49 10% Acquire some communication and self-
help skills, require moderate 

supervision 

Severe 20-34 3-4% Acquire only basic self-help and 
communication skills, require 

supervision 

Profound/ 
Unspecified 

<20 1-2% Require highly structured and 
supervised living conditions 

Table 1. This table indicates the categories of intellectual disabilities by IQ and ability to 
function in society as indicated by the DSM-IV-TR.  

The new DSM-5 will likely be changing the severity criteria to encompass functional 
behavioural deficits and the level of interference that these have in the lives of affected 
individuals (DSM-5 Proposed Revisions, 2010). Although the new criteria have not yet been 
established, it will likely echo the changes to the criteria for autism, focusing on functional 
level as opposed to strict IQ cut-offs. The manual will also be changing the wording of the 
ID diagnostic criteria to encourage cultural sensitivity and relevance, and to ensure that 
culturally validated psychometric tests are used to evaluate IQ and level of functioning.  
In addition to categorization by severity/IQ level, ID can also be grouped into syndromic 

intellectual disability (S-ID) and non-syndromic intellectual disability (NS-ID). In S-ID, 

individuals present with an identifiable constellation of clinical features or co-morbidities in 

addition to ID. While S-ID has a clear definition, there is debate over the classification of NS-

ID. Traditionally, NS-ID has been defined by the presence of intellectual disability as the 

sole clinical feature. However, it has been a challenge to rule out the presence of more subtle 

physical signs, neurological anomalies and psychiatric disorders in these individuals, as 

they may be less apparent, or difficult to diagnose due to the cognitive impairment. 

Additionally, the symptoms of some syndromes may be so subtle that they are extremely 

difficult to diagnose unless the features are looked for specifically in the context of a known 

genetic defect previously associated with these features (Ropers, 2006). Thus the distinction 

between S-ID and NS-ID is often blurred. 
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1.3 Endophenotypes and “essential autism” versus “complex autism” 

The extreme phenotypic heterogeneity of ASD poses a challenge for the study of underlying 
etiologies. It has been argued that delineation of the clinical heterogeneity of ASD may help 
in the identification of more homogeneous sub-groups for the study of etiological factors, 
and to predict the outcome and treatment choices. While ASD has three core phenotypic 
domains, it can also be sub-grouped on the basis of presence or absence of certain clinical 
features, termed endophenotypes. Endophenotypes of ASDs include IQ level, seizures, 
brain malformations, dysmorphology and head circumference (Viding & Blakemore, 2007).  
Historically, based on non-verbal IQ testing, ~70% of autistic children were reported as 
having some form of ID (Fombonne, 2003). While it is now thought that this number may be 
lower, it is essential to look at IQ as an endophenotype of autism when predicting outcomes. 
Previously published longitudinal studies report that IQ scores can strongly predict long-
term outcomes of ASD and are directly associated with the psychopathology of autism, even 
in young children (Howlin et al., 2004). In addition, preschool cognitive functioning has 
been found to be a strong predictor of school-age functioning, and high IQ has been shown 
to be necessary but not sufficient for optimal outcome in the presence of severe language 
impairment (Stevens et al., 2000).  
Another common central nervous system (CNS) dysfunction associated with autism is the 
high risk of epilepsy (Spence & Schneider, 2009). The prevalence of seizures in autism is 
estimated to be up to 46% (Hughes & Melyn, 2005) and it has been estimated that as many 
as 32% of individuals with epilepsy may meet the diagnostic criteria for ASD (Clarke et al., 
2005). Notably, the prevalence of seizures is higher among autistic individuals with 
moderate to severe ID and individuals with overt motor abnormalities (Tuchman & Rapin, 
2002). Furthermore, individuals with autism plus epilepsy on average have lower IQs. 
Epilepsy is one of the negative factors contributing to cognitive, adaptive and 
behavioral/emotional outcomes for autistic individuals (Hara, 2007). 
Structural brain malformations, including accentuated Virchow–Robin space, acrocallosal 
syndrome and polymicrogyria have been reported to be associated with autism (Steiner et 
al., 2004; Schifter et al., 1994; Zeegers et al., 2006), however, until recently, MRIs have been 
considered to be of indeterminate value and they are not included in the standard clinical 
evaluation of autism. A recent study has revealed an unexpectedly high prevalence of brain 
abnormalities (48%) in autism patients. Some common abnormalities include white-matter 
signal abnormalities, severely dilated Virchow-Robin space and temporal lobe structural 
abnormalities (Boddaert et al., 2009). 
Generalized dysmorphology, an indicator of insult in early development, has been reported 
in 15% to 20% of individuals with autism (Miles & Hillman, 2000) and has been proposed to 
be a predictor of a poor response to early intensive behavioral intervention. According to the 
Autism Dysmorphology Measure (ADM) guidelines, the 12 body areas assessed for 
dysmorphology are: height, hair growth pattern, structure and size of ear, nose size and 
shape, face size and structure, philtrum, mouth and lips, teeth, hand size, fingers and 
thumbs, nails and feet. The ADM was developed by the Miles laboratory at the University of 
Missouri to aid clinicians who are not extensively trained in medical genetics to distinguish 
between individuals with ASD with and without dysmorphisms (Miles & Hillman, 2000). 
Besides generalized dysmorphology, head size abnormalities (microcephaly and 
macrocephaly) have also been found in autistic individuals. Microcephaly, head 
circumference <2nd centile, occurs in 5 to 15% of children with autism and is a predictor of 
poor outcome (Miles et al., 2005). On the other hand, macrocephaly, head circumference 
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>97th centile has been observed in ~30% of children with autism (Miles et al., 2000). 
Generalized dysmorphology and microcephaly have been proposed as good predictors of 
clinical outcome and may be used to classify the autism phenotype into subgroups: complex 
autism and essential autism. Complex autism consists of autistic individuals who show 
evidence of some abnormality in early morphogenesis, manifested by either significant 
dysmorphology or microcephaly. The remainder without dysmorphic features or 
microcephaly are classified as having essential autism (Miles et al., 2005), and make up 70-
80% of the autism population. 

1.4 Diagnostic approaches 

The symptoms of most ASDs are usually present by the age of three and may persist 
throughout the lifespan; however, CDD and PDD-NOS may present later. A number of 
checklists and diagnostic tools are available for diagnosis of autism. The Childhood Autism 
Rating Scale (CARS; Schopler et al., 1980) is a commonly used diagnostic checklist which 
consists of 15 questions scored by the parents and the examiner. It is a reliable and efficient 
tool that is commonly used in clinics. Another autism screening tool widely used in clinical 
settings is the Checklist for Autism in Toddlers-modified (M-CHAT). This checklist consists 
of 23 yes/no questions and is a promising tool for the early diagnosis of autism (Robins et 
al., 2001). Other such checklists include the Autism Behaviour Checklist (ABC; Witwer & 
Lecavalier, 2007) and Gilliam Autism Rating Scale (GARS; South et al., 2002).   
The Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-

Revised (ADI-R) are two widely accepted instruments used for diagnosis of ASD in both 

clinical and research settings. ADI-R, a revised version of Autism Diagnostic Interview 

(ADI), is a semi-structured, investigator-based interview for the caregivers of children with 

autism and adults for whom autism or ASD is a possible diagnosis (Lord et al., 1994). The 

ADOS is a semi-structured, standardized assessment of social interactions, communication, 

play, and imaginative use of objects for children suspected of having ASD (Lord et al., 2000). 

It is an observational assessment of the child’s behaviour, often performed by a psychologist 

or another trained professional. Checklist tools are widely used in clinical practice because 

of their ease and efficiency; however, ADI-R and ADOS have been adapted, particularly in 

recent years, to make them more appropriate for use in clinical settings, as well as for 

diagnosis of toddlers and patients with intellectual disabilities. In particular, the shorter 

version of ADOS is becoming increasingly popular in clinics.  

All of these diagnostic tools have their own advantages and disadvantages. For example, 
ADI-R and ADOS are lengthy, require elaborate training and are suitable for use in more 
specialized settings. The Checklist for Autism in Toddlers-modified (M-CHAT), described 
earlier in this section, has been particularly useful in the frontline clinical world, as well as 
for early diagnosis of autism (Robins et al., 2001), and has overcome some of the challenges 
faced by ADI-R and ADOS. M-CHAT includes a checklist of 23 items to be filled out by 
parents and it can be administered at a much earlier stage to identify toddlers who are at  
risk of autism. A recent study has confirmed the validity of this instrument in detecting 
possible ASD at 16-30 months of age (Kleinman et al., 2008). However, the high sensitivity of 
this checklist means that some children without autism will fail the screening. It has been 
suggested that children who fail and do not have autism are at increased risk for other 
developmental disorders or delays and should be monitored accordingly (Robins et al., 
2001).  
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Over last two decades the diagnosis of syndromes based on behavioural symptoms has 

become relatively standardized, although there are some issues around the potential for 

over diagnosis of higher functioning autism and Asperger syndrome. However, the etiology 

of ASDs is largely unknown, and few genetic tests or biomarkers have been found to 

confirm an autism diagnosis. In other words, no laboratory-based means of testing for 

autism is yet widely available. While various genes have been identified that cause autism, 

none of them are common, and justification for performing individual testing is debatable. 

However, tests are currently being offered commercially for a number of these known 

genes, including CNTNAP2, PTEN and SHANK3 . Recently, microarray technology has also 

been proposed as a potential diagnostic tool, or a method to determine etiology. Because of 

the growing number of genes known to cause ASDs, an autism microarray, containing only 

verified autism causing genes, could be custom made to assess if these genes are aberrant in 

affected individuals.  The proportion of cases with known etiology at this stage will be very 

small (less than 5%) and a negative test would not mean an exclusion of the diagnosis. 

Knowing the root cause of autism may not lead to an alteration in treatment or intervention 

at this stage, but may be useful for family planning and genetic counseling, as well as for the 

emotional well being of concerned family members. Additionally, with further phenotype 

profiling and analysis of individuals with particular mutations, it may be possible to tailor 

interventions based on genetic diagnoses in the future.  

2. Causes of ID 

ID can be caused by environmental and/or genetic factors. However, for up to 60% of cases, 

there is no identifiable cause (Rauch et al., 2006). Environmental exposure to certain 

teratogens, viruses or radiation can cause ID, as can severe head trauma or injury causing 

lack of oxygen to the brain (Chelly et al., 2006). While these factors explain some cases of ID, 

it is also important to consider genetic etiology. 

Genetic causes of ID are thought to be present in 25-50% of cases, although this number 

increases proportionally with severity (McLaren & Bryson, 1987). Chromosomal 

abnormalities have been reported in ID, with a broad range of prevalence, and many 

different types of aberrations have been identified (Rauch et al., 2006). Over the past 15 

years many single gene causes of ID have been identified as well. Many of these genes cause 

a broad range of phenotypes including syndromic ID (S-ID), non-syndromic ID (NS-ID), 

autism and other neurodevelopmental and psychiatric phenotypes. This suggests that it is 

likely that other genetic modifiers or environmental factors may be involved in disease 

etiology, and that similar biological pathways, when disturbed, have the potential to lead to 

a range of these conditions. This illustrates the need for detailed study and descriptions of 

phenotypes for each gene and mutation. Most of the mutations that cause ID are highly 

penetrant and are inherited in a Mendelian fashion. Many known ID genes are on the X-

chromosome, however the number of autosomal genes associated with ID is growing 

rapidly (Kaufman et al., 2010). This is due to advances in technology which allow us to 

study the autosomes more efficiently, along with a shift in focus from the X-chromosome to 

the autosomes resulting from the realization that the X-linked genes may only account for 

~10% of ID cases, while autosomal genes may account for many more (Ropers & Hamel, 

2005). 
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3. Causes of autism 

3.1 Genetic contributions 

The causes of autism are likely far more complex than the causes of ID. Genetic factors 
clearly play a prominent role. The evidence for the involvement of genetic factors in the 
etiology of autism comes primarily from family and twin studies and is further supported 
by cytogenetic and molecular studies. Several sibling concordance studies have provided a 
strong indication that autism has a significant genetic component. Studies over the years, 
including analyses of autism probands with severe ID, evaluations of the developmental, 
social, and psychiatric histories of siblings of autistic individuals and reviews of familial 
aggregation in large autism cohorts, have all displayed higher than expected familiality 
(Baird & August, 1985; Piven et al., 1990; Bolton et al., 1994). A recent study examined the 
cognitive, adaptive, social, imitation, play, and language abilities of 42 non-autistic siblings 
(of autism probands) and 20 toddlers with no family history of autism. The siblings were 
below average in expressive language abilities and IQ. They had lower mean receptive 
language, adaptive behavior, and social communication skills. They used fewer words, 
distal gestures, and social smiles than children with no familial history of autism (Toth et al., 
2007).  
On the other hand, the familiality of autism does not imply that genetic factors are 
exclusively responsible for the disease, and role of the environmental factors, which are also 
shared by family members who live together, cannot be excluded by these studies alone. 
Twin studies provide an alternative approach for investigating the relative magnitude of 
genetic and/or environmental factors on the autism phenotype and penetrance. In 1977, a 
landmark study by Folstein and Rutter demonstrated a significant difference between 
monozygotic (MZ) and dizygotic (DZ) twins in their concordance for autism (Folstein & 
Rutter, 1977). This difference in concordance suggested a major role for genes in the etiology 
of autism and this was confirmed by subsequent studies (Ritvo et al., 1985; Steffenburg et al., 
1989). Most recently, a large scale study of 277 twin pairs (210 DZ and 67 MZ) reported 88% 

concordance of autism for MZ twins and 31% concordance of autism for DZ twins. In MZ 
twins, the authors also observed a higher prevalence of bipolar disorder and Asperger 

syndrome with a higher concordance of the latter (Rosenberg et al., 2009). The finding of 
increased bipolar disorder in twins is interesting because the co-morbidity of psychiatric 
disorders (eg. anxiety disorder, ADHD, etc) in children with autism is up to 70% (Charman 
et al., 2011), and suggests significant overlap in genetic etiology between different 
psychiatric disorders. Specific genetic causes for autism will be outlined more thoroughly 
later in this chapter.  

3.2 Epigenetic contributions 

It is widely accepted that genetic factors play a major role in the etiology of ASD, however, 
epigenetic factors may also be an important determinant of the autism phenotype. 
Epigenetic modifications include cytosine methylation and post-translational modification 
of histone proteins, and act as a mechanism to control gene expression (Samaco et al., 2005). 
The epigenetic regulation of gene expression can be influenced by exposure to 
environmental factors and can show parent of origin effects. Notably, epigenetic factors play 
a central role in pathogenesis of two single gene disorders, Rett syndrome and Fragile X 
syndrome (FXS), that are commonly associated with autism (Brown et al., 1982; Gillberg, 
1986). Rett syndrome, a progressive neurodevelopmental disorder, is classified among 
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ASDs. It is caused by mutation in the MECP2 gene that encodes the methyl-CpG-binding 
protein 2, which is involved in epigenetic regulation of gene expression (Amir et al., 1999). 
JARID1C, a relatively common ID gene associated with some cases of autism (Adegbola et 
al., 2008) has been shown to regulate the methylation of histones and function in epigenetic 
transcriptional repression (Tahiliani et al., 2007). 
In addition, some autism (and ID) genes are regulated by known epigenetic mechanisms. 

FXS is caused by the expansion of a tract of CGG repeats in the 5’ untranslated region of the 

FMR1 gene. This expansion results in epigenetic silencing of the region, causing loss of 

expression of the gene, thus, FXS is caused by a genetic mutation resulting in epigenetic 

dysregulation (Hagerman et al., 2005). The RELN gene is another interesting example of 

possible contributions of epigenetic factors to ASD. The RELN gene encodes a large 

extracellular matrix protein that organizes neuronal positioning during corticogenesis and is 

regulated by epigenetic mechanisms. Several independent studies have shown an 

association between RELN and ASD (Skaar et al., 2005; Ashley-Koch et al., 2007; Holt et al., 

2010). Interestingly, reduced levels of reelin and its isoforms have been previously shown in 

autistic twins and their first degree relatives (Fatemi et al., 2005).  

Genomic imprinting is another mode of regulation of gene expression by epigenetic 
modifications and it results in parent of origin-specific gene expression. Genomic 
duplications of an imprinted region on the proximal long arm of chromosome 15 (15q11-
q13) are associated with 0.5-3.0% of autism cases (Hogart et al., 2010).  

3.3 Other factors 

Support for possible environmental factors contributing to the causation of autism comes 

from the incomplete concordance in monozygotic twins. Additionally, at this point in time, 

known genetic defects only explain a small proportion of autism patients. Furthermore, 

there is evidence that in utero exposure to valproic acid and thalidomide may increase the 

risk of ASD (Arndt et al., 2005). One long-term study of 632 children exposed to antiepileptic 

drugs during gestation, found that 6.3% of the children exposed to valproic acid in utero had 

ASD or some features of ASD. This incidence is seven times higher than the control group 

(0.9%; (Bromley et al., 2008)). Similarly, a higher incidence of autism has been reported 

among children prenatally exposed to thalidomide. In a population of 100 Swedish 

thalidomide embryopathy cases, at least four met full diagnostic criteria for autism 

(Stromland et al., 1994). Animal models have also demonstrated that early serotonergic 

neural development is disrupted in rats exposed to thalidomide or valproic acid on the 

ninth day of gestation, conferring increased risk for the development of ASD-related 

behaviours (Narita et al., 2010).  

Mercury (Hg), because of its known neurotoxicity, has drawn particular attention in relation 
to the neurodevelopment of individuals with autism, and a number of studies have 
compared the level of Hg in blood, hair, or urine in children with autism versus without 
autism. However, none of these studies have shown any substantial evidence of 
involvement of Hg in autism. Recently, a study conducted on 452 autism patients failed to 
demonstrate any difference in blood Hg level of autism patients compared to controls 
(Hertz-Picciotto et al., 2010). 
Childhood immunization is an environmental factor that has been popularized in the media 
as a potential cause of autism. The use of mercury in vaccines has been one of the prime 
sources of concern surrounding vaccines and their role in autism (Baker, 2008). However, 
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there is no consistent evidence in support of the theory that vaccines are related to the 
etiology of autism. In the late 1990s, a link between vaccines and autism was reported by 
clinical observation of the onset of autism soon after vaccination of children (Wakefield et 
al., 1998). These observations triggered a series of studies in the US, UK, Europe and Japan, 
however, none of these studies found any compelling evidence for a link between vaccines 
and autism. The original study has since been retracted (Murch et al., 2004; Anonymous, 
2010) 
Although the majority of research to date has focused on genetic factors involved in the 
etiology of autism, non-genetic factors are also likely to contribute. Our knowledge of these 
factors is, however, currently very limited. It has been suggested that distinct genetic 
features/pathways may cause distinct domains of autistic behaviour, but this has yet to be 
tested at the molecular level (Happe & Ronald, 2008). It does, however, resonate with the 
idea that autism is a genetically heterogeneous spectrum, and that multiple genetic 
aberrations may be necessary to reach the autism phenotype threshold (Cook & Scherer, 
2008). The threshold theory postulates that the cumulative effect of several genetic 
aberrations, for instance a copy number variant together with one or more single nucleotide 
variants, and possibly in combination with environmental factors, in a single individual, 
may result in an autism phenotype. These genetic aberrations may include chromosomal, 
single nucleotide or epigenetic abnormalities. It has also been noted that some genetic 
aberrations are more penetrant than others and may be more likely to result in a phenotype. 
In contrast with ID genetics, which are relatively straightforward, autism presents us with a 
convoluted, likely multigenic/multifactorial disorder for which it may be more difficult to 
delineate causes.   

4. Epidemiology 
4.1 Autism & autism spectrum disorders 

In published literature the incidence of autism is variable, and a worldwide trend of increase 

in prevalence of autism has been reported. During the 1980s, autism was thought to be rare, 

with a prevalence of less than 5 per 10,000 persons (Gillberg et al., 1991) and was not 

categorized as major public health problem. During the 1990s, the prevalence of autism was 

estimated to be 21 to 31 per 10,000 in preschool children (Fombonne, 1999). A recent review 

of epidemiologic studies reported a prevalence of 20 per 10,000 for classic autism and 60-70 

per 10,000 (1 in 150) for all ASDs (Fombonne, 2009). In addition it reported a prevalence of 

30-40 per 10,000 for PDD-NOS and 2 per 10,000 for CDD (Fombonne, 2009). Epidemiologic 

studies of Asperger syndrome have been more rare, and although current numbers estimate 

a prevalence of 6 per 10,000, there are severe limitations to calculating this prevalence 

accurately (Fombonne, 2009). Other recent large scale epidemiological studies have shown 

that as many as 1 in 100, or 1% of school age children have an ASD (Baird et al., 2006; Baron-

Cohen et al., 2009; Kogan et al., 2009). It is noteworthy that some of these studies are based 

on parents’ reporting of ASD and it could be argued that these estimates might be falsely 

high (Kogan et al., 2009). On the other hand, it has been argued that the increasing incidence 

of autism might be due to increased awareness of public and professionals coupled with the 

broadening of the diagnostic criteria (Fombonne et al., 2006). Today, the prevalence of ASDs 

is believed to be very high and this condition is now thought to be second only to 

Intellectual Disability (ID) among the most common developmental disabilities in the 

United States (Yeargin-Allsopp et al., 2003).  
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It is also noteworthy that there is a gender bias in autism. Among children with autism, the 
ratio of affected males to females is estimated to be 4:1 (Volkmar et al., 1993) and the male to 
female ratio for Asperger syndrome is even higher. In contrast, Rett syndrome occurs almost 
exclusively in females.  

4.2 Intellectual disabilities 

ID is the most common neurodevelopmental disorder in the United States (Yeargin-Allsopp, 

et al., 2003). The prevalence of ID is between 1 and 3% (Roeleveld et al., 1997; Leonard & 

Wen, 2002) and is present in every social class and culture (Leonard & Wen, 2002). Despite 

its universal occurrence, there tends to be higher prevalence of ID in areas of lower 

socioeconomic status and developing countries, particularly for mild cases (Drews et al., 

1995; Roeleveld et al., 1997; Durkin et al., 1998; Durkin, 2002; Emerson, 2007). The variability 

of prevalence is more pronounced for mild ID than for severe forms. It has been suggested 

that this discrepancy is likely due to environmental factors (Roeleveld et al., 1997; Durkin et 

al., 1998; Emerson, 2007). 

Approximately 30% more males are diagnosed with ID than females (McLaren & Bryson, 

1987; American Psychiatric Association, 2000). However, despite a higher ratio of males to 

females among milder cases of ID, the ratio decreases as IQ decreases (McLaren & Bryson, 

1987; American Psychiatric Association, 2000). Some studies suggest that severe ID may be 

more prevalent among females (Katusic et al., 1996; Bradley et al., 2002), however these 

studies were performed in quite specific geographic locations and populations, and may not 

necessarily be generalizable to other regions. Some of this gender bias can be accounted for 

by mutations on the X-chromosome. In most cases of X-linked ID (ie. X-linked mental 

retardation; XLMR) or X-linked autism, more males are affected due to hemizygosity. 

However, in some disorders, such as Rett syndrome, this ratio is reversed because mutations 

in the Rett syndrome gene, MECP2, are generally lethal in haploid genomes. In addition, a 

rare phenomenon is apparent in female-restricted epilepsy and mental retardation (EFMR), 

in which heterozygous mutations in the gene PCDH19 cause the disease in females and in 

which there is reprieve-in-males with hemizygous PCDH19 mutations, who remain 

unaffected (Dibbens et al., 2008; Hynes et al., 2009). A possible explanation for this reprieve-

in-males phenomenon could be that carrier males have a homogenous population of mutant 

PCDH19-containing cells, whereas affected females would possess a mosaic population of 

mutant and wild-type PCDH19-containing cells. It is postulated that this mosaicism, rather 

than the effect of the mutated protein alone, may disrupt cell-cell communication, resulting 

in the clinical presentation (Dibbens et al., 2008). 

4.3 Co-morbidity of autism spectrum disorders & intellectual disability (syndromic 
and non-syndromic) 

It is often necessary to look at ASDs and ID together, as there is significant overlap between 

them both in terms of phenotype and in genetic causation. As previously noted, ID is 

present in ~50-60% of individuals with autism. Additionally, in a study performed on an ID 

population, 28% met the criteria for an autism diagnosis on the ADI-R scale and only half of 

these cases had been previously diagnosed (Bryson et al., 2008). Similar studies have also 

shown that within ID populations, the prevalence of autism is 8-20%, and that it is more 

likely for individuals with severe ID to meet criteria for ASD (Wing & Gould, 1979; Deb & 
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Prasad, 1994; Nordin & Gillberg, 1996; Stromme & Diseth, 2000; de Bildt et al., 2005; Bryson 

et al., 2008).  

ID and autism have multiple overlapping phenotypic domains. The three major phenotypic 
domains that characterize autism—language deficits, social deficits and stereotypies/ 
repetitive behaviours—can often be seen to varying degrees in individuals with ID. 
Individuals with ID often display stereotypies, which tend to become more pronounced and 
often self-injurious with decreasing IQ (Symons et al., 2005). Studies have found that 30-60% 
of individuals with ID display some form of stereotypy (Bodfish et al., 1995; Bodfish et al., 
2000; Goldman et al., 2009). Language deficits are often particularly pronounced in 
individuals with severe and profound ID.  
Many ID syndromes have an occurrence of autism that is significantly higher than the 
occurrence for the general population. For example, a current review of the literature 
indicates that up to 25-47% of individuals with Fragile X syndrome, 5-10% of individuals 
with Down syndrome, and 16-48% of individuals with tuberous sclerosis (TSC) also have an 
autism/PDD diagnosis, compared to 0.6-1% in the general population (Fombonne, 2009; 
Molloy et al., 2009). Other ID syndromes that have high occurrence of concordant autism 
include Angelman syndrome, Joubert Syndrome and Cohen syndrome.  

5. Shared genetics of autism and ID 

5.1 Shared genetic causes of autism and ID: Syndromic 

As previously noted, there is evidence that several syndromic forms of ID are more likely to 
present with autism than would be expected in the general population. The observation of 
overlap in phenotype between autism and the most common XLMR disorder, fragile X 
mental retardation syndrome (FXS) is a long-standing, albeit controversial one. The 
frequency of molecular diagnosis of FXS among autistic patients has been reported as high 
as 12.4% and as low as 0%, averaging at 7.25% (Smalley et al., 1988; Gurling et al., 1997). 
More recent studies indicate a more conservative rate of FXS of 2-4% (Wassink et al., 2001). 
Two studies of young FXS individuals demonstrated that 25% and 33% met criteria for 
autism and a review suggests that as many as 47% may have an ASD (Bailey et al., 1998; 
Rogers et al., 2001; Molloy et al., 2009); however, it has also been argued that autistic 
features are not more common among individuals with FXS than among other individuals 
with ID (Bardoni et al., 2000). Mutations in MECP2 have also been found among individuals 
with autism (Kim & Cook, 2000; Orrico et al., 2000; Beyer et al., 2002; Hammer et al., 2002). 
Autistic features are also frequently present in other ID syndromes such as Down syndrome 
and phenylketonuria (PKU).  
These disorders are rarely mistaken for autism, as other syndromic features assist with the 
correct diagnostic assignment. On the other hand, there is evidence that even for these well-
characterized syndromic forms of XLMR, there is a very broad phenotypic expression of the 
disease. For instance, mutations within the aristaless gene, ARX, are responsible for several 
distinct forms of XLMR and neurological phenotypes: West syndrome (infantile spasms 
with hypsarrhythmia; Stromme et al. 2002a), Partington syndrome (XLMR with dystonic 
hand movements; Stromme et al. 2002b), XLAG (Kitamura et al. 2002), XLMR (Bienvenu et 
al. 2002), Proud syndrome (Kato et al. 2004), and various forms of epilepsy (Stromme et al. 
2002a, b; Scheffer et al. 2002). A 24 base pair duplication in ARX has been found in families 
with West syndrome and Partington syndrome, and recently in several families previously 
identified as having non-syndromic XLMR. In these families several individuals were 
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reported as having only mild intellectual impairment along with autism or autistic-like 
behaviours (Turner et al., 2002).  

5.2 Shared genetic causes of autism and ID: Non-syndromic  

The Neuroligin 4 (NLGN4) gene has been linked to autism by several studies (Jamain et al., 

2003; Laumonnier et al., 2004; Marshall et al., 2008). However, in 2004, Laumonnier et al. 

identified a family containing individuals with NS-ID, with or without ASD, segregating 

with a NLGN4 mutation (Laumonnier et al., 2004). This study was the first to suggest that 

NS-ID and autism may have overlapping genetic etiologies. A similar finding was noted 

with NRXN1, which interacts with NLGN4. Heterozygous copy number variants (CNV) in 

this gene have been found in autism while homozygous mutations of NRXN1 cause the S-ID 

disorder Pitt-Hopkins-like syndrome-2 (PTHSL2; Zweier et al., 2009). 

More recently, a truncating mutation was found in SHANK3 in an individual with NS-ID 
(Hamdan et al., 2011). SHANK3 has been found to cause autism in several studies (Durand 
et al., 2007; Marshall et al., 2008). In addition, SHANK2 CNVs and sequencing mutations 
have been found in several cases of both autism and NS-ID, displaying a significant level of 
etiological overlap between the two disorders (Berkel et al., 2010; Pinto et al., 2010). CNVs, 
or structural variation within the genome, appear to contribute significantly to the etiology 
of ID and autism. 
PTCHD1 is another X-linked gene that has been implicated in autism and NS-ID. A CNV 

which deletes PTCHD1 entirely causes NS-ID in one family (Noor et al., 2010). Another 

CNV, which results in a loss of the first exon and upstream region of PTCHD1, results in 

autism in another family (Noor et al., 2010). In addition, one CNV upstream of the gene was 

found in an individual with ADHD, suggesting that it may play a role in this phenotype as 

well (Noor et al., 2010). IL1RAPL1, which was initially identified as a cause of NS-ID, and 

has been shown to cause NS-ID in several individuals, has also been implicated in autism 

(Carrie et al., 1999; Bhat et al., 2008; Marshall et al., 2008; Piton et al., 2008; Pinto et al., 2010). 

Similarly, a missense mutation in the NS-ID gene JARID1C was found in an individual with 

autism (Adegbola et al., 2008). Most recently, a de novo CNV deletion overlapping 

SYNGAP1, a gene previously implicated in NS-ID, was identified in a female autism 

proband (Pinto et al., 2010). These genetic links are of much interest, particularly due to the 

strong phenotypic overlap seen in NS-ID and autism. These common genes will be an 

important factor in teasing out which biochemical processes are disturbed in different forms 

of developmental delay, and why a particular mutation in an individual may lead to one 

condition rather than the other.  

6. Common biological pathways (see Table 2) 

6.1 The mTOR pathway (see Figure 1) 

The common pathways shared by autism genes are also particularly interesting with respect 

to ID. While it cannot necessarily be argued that all autism genes will fall into distinct and 

neat categories, there are certain pathways which are overrepresented among autism-related 

genes identified so far. One review of the literature suggested that there appear to be two 

major pathways that known autism genes are a part of: 1. excitation and inhibition at the 

synaptic junction and 2. cellular and synaptic growth—i.e. participation in the mTOR 

pathway (Bourgeron, 2009). This categorization is valid but does not encompass all autism 
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genes, and as our knowledge of genes that contribute to the autism phenotype increases, 

more common pathways may be elucidated. 

 

Gene Name ASD or ID* Chromosomal 
Locus 

Protein Product Potential Pathogenic 
Mechanism 

Common Gene Function: Cell Adhesion 

CDH8 ASD 16q22.1 Cadherin 8 Disruption of neuronal cell 
adhesion leading to 

aberrant synaptogenesis or 
plasticity 

CDH9 ASD 5p14 Cadherin 9 As above 

CDH10 ASD 5p14.2 Cadherin 10 As above 

CDH15 ID 16q24.3 Cadherin 15 As above 

CNTNAP2 ASD 7q35 Contactin-associated 
protein-like 2 

As above 

NLGN3 ASD Xq13.1 Neuroligin 3 Disruption of neuronal cell 
adhesion specifically at the 
excitatory synapse leading 
to aberrant synaptogenesis 

or plasticity 

NLGN4 ASD/ID Xp22.33 Neuroligin 4 As above 

NRXN1 ASD/ID 2p16.3 Neurexin 1 Disruption of neuronal cell 
adhesion leading to 

aberrant synaptogenesis or 
plasticity 

PCHD10 ASD 4q28.3 Protocadherin 10 As above 

PCDH19 ID Xq13.3 Protocadherin 19 As above 

TSPAN7 ASD/ID   As above 

Common Gene Function: Receptors at Inhibitory Synapse 

GABA 
receptors 
(Chr 4) 

ASD 4p14 GABA receptors ┙2, 
┚1, ┛1 and ┙4 

Disruption of GABA 
receptor activity at the 

inhibitory synapse 

GABA 
receptors 
(Chr 15) 

ASD/ID 15q11.2-q12 GABA receptors ┙5, 
┚3, and ┛3 

Disruption of GABA 
receptor activity at the 

inhibitory synapse 

Common Gene Function: Regulation and Organization at the Excitatory Synapse 

FMR1 ASD/ID Xq27.3 Fragile X mental 
retardation 1 protein

Aberrant translational 
regulation of important 

synaptic genes 

GRIK2 ASD/ID 6q16.3-q21 Glutamate receptor, 
ionotropic, kainate 2

Disruption of Kainate 
Receptors at the excitatory 

synapse 
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Gene Name ASD or ID* Chromosomal 
Locus 

Protein Product Potential Pathogenic 
Mechanism 

IL1RAPL1 ASD/ID Xp22.1-p21.3 Interleukin 1 
receptor accessory 

protein-like 1 

Disruption of activity and 
organization at the 
excitatory synapse 

SHANK2 ASD/ID 1q41 SH3 and multiple 
ankyrin repeat 

domains 2 

As Above 

SHANK3 ASD/ID 22q13.3 SH3 and multiple 
ankyrin repeat 

domains 3 

As Above 

SYNGAP1 ASD/ID 6p21.3 Synaptic Ras 
GTPase activating 

protein 1 

Disruption of NMDA and 
AMPA receptors via down 

regulation of Ras/ERK 
signalling 

Common Gene Function: Transcriptional Control 

ARX ASD/ID Xp21.3 Aristaless related 
homeobox 

Disruption of 
transcriptional regulation 
leading to alterations in 

dosage of multiple genes 

AUTS2 ASD 7q11.2 Autism 
susceptibility  
gene 2 protein 

Neuronal nuclear 
expression; Putative 

regulator of transcription 
(Kalscheuer et al., 2007) 

JARID1C ASD/ID Xp11.22-p11.21 Jumonji, AT rich 
interactive domain 

1C 

Disruption of 
transcriptional regulation 
leading to alterations in 

dosage of multiple genes 

MECP2 ASD/ID Xq28 Methyl CpG  
binding protein 2 

As above 

Common Gene Function: Down Regulation of the mTOR Signaling Pathway 

NF1 ASD/ID 17q11.2 neurofibromin Neuronal cell overgrowth 
due to the down  

regulation of the mTOR 
pathway or down 

regulation of Ras/ERK 
signaling 

PTEN ASD 10q23.3 phosphatidylinositol
-3,4,5-trisphosphate 

3-phosphatase  
and dual-specificity 

protein 
 phosphatase 

Neuronal cell overgrowth 
due to the down regulation 

of the mTOR pathway 

TSC1 ASD/ID 9q34 Tuberous Sclerosis 1 
protein (hamartin)

As above 
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Gene Name ASD or ID* Chromosomal 
Locus 

Protein Product Potential Pathogenic 
Mechanism 

TSC2 ASD/ID 16p13.3 Tuberous Sclerosis 2 
protein (tuberin) 

As above 

Common Gene Function: Varying Functionalities 

IQSEC2 ASD/ID Xp11.22 IQ motif and SEC7 
domain-containing 

protein 2 

Disruption of the ARF 
signaling pathway 

PTCHD1 ASD/ID Xp22.11 Patched domain 1 Potential disruption of the 
Hedgehog signaling 

pathway 

RELN ASD/ID 7q22 Reelin Abnormal neuronal cell 
migration and cell-cell 

interaction 

SLC6A8 ASD/ID Xq28 Solute carrier family 
6 member 8 

Creatine deficiency 

UPF3B ASD/ID Xq25-q26 UPF3 regulator of 
nonsense transcripts 

homolog B 

Dysfunction of nonsense 
mediated decay and 
mRNA surveillance 

*associated with autism spectrum disorder or intellectual disability 

Table 2. Genes associated with ASD, ID or both and chromosomal location, along with 
protein product and function, and the potential route by which the gene results in 
neurodevelopmental phenotypes. 

NF1, TSC1 and TSC2 are genes that, when mutated, may result in disorders -
neurofibromatosis and tuberous sclerosis respectively- in which there is high incidence of 
autism- neurofibromatosis and tuberous sclerosis respectively. These genes are negative 
regulators of the mTOR-raptor complex (mTORC1)—a complex that is important in 
regulation and cell growth during mitosis and likely plays an active role in synaptogenesis 
(Bourgeron, 2009). Furthermore, in hippocampus of fmr1 knockout mice, upregulation of 
mTOR activity has also been reported (Sharma et al., 2010). It can be speculated that when 
deleterious mutations occur in these genes, the mTOR pathway would become more active 
due to loss of down regulation. PTEN, another negative regulator of the mTOR pathway has 
also been implicated in autism. PTEN mutations can lead to PTEN Hamartoma-Tumor 
Syndrome (PHTS) which includes Cowden Syndrome and Bannayan-Riley-Ruvalcaba 
Syndrome, but are also present in autism probands without these syndromes (McBride et 
al., 2010). The mutations found in autism probands appear to be less penetrant than other 
PTEN mutations (McBride et al., 2010). 
With the finding that mTOR genes are involved in autism susceptibility we can propose 
several possibilities, the first of which is that regulators of the mTORC1 complex may also 
be good candidates for ID genes, based on overlapping phenotype between autism and ID. 
However, individuals with neurofibromatosis do not typically present with ID despite 
having a higher incidence of learning disabilities, ADHD and autism (Hsueh, 2007). 
Tuberous Sclerosis is associated with learning disabilities, developmental delay including 
autism and epilepsy in about 85% of cases (Curatolo et al., 2008). This specificity for autism 
susceptibility in the mTOR pathway may help us to delineate the complex association 
between autism and ID genes, and understand how autism specific phenotypes are caused.  

www.intechopen.com



 
Autism Spectrum Disorders: The Role of Genetics in Diagnosis and Treatment 

 

140 

 

 
 

The mTOR pathway has been implicated as a potential major contributor to the etiology of autism. The 
mTOR pathway is negatively regulated by NF1, TSC1/2, and PTEN (and possibly FMRP), all of which 
are involved in the etiology of autism. mTOR activation results in cell survival and proliferation. 
Negative regulation of this pathway prevents overgrowth. Some cancer syndromes are also associated 
with these genes. mTOR is a target of rapamycin, which inhibits its functioning. This is a potential 
pharmaceutical candidate for the treatment of syndromes caused by mutations in these genes, as well as 
autism resulting from mutations in these genes. This figure shows the role of NF1, TSC1/2 and PTEN in 
the mTOR pathway.  

Fig. 1. mTor Pathway in autism and ID 
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6.2 Synaptic proteins and synaptogenesis (see Figures 2 & 3) 

Most of the known genes that overlap both autism and ID are present at the synapse and are 
involved in the excitatory/inhibitory pathway, with an emphasis on excitation. For 
example, the SHANK family of genes appears to make quite a significant contribution to 
autism and ID etiologies. Both SHANK2 and SHANK3 encode scaffolding proteins present at 
the post-synaptic density and in dendrites. They are important for scaffolding in the post-
synaptic density—connecting ion channels, neurotransmitter receptors and other membrane 
proteins to the actin cytoskeleton—and act as a structural framework at this site (Boeckers et 
al., 2002; Hayashi et al., 2009). They are also likely to play a role in neuronal plasticity 
(Boeckers et al., 2002; Hayashi et al., 2009). 
 

 

Many autism genes, in particular those that overlap with intellectual disabilities, are present at 
excitatory synapses. Many of these genes encode protein products which are present in the postsynaptic 
density (PSD) including SYNGAP1, SHANK2, SHANK3, NLGN4, NLGN3, NRXN1, and IL1RAPL1. 
Glutamatergic synapses contain NMDA receptors, AMPA receptors and Kainate receptors.  Mutations 
in additional synaptic genes have been implicated in ID, e.g. CASK and STXBP1. Aberrant function at 
this synapse has been postulated to be part of both autism and ID etiology. 

 

Fig. 2. Glutamatergic Synapse in autism and ID 
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GABA is the major inhibitory neurotransmitter in the human brain. GABA receptor genes have been 
postulated as candidates for autism etiology.  Most GABA receptors cluster in certain chromosomal 
regions  some of which are associated with autism and/or ID, such as 15q11.2-q13 which contains 
GABR┙5, GABR┚3, and GABR┛3, and 4p14 which contains the genes GABR┙2, GABR┚1, GABR┛1 and 
GABR┙4. Duplications of the 15q11.2-q13 region are present in 0.5-3% of autism cases.   

Fig. 3. GABAergic Synapse in autism and ID 

Another important gene involved in both ID and autism is SYNGAP1 which has been 

identified as a dominant cause of ID in several individuals with truncating mutations 

(Hamdan et al, 2009; Hamdan et al, 2011), as well a cause of autism in an individual with a 

CNV deletion overlapping the gene (Pinto et al. 2010). SYNGAP1 encodes SynGAP—a 

GTPase activating protein that is part of the NMDA receptor complex (NMDAR), and binds 

to the NR2B subunit (Kim et al., 2005). NMDARs play a role in glutamate-activated 
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excitation of postsynaptic neurons, and have been implicated in memory formation and 

synaptic plasticity. SynGAP is a negative regulator of NMDAR mediated ERK activation 

and causes inhibition of the Ras/ERK pathway (Kim et al., 2005). Over-expression of 

SynGAP has also been shown to down regulate GLuR1, a subunit of AMPA receptors 

(AMPAR), a class of excitatory ionotropic glutamate receptors which are regulated by the 

Ras/ERK pathway (Kim et al., 2005; Rumbaugh et al., 2006). Syngap knockout mice 

implicate SynGAP in the regulation of long term potentiation (LTP) and AMPAR expression 

(Komiyama et al., 2002). While both ID and autism probands with mutations in this gene 

were heterozygous for the mutation, individuals with ID have truncating single nucleotide 

mutations, while the individual with autism had a deleterious CNV, which is an example of 

how different aberrations within the same gene can have differential effects on phenotypic 

manifestation, i.e. allelism (Hamdan et al., 2009; Pinto et al., 2010; Hamdan et al., 2011). This 

has been shown for several other autism/ID genes as well, including IL1RAPL1, JARID1C, 

and SHANK2 (Adegbola et al., 2008; Piton et al., 2008; Berkel et al., 2010; Pinto et al., 2010).  

Other autism-related genes also bind to the NMDAR and are involved in its function. NF1 

described earlier as a down regulator of the mTOR pathway also plays a role in the negative 

regulation of the Ras signaling pathway and is known to bind directly to the NMDAR 

complex (Hsueh, 2007). This suggests an alternate mechanism for its role in autism. Within 

the context of Bourgeron’s review, this gene is actually affiliated with both “major” autism 

gene pathways.  

In addition IL1RAPL1 also appears to have an impact on NMDAR function. Mutations in 
IL1RAPL1, a gene with several known mutations in NS-ID and autism, result in the incorrect 
localization of the MAGUK family protein PSD-95 (DLG4), which is important for 
organization and function of NMDARs, ion channels and other signaling proteins at the 
post-synapse (Carrie et al., 1999; Gardoni, 2008; Pavlowsky et al., 2010). The IL1RAPL1 
protein has been shown to interact with PSD-95, and knockout of this gene decreased the 
post-synaptic density (PSD) and the localization of PSD-95 at excitatory synapses. Loss of 
IL1RAPL1 also results in a decrease of activity in the JNK pathway, which was found to lead 
to decreased phosphorylation of PSD-95 (Pavlowsky et al., 2010). IL1RAPL1 has also been 
shown to be important for the formation of excitatory synapses in vivo (Pavlowsky et al., 
2010). PSD-95 directly interacts with several known NS-ID associated proteins including: 
CASK, SynGAP, GLuR6 and neuroligins (Kim & Sheng, 2004). 
GRIK2 is a gene that is mutated in NS-ID (Motazacker et al., 2007) and has been linked by 
association studies to autism (Jamain et al., 2002; Shuang et al., 2004; Kim et al., 2007) . It 
encodes a protein called GLuR6, which is a subunit of a kainate receptor (KAR). KARs are 
ionotropic glutamate receptors which respond to the excitatory neurotransmitter l-
glutamate, similar to NMDA or AMPA receptors. They are expressed at a high level in the 
brain, particularly in the hippocampal mossy fibers, where GLuR6 has been found to 
modulate LTP in mouse models (Bortolotto et al., 1999; Contractor, Swanson and 
Heinemann., 2001). GLuR6 knockout mice show decreased LTP in mossy fibers. LTP in the 
hippocampus has been implicated as a mechanism for memory formation and learning 
(Bliss & Collingridge, 1993; Fedulov et al., 2007). While polymorphisms in GRIK2 are likely 
not responsible for an autism phenotype alone, the association suggests that this locus 
confers susceptibility to the phenotype and may contribute to the disorder in concert with 
other genetic aberrations and environmental factors.  
Additionally, FMRP, encoded for by FMR1, the fragile X syndrome (FXS) gene, is thought to 
play a role in neuronal plasticity by acting as a suppressor of local protein translation (as 
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reviewed by Jin et al. 2004). It binds mRNA in the nucleus and carries the mRNA to its 
target destination in the cytoplasm (Bagni & Greenough, 2005). The transcripts targeted by 
FMRP include some that are relevant to autism and ID, including PSD-95, DLG1, SHANK1, 
DLGAP1-4, Grin1, Grin2b, GluR1, and GluR2 (Bassell & Warren, 2008; Schutt et al., 2009). It 

also binds other important neuronal transcripts such as itself (FMR1), SEMA3F, CamKIIα, 
GABRD, ARC, MAP1B and APP (Bassell & Warren, 2008). While FXS is an X-linked 
syndrome of variable phenotype, it is a very common cause of ID, and often is present 
together with autistic behaviours (de Vries et al., 1998). In addition, the FMR2 gene, which is 
similar to FMR1 in structure but has a poorly defined function, is also involved in the 
genetics of ID and autism (Gecz et al., 1996). Mutations in this gene result in intellectual 
disabilities with or without autistic behaviours.  
Some important synaptic genes that are present at inhibitory synaptic junctions appear to be 
associated with autism and some ID syndromes. GABA is the major inhibitory 
neurotransmitter in the human brain, and dysfunction of its receptors could result in a 
decrease of the inhibitory response. A significant amount of research has been done to study 
the role of GABA and GABA receptors in autism. In particular, GABA receptor subunits 
residing in clusters on 4p and 15q have been implicated in autism. As indicated earlier, 
genomic duplications of an imprinted region on the long arm of chromosome 15 (15q11-q13) 
are present in 0.5-3.0% of autistic individuals (Hogart et al., 2010). Deletions and uniparental 
disomy (UPD) in this region are responsible for Angelman syndrome and Prader-Willi 
syndrome depending on the parent of origin of the mutation, and both of these syndromes 
present with ID (Dykens et al., 2004), and frequently also with autism (Hogart et al., 2010). 
This region contains a cluster of three GABA receptor subunit genes: GABR┙5, GABR┚3, and 
GABR┛3 (Dykens et al., 2004). Based on the frequency of this duplication in autism, it is 
possible that these genes are involved in the autism phenotype, however there are ~10 genes 
in the duplicated region, all of which may play a major, minor or no role in the autism 
phenotype. GABR┙2, GABR┚1, GABR┛1 and GABR┙4 on 4p14 (Ma et al., 2005; Vincent et al., 
2006; Kakinuma et al., 2008) have also been implicated in autism. Molecular work specific to 
some of these GABA receptors supports their role in autism (Ma et al., 2005; Collins et al., 
2006; Fatemi et al., 2010). It is also of note that GABA neurotransmission is strongly 
implicated in fragile X syndrome, and knockout of the fmr1 gene in mice has a hugely 
disruptive effect on the GABAergic system, and is a potential target for the treatment of 
symptoms for both Fragile-X syndrome and autism (Hagerman et al., 2005).  
Several studies have found significant genetic associations between the chromosome 4 
GABA receptor cluster and autism. In addition, specific GABA receptor genes within the 4p 
cluster have been implicated as likely contributors to autism. GABR┙4 was found to be 
involved in the etiology of autism independently and through interactions with GABR┚1 
(Ma et al., 2005) and both of these genes have been linked to the autism phenotype by 
association (Collins et al., 2006). Recently, a study by Fatemi et al. indicated that the levels of 
GABA receptor mRNAs in autism brains are significantly different from controls (Fatemi et 
al., 2010). The study shows that in the BA9 region of brains acquired from individuals with 
autism, levels of GABR┙4, GABR┙5 and GABR┚1 mRNAs are significantly decreased, while 
in the cerebella of these brains mRNA for these same genes are increased compared to 
normal controls after normalization with housekeeping genes (Fatemi et al., 2010). In 
addition, several small studies and cases have shown that the levels of GABA in peripheral 
blood and plasma are altered in individuals with autism (Dhossche et al., 2002, Rolf et al., 
1993) but these findings are inconsistent, and more thorough and larger scale studies need 
to be done to determine whether GABA could act as stable biomarker for ASD.  
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6.3 Neuronal cell adhesion 

Neuronal cell adhesion is an interesting common pathway between ID and autism. As 

previously noted, NLGN4 and NRXN1 are both examples of genes that are mutated in cases 

of autism and ID. NLGN4 presents us with a particularly interesting genetic link between 

autism and ID, as it displayed pleiotropy within a single family, with the same mutation 

causing autism in some individuals, and NS-ID in others. The NLGN4 protein, located on 

the postsynaptic membrane, interacts with NRXN1 on the presynaptic membrane. 

Heterozygous mutations in NRXN1 appear to result in autism as well (Autism Genome 

Project Consortium et al., 2007; Kim et al., 2008). Similar disruptions in NRXN1 have also 

been documented in schizophrenia (Rujescu et al., 2009), ID, and language delays (Ching et 

al., 2010). The NLGN4 protein acts as an important element in postsynaptic differentiation, 

forming complexes with ┚-neurexins and PSD-95 (Ichtchenko et al., 1995; Irie et al., 1997; 

Scheiffele et al., 2000). NLGN4 is linked to glutamatergic postsynaptic proteins and 

neuroligin/neurexin complexes, which appears to be sufficient for synaptogenesis (Graf et 

al., 2009). These genes play a major role in both cell adhesion as well as synaptogenesis 

showing a role for overlap between these pathways.  

Additionally, it has been postulated that TSPAN7, an X-linked NS-ID gene, is involved in a 

complex of ß-integrins, which are involved in cell-cell and cell-matrix interactions (Zemni et 

al., 2000) and that this gene may cause autism in individuals with deleterious CNVs 

(Marshall et al., 2008). There are several other neuronal cell adhesion genes that have been 

implicated in autism, with and without ID, including NLGN3 and CNTNAP2 (Jamain et al., 

2003; Alarcon et al., 2008). This suggests that neuronal cell adhesion is a common 

mechanism by which both autism and ID occur, and may be helpful in elucidating the 

biological mechanism of these highly related, albeit different, disorders. 

In addition to these neuronal cell adhesion genes, several cadherins and protocadherins 

have been implicated in autism as well. CDH8 has been found to be disrupted by 

microdeletions in individuals with learning disabilities and autism, and is not disrupted in 

over 5000 controls (Pagnamenta et al., 2011). Additionally, a genome-wide association study 

of individuals with autism identified significant peaks at CDH9 and CDH10 (Wang et al., 

2009). PCDH10 has also been suggested as a candidate gene for autism based on a 

homozygous CNV deletion overlapping the gene in an affected individual (Morrow et al., 

2008).  

Several similar genes have been implicated in ID as well. PCDH19, a protocadherin, has 
also been implicated in epilepsy with mental retardation limited to females (EFMR; 
Dibbens et al., 2008; Hynes et al., 2009). Additionally CDH15 is an autosomal dominant 
cause of S-ID and NS-ID in several individuals. CDH15 encodes a cadherin that is 
expressed mainly in brain and skeletal muscle (Bhalla et al., 2008). Mutations of this gene 
in individuals with ID were found to decrease cell adhesion by greater than 80% (Bhalla et 
al., 2008). It is clear from these genetic links that neuronal cell adhesion is a common 
pathway in both ID and autism. Interestingly, while some of these genes overlap both ID 
and ASD, some are unique to one condition or the other. It is possible that some of these 
apparently unique genes may actually be involved in both disorders but no examples have 
been identified because mutations are so rare. It is also possible that these genes could 
only cause specific endophenotypes and may be useful for helping us tease out the 
intricate web of connections between the two disorders. 
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6.4 Transcriptional control 

Disruption of transcriptional control can have far reaching implications in terms of 
phenotypic manifestation. Genes involved in transcriptional control, when disrupted, may 
in turn affect the expression of many other genes. For example, ARX is one of the most 
frequently mutated genes in X-linked NS-ID. It is a homeobox-containing gene that is part of 
the Aristaless-related gene family. This is a family of transcription factors that are required 
for various essential events during vertebrate embryogenesis, including CNS development 
(Meijlink et al. 1999). Based on experimental data and gene structure it has been speculated 
that ARX regulates transcription by both gene activation and suppression and it is essential 
for normal development of the CNS (as reviewed by Friocourt et al. 2006). Mutations in this 
gene have been implicated in many ID syndromes, XLMR and autism/autistic features 
(Turner et al., 2002; Friocourt et al., 2006).  
Another example of a transcription factor involved in both autism and ID is MECP2, the 
causative gene for Rett syndrome: a regressive syndrome described earlier in this chapter. 
MECP2 mutations may result in various alternative phenotypic manifestations including 
MRXS13, LUBS X-linked ID syndrome and NS-ID. While genotype/phenotype data is often 
ambiguous, some studies have demonstrated a genotype/phenotype correlation in terms of 
severity, as well as for specific phenotypic measures (Ham et al., 2005; Bebbington et al., 
2008). MECP2 encodes the methyl CpG binding protein 2 (MECP2), which is believed to act 
as a transcriptional modulator that is capable of long-range chromatin re-organization 
resulting in repression or activation of genes through binding to methylated CpG DNA (As 
reviewed by Gonzales and LaSalle, 2010).  
Additionally, JARIDIC, also known as KMD5C, is another relatively common gene related to 
X-linked ID with over twenty mutations known in XLMR individuals (Tzschach et al., 2006; 
Tahiliani et al., 2007). In addition, it has been identified as a causative gene in an individual 
with autism (Adegbola et al., 2008). JARIDIC is a histone demethylase containing a PHD-
finger domain that is characteristic of zinc finger proteins and specifically demethylates di- 
and tri-methylated histone 3 lysine 4 (H3K4me2/me3) residues (Christensen et al., 2007; 
Tahiliani et al., 2007; Cloos et al., 2008). Trimethylation at this residue is extremely important 
for transcriptional regulation and chromatin structure. JARID1C is likely involved in 
repressor element silencing transcription factor (REST)-mediated transcriptional repression. 
It has been shown to regulate the expression of several REST-mediated genes, as well as 
regulate the H3K4me2/H3K4me3 levels at their promoters (Tahiliani et al., 2007). 
Determining which genes these transcriptional regulators control may give insight into the 
biological pathways involved in disease and the mechanisms by which they occur. 
The gene AUTS2 was originally identified through the mapping of a translocation 
breakpoint on chromosome 7 in a pair of autistic monozygotic twins (Sultana et al., 2002), 
and subsequently identified in a number of studies of other autism patients with cytogenetic 
aberrations (Bakkaloglu et al., 2008; Huang et al., 2010). AUTS2 has more recently been 
identified at the breakpoint for de novo translocations in three unrelated ID individuals 
(Kalscheuer et al., 2007), as well as at breakpoints of CNVs in individuals with ADHD (Elia 
et al., 2010) and epilepsy (Mefford et al.. 2010). Although the function of the protein encoded 
by AUTS2 is unknown, in silico analysis suggest the protein has similarity to known 
transcription factors (Kalscheuer et al., 2007), and expression studies show that the protein is 
highly expressed within the nucleus of neurons and neuronal progenitors during 
development of the cerebral cortex and cerebellum, as well as other regions (Bedogni et al., 
2010). As such, it is likely that AUTS2 also functions as a regulator of gene transcription. 
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7. Other genes displaying ID/autism overlap (see Table 2) 

While it is very helpful to look at overlapping autism and ID genes in common pathways, it 

is not always possible. Autism and ID both have highly variable genetic causes. Some of 

these causal genes cannot be grouped together in common pathways but are still very 

important and have been widely implicated in autism and ID. PTCHD1 is an example of 

such a gene. This gene is estimated to explain ~1% of cases of autism, as well as several 

cases of NS-ID (Noor et al., 2010). PTCHD1 is thought to encode a receptor for the hedgehog 

signaling pathway, however no definitive role for the PTCHD1 protein has yet been 

established, and as the patched-like domain present in PTCHD1 also has a potential sterol-

sensing function, there may be sterol transporting pathways implicated (Noor et al., 2010). 

Mutations at the PTCHD1 locus can occur either within the gene itself or in the region 

upstream of the gene, which are thought to disrupt PTCHD1 regulation. Additionally, 

UPF3B, a component of the nonsense mediated decay surveillance machinery, has been 

implicated in various ID cases across four families, as well as in several individuals with 

autism (Tarpey et al., 2007; Addington et al., 2010; Laumonnier et al., 2010). It has also been 

implicated in childhood onset schizophrenia and ADHD (Addington et al., 2010). IQSEC2, a 

gene that encodes a GTPase for the ARF family of proteins, is also mutated in several 

families with ID and varying degrees of ASD and epilepsy (Shoubridge et al., 2010).  

8. Summary 

In this chapter, we have explored the relationship between ASD and ID: two separate but 

often co-morbid forms of developmental disorder. They are both relatively common in the 

general population, however the incidence of ASD appears to be on the rise, while ID is 

relatively stable. Both can be impacted by environmental factors, however ASD appears to 

have a more complex etiology and may require a combination of genetic, epigenetic and 

environmental factors to manifest phenotypically. Meanwhile, genes that cause ID tend to 

be either de novo or passed down in a Mendelian fashion, and are highly penetrant.  

While ASD is co-morbid with ID in 40-70% of cases, ASD can also present with normal 

intelligence. Certain endophenotypes, such as IQ, head size, presence of dysmorphisms, 

seizures and MRI abnormalities, may help to predict the effectiveness of early intensive 

behavioural intervention. Understanding the fundamental differences between “essential” 

and “complex” autism may be the key to creating personalized behavioural programming 

that is specific not only for the skills of a particular child, but for the phenotypic specificity 

conferred by a narrower diagnosis.  

It is clear that many of the genes implicated in both ASD and ID cause variable 

developmental, intellectual and psychiatric phenotypes, with and without additional clinical 

symptoms. Understanding the molecular mechanisms that result in developmental delays 

will be useful for potential management and interventions in these disorders. 

Understanding more about the phenotypes conferred by aberrations in different genes may 

lead us to develop differential interventions based on these genotypes. Additionally, 

classification of aberrant molecular pathways may help us to identify biomarkers, which 

could be used for early diagnosis of these disorders. Individuals with ASD classically 

respond best to early intensive intervention, thus the earlier we can diagnose ASD, the 

earlier we can act to help ensure the best outcomes.  
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