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1. Introduction 

The complete genomes of many organisms including human, mouse, Arabidopsis, and rice 
have been sequenced. However, the functions of the proteins encoded by a large percentage 
of the genes in these organisms have not been determined. The immediate challenge of the 
post-genomic biology is to determine the biological functions of proteins coded for by those 
unknown genes. Many endogenous proteins occur in extremely low abundance (such as the 
anti-inflammatory protein tristetraprolin, TTP) (Cao et al., 2004) and are labile (such as 
omega-3 fatty-acid desaturase, FAD3) (O'Quin et al., 2010), which are major problems 
inherent to characterization of those proteins.  
Recombinant proteins can be used as an alternative source to endogenous proteins. 
Production of active proteins in large quantities is necessary for the study of protein 
structure and function (Cao et al., 2003). Purified recombinant proteins are also important 
for the production of antibodies (Cao 2004; Cao et al., 2008; Cao et al., 2004) and 
pharmaceutical reagents. Unfortunately, a great number of proteins are difficult to express 
and purify. Those proteins include membrane proteins, lipid-associated proteins, and low-
abundance proteins. The causes of the difficulties in protein expression and purification are 
various,  among which are protein insolubility, protein degradation, and low-level protein 
expression (Cao 2010). Therefore, production of high-quality recombinant proteins requires 
optimization of protein expression and purification procedures in each case. 
Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of 
triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been isolated 
from many organisms. At least two forms of DGATs are present in mammals (Cases et al., 
1998; Cases et al., 2001) and plants (Lardizabal et al., 2001; Shockey et al., 2006) with 
additional forms reported in burning bush (Euonymus alatus) (Durrett et al., 2010), peanut 
(Saha et al., 2006), and Arabidopsis (Rani et al., 2010). Plants and animals deficient in DGATs 
accumulate less TAG (Smith et al., 2000; Stone et al., 2004; Zou et al., 1999). Animals with 
reduced DGAT activity are resistant to diet-induced obesity (Chen et al., 2004; Smith et al., 
2000) and lack milk production (Smith et al., 2000). Over-expression of DGAT enzymes 
increases TAG content in plants (Andrianov et al., 2010; Bouvier-Nave et al., 2000; Burgal et 
al., 2008; Durrett et al., 2010; Jako et al., 2001; Lardizabal et al., 2008; Xu et al., 2008), animals 
(Kamisaka et al., 2010; Liu et al., 2009; Liu et al., 2007; Roorda et al., 2005), and yeast 
(Kamisaka et al., 2007). DGATs have nonredundant functions in TAG biosynthesis in species 
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such as mice (Stone et al., 2004) and tung tree (Vernicia fordii) (Shockey et al., 2006). Mice 
deficient in DGAT1 are viable, have modest decreases in TAG, and are resistant to diet-
induced obesity (Chen et al., 2002; Smith et al., 2000). In contrast, mice deficient in DGAT2 
have severe reduction of TAG and die shortly after birth (Stone et al., 2004). The fact that 
DGAT1 is unable to compensate for the deficiency in DGAT2 indicates the nonredundant 
functions of each DGAT isoform in TAG biosynthesis during animal development. 
Therefore, understanding the roles of DGATs in plants and animals will have tremendous 
implications in creating new oilseed crops with value-added properties and in providing 
clues for therapeutic intervention in obesity and related diseases. 
Over-production of DGATs has been the subject of a number of studies, but progress has 

been slow in the characterization of the enzymes because DGATs are integral membrane 

proteins (Shockey et al., 2006; Stone et al., 2006) and difficult to express and purify (Cheng et 

al., 2001; Weselake et al., 2006). Information regarding the expression of DGAT genes in E. 

coli is limited. The expression of DGAT1 and DGAT2 as full-length proteins in E. coli had not 

been reported. We recently developed a reliable procedure for the expression and 

purification of tung DGATs in E. coli (Cao et al., 2010; Cao et al., 2011). 

2. Bioengineering recombinant diacylglycerol acyltransferases 

2.1 DGAT genes have been identified in a wide range of organisms 
Database search identified at least 115 DGAT sequences from 69 organisms including plants 

(such as Arabidopsis, barley, caster bean, cauliflower, corn, rape, rice, sorghum, soybean, 

tobacco, tung tree), animals (such as bird, chimpanzee, cow, dog, fish, fly, frog, monkey, 

mosquito, mouse, pig, rabbit, rat, sheep, worm), fungi (such as yeast), and human. The 

names of organisms, the subfamilies of DGATs (DGAT1 and DGAT2) and the GenBank 

accession numbers are listed in Table 1. Although more than two isoforms of DGATs are 

found in some species, most of them could be classified into the DGAT1 or DGAT2 

subfamily according to their sequence similarities and phylogenetic analysis (data not 

shown). However, DGAT3 (Saha et al., 2006) and DGAT4 (Rani et al., 2010) were reported 

recently which have very different sequences with those of DGAT1 and DGAT2. DGAT1 

and DGAT2 subfamilies have many conserved residues among the diverse species. 

However, addition of DGAT3 and DGAT4 from Arabidopsis (GenBank accession number: 

AAN31909.1), caster bean (GenBank accession number: XP_002519339.1), peanut (GenBank 

accession number: AY875644.1), and yeast (GenBank accession number: DG315417.1) to the 

multiple sequence alignment completely destroyed all the conserved residues (data not 

shown), which is contrary to the general belief that the active sites of the enzymes should 

have certain degree of conservation during the evolution because all are supposed to 

catalyze the same/similar biochemical reaction. 

 
No. Organism DGAT GenBank 

accession 
number 

No. Organism DGAT GenBank 
accession 
number 

1 Aedes aegypti (A) 1 XP_001658299 59 Medicago 
truncatula (P) 

2 ACJ84867.1 

2 Ajellomyces 
capsulatus (F) 

1 EGC41804.1 60 Nicotiana 
tabacum (P, 
tobacco) 

1 AAF19345.1  
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3 Anolis 
carolinensis (A) 

2 XP_003225477
.1 

61 Nematostella 
vectensis (A, 
worm) 

2a XP_0016304
35.1 

4 Ashbya gossypii
(F) 

2 NP_983542.1 62 Nematostella 
vectensis (A, 
worm) 

2b XP_0016333
22.1 

5 Arthroderma otae
(F) 

1 EEQ31683.1 63 Nematostella 
vectensis (A, 
worm) 

2c XP_0016355
48.1 

6 Arabidopsis 
thaliana (P) 

1 NP_179535.1 64 Ovis aries (A, 
sheep) 

1 NP_0011036
34.1 

7 Arabidopsis 
thaliana (P) 

2 NP_566952 65 Ovis aries (A, 
sheep) 

2 XP_0015188
99.1 

8 Bubalus bubalis
(A, buffalo) 

1 AAZ22403.1 66 Oryctolagus 
cuniculus (A, 
rabbit) 

1 XP_0027244
27.1 

9 Brassica juncea
(P) 

1a AAY40784.1 67 Olea europaea
(P, tree) 

1 AAS01606.1 

10 Brassica juncea
(P) 

1b AAY40785.1 68 Olea europaea
(P, tree) 

2 ADG22608.1 

11 Brassica napus
(P) 

1a AAD45536.1 69 Oryza sativa
(P, rice) 

1 NP_0010548
69.2 

12 Brassica napus
(P) 

1b AAD40881.1 70 Oryza sativa
(P, rice) 

2a NP_0010479
17 

13 Brassica napus
(P) 

2 ACO90187 71 Oryza sativa
(P, rice) 

2b NP_0010575
30 

14 Brassica napus
(P) 

2 ACO90188 72 Ostreococcus 
tauri (algae) 

2 XP_0030835
39.1 

15 Bos taurus (A, 
cow) 

1 NP_777118.2 73 Pongo abelii
(A) 

2 XP_0028223
04.1 

16 Bos taurus (A, 
cow) 

2a DAA21853.1 74 Paracoccidioides 
brasiliensis (F) 

1 EEH17170.1 

17 Bos taurus (A, 
cow) 

2b XP_875499.3 75 Perilla 
frutescens (P) 

1 AAG23696.1 

18 Bos taurus (A, 
cow) 

2c XP_002683800
.1 

76 Polysphondyliu
m pallidum (F) 

1 EFA85004.1 

19 Caenorhabditis 
elegans (A, 
worm) 

2a NP_505413.1 77 Polysphondyliu
m pallidum (F) 

2 EFA83646.1 

20 Caenorhabditis 
elegans (A, 
worm) 

2b NP_872180.1 78 Physcomitrella 
patens (P, 
moss) 

1 XP_0017709
29.1 

21 Canis familiaris
(A, dog) 

1b XP_849176.1 79 Physcomitrella 
patens (P, 
moss) 

1 XP_0017587
58.1 

22 Canis familiaris
(A, dog) 

1c XP_858062.1 80 Physcomitrella 
patens (P, 
moss) 

2b XP_0017777
26.1 

23 Capra hircus (A, 
sheep) 

1 ABD59375.1 81 Picea sitchensis
(P, tree) 

2 ABK26256.1 
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24 Ciona intestinalis
(A) 

2 XP_002120879
.1 

82 Pan troglodytes
(A, 
chimpanzee) 

1 XP_520014.2 

25 Chlamydomonas 
reinhardtii 
(algae) 

2a XP_001694904
.1 

83 Pan troglodytes
(A, 
chimpanzee) 

2 XP_527842.2 

26 Chlamydomonas 
reinhardtii 
(algae) 

2b XP_001693189
.1 

84 Phaeodactylum 
tricornutum (F) 

1 XP_0021777
53.1 

27 Chlorella 
variabilis (algae) 

1 EFN50697.1 85 Populus 
trichocarpa (P, 
tree) 

1a XP_0023082
78.1 

28 Chlorella 
variabilis (algae) 

2 EFN51306.1 86 Populus 
trichocarpa (P, 
tree) 

1b XP_0023305
10.1 

29 Dictyostelium 
discoideum 
(mold) 

1 XP_645633.2 87 Populus 
trichocarpa (P, 
tree) 

2 XP_0023176
35.1 

30 Dictyostelium 
discoideum 
(mold) 

2 XP_635762.1 88 Ricinus 
communis (P, 
castor bean) 

1 XP_0025141
32.1 

31 Drosophila 
melanogaster (A, 
fly) 

1a NP_609813.1 89 Ricinus 
communis (P, 
castor bean) 

1 XP_0025285
31.1 

32 Drosophila 
melanogaster (A, 
fly) 

1d NP_995724.1 90 Rattus 
norvegicus (A, 
rat) 

1 NP_445889.1  

33 Danio rerio (A, 
zebrafish) 

1a NP_956024.1 91 Rattus 
norvegicus (A, 
rat) 

2 NP_0010123
45.1 

34 Danio rerio ( A, 
zebrafish) 

1b NP_00100245
8.1 

92 Sorghum 
bicolor (P, 
sorghum) 

1a XP_0024371
65.1 

35 Danio rerio (A, 
zebrafish) 

2 NP_00102536
7.1 

93 Sorghum 
bicolor (P, 
sorghum) 

1b XP_0024394
19.1 

36 Euonymus alatus
(P) 

1 AAV31083.1 94 Sorghum 
bicolor (P, 
sorghum) 

2 XP_0024526
52.1 

37 Euonymus alatus
(P) 

2 ADF57328.1 95 Saccharomyces 
cerevisiae (F, 
yeast)  

2 NP_014888.1 

38 Elaeis oleifera (P) 2 ACO35365.1 96 Saccoglossus 
kowalevskii (A, 
worm) 

1 XP_0027361
60.1 

39 Echium pitardii 
(P) 

1 ACO55635.1 97 Selaginella 
moellendorffii 
(P) 

1 XP_0029641
65.1 

40 Glycine max (P, 
soybean) 

1a AAS78662.1 98 Selaginella 
moellendorffii 
(P) 

2 XP_0029720
54.1 
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41 Glycine max (P, 
soybean) 

1b BAE93461.1 99 Spirodela 
polyrhiza (P) 

2 AAQ89590.1 

42 Glycine max (P, 
soybean) 

2 ACU20344.1 100 Schizosaccharo
myces pombe 
(F, yeast) 

2 XP_0017131
60.1 

43 Helianthus 
annuus (P) 

2 ABU50328.1 101 Sus scrofa (A, 
pig) 

1 NP_999216.1 

44 Homo sapiens
(human) 

1 NP_036211.2 102 Tribolium 
castaneum (A) 

1 XP_975142.1 

45 Homo sapiens
(human) 

2a AAQ88896.1 103 Tribolium 
castaneum (A) 

2 XP_975146.1 

46 Homo sapiens
(human) 

2b NP_835470.1 104 Toxoplasma 
gondii (A) 

1 AAP94209.1 

47 Hordeum vulgare
(P, barley) 

2 BAJ85730.1 105 Taeniopygia 
guttata (A, 
bird) 

2 XP_0021876
43.1 

48 Ictalurus 
punctatus (A, 
catfish) 

2b NP_00118800
5.1 

106 Tropaeolum 
majus (P) 

1 AAM03340.
2 

49 Jatropha curcas
(P) 

1 ABB84383.1 107 Vernicia fordii
(P, tung tree) 

1 DQ356680.1 

50 Lotus japonicas
(P) 

1 AAW51456.1 108 Vernicia fordii
(P, tung tree) 

2 DQ356682 

51 Metarhizium 
acridum (F) 

1a EFY86774.1 109 Vernonia 
galamensis (P) 

1 ABV21945.1 

52 Metarhizium 
anisopliae (F) 

1b EFY97444.1 110 Vernonia 
galamensis (P) 

2 ACV40232.1 

53 Monodelphis 
domestica (A) 

1 XP_001371565
.1 

111 Vitis vinifera
(P, grape) 

1 XP_0022793
45.1 

54 Monodelphis 
domestica (A) 

2 XP_001365685
.1 

112 Vitis vinifera
(P, grape) 

2 XP_0022636
26 

55 Mus musculus
(A, mouse) 

1 NP_034176.1 113 Xenopus 
tropicalis (A, 
frog) 

2 NP_989372.1  

56 Mus musculus
(A, mouse) 

2 NP_080660.1 114 Zea mays (P, 
corn) 

1b EU039830 

57 Macaca mulatta 
(A, monkey) 

1 XP_001090134
.1 

115 Zea mays (P, 
corn) 

2 NP_0011501
74.1 

58 Medicago 
truncatula (P) 

1 ABN09107.1     

Table 1. DGAT1 and DGAT2 sequence information (DGAT3 and DGAT4 are not included in 
the Table because of their divergent sequences). A: animal, F: fungus, P: plant. 

2.2 Literature survey of DGAT expression 
A literature survey was performed to find out how many publications related to DGATs 

have been collected by the two most popular databases, PubMed and Scopus. The data in 

Table 2 indicate that approximately 1000 papers had been collected by the two databases 

during the past 28 years when using DGAT and diacylglycerol acyltransferase as search 

terms in title/abstracts/keywords. Approximately four times of publications were obtained 

when using the full name of the enzyme “diacylglycerol acyltransferase” as a search term 
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instead of using the abbreviation “DGAT” in the database search. More than half of the 

publications were from animals and approximately one quarter of the publications were 

from plants. Less than half of those publications dealt with expression of DGATs at the RNA 

and protein levels. Some of the publications reported of using more than one organism in 

the same paper, resulting in the total number of publications less than the number of 

publications from plants, animals, and human adding together (Table 2). Similarly, the total 

expression papers are less than the combination because more than one expression methods 

were used in the same paper. Approximately 5% of the publications were related to 

heterologous expression. However, only a few papers were from E. coli expression system. 

 
Database PubMed PubMed Scopus Scopus 

Search terms in 
title/abstracts/keywords 

DGAT diacylglycerol 
acyltransferase 

DGAT diacylglycerol 
acyltransferase 

Total publications 216 817 255 1102 

Plant 57 118 60 137 

Human 74 203 72 316 

Animal 138 588 164 760 

     

Total expression papers 90 225 122 322 

Plant expression 31 50 34 62 

Human expression 31 85 42 131 

Animal expression 53 144 78 220 

     

E. coli expression 4 8 1 6 

Yeast expression 17 32 17 33 

Insect expression 5 12 7 15 

Table 2. Literature survey of publications related to DGAT expression in PubMed and 
Scopus databases (1982-2010). 

2.3 Recombinant DGAT expression update 
Expression and purification of recombinant DGATs from any source represents a challenge 
because DGATs are integral membrane proteins (Hobbs et al., 1999; Siloto et al., 2008; 
Weselake et al., 2006). In addition, more than 40% of the total amino acid residues are 
hydrophobic (Table 3). Yeast was the preferred host for DGAT expression (Bouvier-Nave et 
al., 2000; Burgal et al., 2008; Cao et al., 2010; He et al., 2004; Kalscheuer et al., 2004; 
Kalscheuer & Steinbuchel 2003; Kroon et al., 2006; Liu et al., 2011; Liu et al., 2010; Manas-
Fernandez et al., 2009; Mavraganis et al., 2010; Milcamps et al., 2005; Nykiforuk et al., 2002; 
Quittnat et al., 2004; Shockey et al., 2006; Siloto et al., 2009; Wagner et al., 2010; Xu et al., 
2008; Yu et al., 2008) followed by insect cells (Buszczak et al., 2002; Cases et al., 1998; Cases 
et al., 2001; Lardizabal et al., 2001). A limited number of reports used other host cells 
including E. coli (Saha et al., 2006; Siloto et al., 2008; Weselake et al., 2006) and human cells 
(Cheng et al., 2001). The great majority of the yeast and insect cell expression studies were 
designed to confirm the functions of full-length cloned genes. A few studies were directly 
related to the expression and purification of recombinant DGATs using E. coli expression 
system for functional and structural studies. The recombinant N-terminal region of Brassica 
napus DGAT1 was purified from E. coli with a predicted molecular mass of 13,278 Da which 
was confirmed by MALDI-TOF mass spectrometry. However, the apparent molecular mass 
on SDS-PAGE was doubled and the native size was four times of the size of the monomer 
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due to self-association (Weselake et al., 2006). The N-terminal region of mouse DGAT1 was 
also studied in a similar way (Siloto et al., 2008). Full-length DGAT1 or DGAT2 from any 
organism was, however, not successfully expressed in E. coli (Hobbs et al., 1999; Weselake et 
al., 2006). The exceptional case was that expression of soluble peanut DGAT (DGAT3) in E. 
coli resulted in high levels of DGAT activity and the formation of labeled TAG (Saha et al., 
2006), although its sequence is very different from those of DGAT1 or DGAT2. 
 

 Tung tree DGAT1 Tung tree DGAT2 DGAT1 – DGAT2 

Length (aa)  526 322 204 

Molecular weight  59773.84 36726.20 23047.64 

Isoelectric point (PI)  8.91 9.24 - 0.33 

Charge at pH 7  11.78 8.44 3.34 

Charged (RKHYCDE) (%)  27.00 23.60 3.40 

Acidic (DE) (%)  7.98 7.14 0.84 

Basic (KR) (%)  10.08 9.63 0.45 

Polar (NCQSTY) (%)  25.86 21.74 4.12 

Hydrophobic (AILFWV) 
(%)  

41.06 43.48 -2.42 

Table 3. Tung DGATs properties and amino acid composition. 

2.4 Bioengineering recombinant DGAT for expression in bacteria 
We recently described a procedure for over-expression of recombinant full-length DGAT1 
and DGAT2 in a bacterial expression system (Cao et al., 2010; Cao et al., 2011). DGAT1 is 
much larger than DGAT2, although they are similar in other properties and amino acid 
composition (on % of frequency basis) (Table 3). The two DGAT isoforms have only limited 
sequence identity and similarity (Figure 1). We were able to express both proteins in E. coli 
as full-length recombinant proteins. In our study, we engineered a maltose binding protein 
(MBP) tag at the amino terminus and  6 histidine residues (His-tag) at the carboxyl terminus 
of full-length tung DGATs (Table 4).  
 

Primer  Sequence (5’ to 3’)  Comments  

DGAT1 
forward  

AATATTGGTACCCTGTTTCAGGGTCC
GACAATCCTTGAAACGCCG  

KpnI site underlined 
Codons for PreScission protease site 
Colored  

DGAT1 
reverse 

CGATTAACTAGTAGCTAGCTCAATG
ATGATGATGATGATGTCTTGATTCGG
TAGTCCC  

SpeI site underlined 
Codons for 6 His Colored  

DGAT2 
forward  

AATATTGGTACCCTGTTTCAGGGTCC
GGGGATGGTGGAAGTTAAG  

KpnI site underlined 
Codons for PreScission protease site 
Colored  

DGAT2 
reverse 

CGATTAACTAGTAGCTAGCTCAATG
ATGATGATGATGATGAAAAATTTCA
AGTTTAAG  

SpeI site underlined 
Codons for 6 His Colored  

Table 4. Primers for PCR-amplification of the full-length DGAT1 and DGAT2 insert 
sequences. 
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We engineered plasmids pMBP-DGAT1-His and pMBP-DGAT2-His for expressing the full-
length tung tree type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2, 
GenBank Accession No. DQ356680 and DQ356682, respectively (Shockey et al., 2006) as 
fusion proteins in E. coli. The recombinant proteins contained MBP at the amino terminus 
and His-tag at the carboxyl terminus. The cloning vector pMBP-hTTP (Figure 2) was  
 

 

 

Fig. 1. Alignment of tung tree DGAT1 and DGAT2 amino acid sequences. 
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reported previously (Cao et al., 2003). Plasmids pMBP-DGAT1-His (Figure 3) and pMBP-
DGAT2-His (Figure 4) were constructed by replacing the hTTP fragment in plasmid pMBP-
hTTP (Figure 2) with the PCR-amplified DGAT1 and DGAT2 fragments at the KpnI and SpeI 
sites (Table 4). Existing DGAT plasmid DNAs were used as the templates for PCR-
amplification of the DGAT DNA open reading frames (Shockey et al., 2006). DGAT forward 
primers contained DNA sequence for a KpnI/Asp718I restriction enzyme recognition site 
followed by a PreScission protease cleavage site (5′-CTGTTTCAGGGTCCG-3′) (Cao et al., 
2003) which codes for 5 amino acid residues (LFQGP) between MBP and DGAT protein 
sequences (Table 4). DGAT reverse primers contained sequence for a His-tag (5′-
ATGATGATGATGATGATG-3′) coding for 6 histidine residues at the carboxyl terminus of 
DGATs (Table 4). 
The successful expression of full-length recombinant DGATs was probably due to the fusion 
to MBP, which was shown to increase the solubility of target proteins such as human and 
mouse TTP (Cao et al., 2003; Cao et al., 2008; Kapust & Waugh 1999). Although we 
engineered double affinity tags for facilitating purification of recombinant DGAT from E. 
coli, recombinant DGATs were only partially purified from the extract by either type of 
affinity beads [amylose resin and nickel-nitrilotriacetic agarose (Ni-NTA) beads] or both 
kinds of beads in tandem. Our data, together with the various published reports cited in the 
previous section, underline the tremendous challenges that exist for the purification of 
recombinant full-length DGAT proteins. 
 

 

Fig. 2. Plasmid map of E. coli expression vector pMBP-hTTP. 
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Fig. 3. Plasmid map of E. coli expression vector pMBP-DGAT1-His. 

3. Conclusion 

Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of 
triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 115 DGAT sequences 
are identified from 69 organisms in the GenBank databases. Only a few papers have been 
published in the last 28 years on the expression of the recombinant DGAT proteins in a 
bacterial expression system. None of the full-length DGAT1 or DGAT2 had been expressed 
in E. coli expression system. The difficulties in DGAT expression and purification are due to 
the nature of these proteins being integral membrane proteins with more than 40% of the 
total amino acid residues being hydrophobic. Therefore, progress in characterization of the 
enzymes has been slow. We recently developed a procedure for full-length DGAT 
expression in E. coli. Expression plasmids were engineered to express tung DGATs fused to 
maltose binding protein and poly-histidine. The development of the technique should help 
to purify full-length DGATs for further studies such as raising high-titer antibodies and 
studying the structure-function relationship. Understanding the roles of DGATs in plant oil 
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Fig. 4. Plasmid map of E. coli expression vector pMBP-DGAT2-His. 

biosynthesis will help to create new oilseed crops with value-added properties. The 
elucidation of the precise roles of DGATs in animal and human fat synthesis and deposition 
may provide clues for nutritional and therapeutic intervention in obesity and related 
diseases. 

4. Abbreviations 

DGAT, diacylglycerol acyltransferase; FAD3, omega-3 fatty-acid desaturase; His, poly 
histidine; MBP, maltose binding protein; Ni-NTA, nickel-nitrilotriacetic agarose; TAG, 
triacylglycerol; TTP; tristetraprolin. 
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