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1. Introduction 

Dynamic models of many processes in the physical and biological sciences give rise to 
systems of differential equations called compartmental systems. These assume that state 
variables are continuous and describe the movement of material from compartment to 
compartment as continuous flows. Together with the mass balance requirements of 
compartmental systems, these assumptions lead to highly constrained systems of ordinary 
differential equations, which satisfy certain physical and/or physiological constraints. In 
this chapter we deal with equivalent structures represented using systems of differential 
equations of fractional order, that is fractional compartmental systems. The calculus of 
fractional integrals and derivatives is almost as old as calculus itself going back as early as 
1695, to a correspondence between Gottfried von Leibnitz and Guillaume de l’Hôpital. Until 
a few decades ago, however, expressions involving fractional derivatives, integrals and 
differential equations were mostly restricted to the realm of mathematics. The first modern 
examples of applications can be found in the classic papers by Caputo (Caputo) and Caputo 
and Mainardi (Caputo and Mainardi) (dealing with the modeling of viscoelastic materials), 
but it is only in recent years that it has turned out that many phenomena can be described 
successfully by models using fractional calculus. In physics fractional derivatives and 
integrals have been applied to fractional modifications of the commonly used diffusion and 
Fokker–Planck equations, to describe sub-diffusive (slower relaxation) processes as well as 
super-diffusion (Sokolov, Klafter et al.). Other examples are of applications are in diffusion 
processes (Oldham and Spanier), signal processing (Marks and Hall), diffusion problems 
(Olmstead and Handelsman). More recent applications are in mainly in physics: finite 
element implementation of viscoelastic models (Chern), mechanical systems subject to 
damping (Gaul, Klein et al.), relaxation and reaction kinetics of polymers (Glockle and 
Nonnenmacher), so-called ultraslow processes (Gorenflo and Rutman), relaxation in filled 
polymer networks (Metzler, Schick et al.), viscoelastic materials (Bagley and Torvik), 
although there are recent applications in splines and wavelets (Unser and Blu ; Forster, Blu 
et al.), control theory (Podlubny ; Xin and Fawang), and biology (El-Sayed, Rida et al.) 
(bacterial chemotaxis), pharmacokinetics (Dokoumetzidis and Macheras ; Popovic, 
Atanackovic et al. ; Verotta), and pharmacodynamics (Verotta). Surveys with collections of 
applications can also be found in Matignon and Montseny , Nonnenmacher and Metzler 
(Nonnenmacher and Metzler), and Podlubny (Podlubny). A brief history of the 
development of fractional calculus can be found in Miller and Ross (Miller and Ross). 
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In this chapter we discuss and show results related to a number of issues related to the 

definition and use of fractional differential equations to define compartmental systems, in 

particular we: (1) review ordinary compartmental systems, (2) review fractional calculus, 

with particular regard to the mathematical objects needed to deal with fractional differential 

equations ;(3) define commensurate fractional differential equation (linear kinetics) 

compartmental models; (4) discuss and describe the conditions that allow the formulation of 

non-commensurate fractional differential equations to represent compartmental systems; (5) 

show relatively simple analytical solutions (based on the use of Mittag-Leffler functions) for 

the input-output response functions corresponding to commensurate and non-

commensurate fractional (linear kinetics) compartmental models; (6) demonstrate the use of 

non-linear regression to estimate the parameters of fractional kinetics compartmental 

models from data available from (simulated) experiments; (7) describe general formulations 

for fractional order non-linear kinetics compartmental models. 

2. Compartmental models 

A compartment is fundamentally an idealized store of a substance. If a substance is present 
in a biological system in several forms or locations, then all the substance in a particular 
form or all the substance in a particular location, or all the substance in a particular form 
and location are said to constitute a compartment. Thus, for instance, erythrocytes, white 
blood cells, and platelets blood, can each be considered as a compartment. The function of 
the compartment as a store can be described by mass balance equations. The general form of 

the mass balance equation for a compartment is as follows. If 
i
x  is the quantity of substance 

in compartment i that interchanges matter with other compartments constituting its 
environment, then the mass balance takes the form 

 
ij ji
R R−   (1) 

where 
ij
R  represents the summation of the rates of mass transfer into i from relevant 

compartments or the external environment, and 
ji
R−  the summation of the rates of mass 

transfer from i to other compartments of the system or into the environment. The transfer of 

material between compartments takes place either by physical transport from one location 

to another or by chemical reactions. The treatment of a compartment as a single store is an 

idealization, since a compartment is a complex entity. For example, the concentration of 

erythrocytes in blood is generally not uniform and one could devise detailed models to 

describe their distribution. However, in general a compartment is characterized by the 

idealized average concentration in a compartment. In the rate of mass transfer to other 

compartments is thus generally of the form 

 ( )
ij ij j
R R x=  (2) 

where 
j
x  is the quantity of substance in compartment j. Mathematically, the process of 

aggregation involved in a lumped representation leads to ordinary differential equations as 

opposed to the partial differential equations that would be required to describe distributed 

effects. In the formulation of a model of chemical and material transfer processes in a 

biological system, the system is first divided into (n) relevant and convenient compartments. 
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The mathematical model then consists of mass balance equations for each compartment and 

relations describing the rate of material transfer between compartments. The general form of 

equation defining the dynamics of the i-th compartment is given by 

 .
1 1

( ) ( ) ( )
n n

i

io ij j ji i oi i

j j
j i j i

dx
R R x R x R x

dt = =
≠ ≠

= + − +   (3) 

where now 
oi
R indicates the flux of material from compartment i into the external 

environment, and ioR the flux of material into compartment i from external environment. 

The second stage requires specifying the functional dependences of each flux, which may be 

linear or nonlinear. Two commonly occurring types of functional dependence are the linear 

dependence and the threshold/saturation dependence, which includes the Michaelis-

Menten form and the Hill equation sigmoid form. The linear and Michaelis-Menten 

dependences can be described mathematically in the form 

 
ij ij j
R k x=  (4) 

where.
ij
k  is a constant defining the fractional rate of transfer of material into compartment i 

from compartment j, and  

 ij j

ij

ij j

a x
R

b x
=

+
 (5) 

where 
ij
a  is the saturation value of flux 

ij
R  and 

ij
b  is the value of 

j
x  at which

ij
R  is equal to 

half its maximal value. In many instances, the adoption of a linear time- invariant dynamic 

model for a metabolic system is adequate, at least within certain ranges of exogenous inputs 

and endogenous production rates. For a linear compartmental linear the state variables, 
j
x , 

appear in linear combinations only, and as a consequence the superposition theorem 

applies: the total response to several inputs is the sum of the responses to the individual 

inputs. In particular a linear (time-invariant) compartmental model can be written as  

 

1 11 1 1 1

1

( ) ... ( ) ( )

... ... ... ... ... ... ( ) ( )

( ) ... ( ) ( )

( ) ( )

m

m m mm m m

x t k k x t f t
d

t t
dt

x t k k x t f t

t t

      
      

= + = +      
      
      

=

Ax f

Y Bx

 (6) 

with initial conditions 
0

(0) =x x , where now ( )tf  is the (vector valued) input function to the 

system, and ( )tY  is the output equation, a linear combination of the variables x(t), where B 

is an appropriately dimensioned matrix. The (rate) constants in equation (6) satisfy: 

 

1

0,       i j

0

ij

ii

m

ii ji

j
j i

k

k

k k
=
≠

≥ ≠

≤

≥

 (7) 
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where 
0

m

ii ji

j
j i

k k
=
≠

= − , which guarantee that all states are non-negative (for non-negative inputs 

( )tf ). 

3. Fractional integrals and derivatives 

Mathematical modelers dealing with dynamical systems are very familiar with derivatives 

of integer order, 
m

m

d y

dx
, and their inverse operation, integrations, but they are generally 

much less so with fractional-order derivatives, for example 

1

3

1

3

d y

dx

. One way to formally 

introduce fractional derivatives proceeds from the repeated differentiation of an integral 
power:  

 
!

( )!

m

p p m

m

d p
x x

dx p m

−=
−

 (8) 

For an arbitrary power p, repeated differentiation gives 

 
( )1

( 1)!

m

m

m

d
x x

dx m

δ δ
δ

δ
−

Γ +
=

Γ − +
 (9) 

with gamma functions replacing the factorials. The gamma functions allow for a 

generalization to an arbitrary order of differentiation α ,  

 
( )

( 1)!

d
x x

dx

α
δ δ α

α

δ

δ α
−

Γ
=

Γ − +
 (10) 

The extension defined by equation (10) corresponds to the Riemann–Liouville derivative. 
(Oldham and Spanier ; Miller and Ross). 
A more elegant and general way to introduce fractional derivatives uses the fact that the m-
th derivative is an operation inverse to m-fold repeated integration. Basic to the definition is 
the integral identity 

 ( ) ( )
1

1

1 1 1
... ( )

( 1)!

mx y y x

m m
a a a a

m
f y dy dy x y f y dy

m

−−
= −

−     (11) 

Clearly, the equality is satisfied at x=a, and it is not difficult to see iteratively that the 
derivatives of both sides of the equality are equal. A generalization of the expression allows 
the definition of a fractional integral (FI) of arbitrary order via 

 
( )

( )
11

( ) ( )
x

a
a

J f x x y f y dy
α

α

α

−

= −
Γ  . (12) 

where again the gamma function is replacing the factorial. In this paper we are concerned 
with fractional time derivatives, and we take the lower limit in equation (12) to be zero. For 
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this reason in the following we will drop the subscript a in the definition of the operators we 
consider, and use t, instead of x, to indicate the independent variable time. Starting from 
equation (12), one can construct several definitions for fractional differentiation. The 

fractional differential operator Dα

  is defined by  

 ( ) ( )
def

m mD f t J D f tαα −=  (13) 

where m is the smallest integer greater than α ,
m

m

m

d
D

dx
=  (m  integer) is the classical 

differential operator, and f(t) is required to be continuous and α -times differentiable in t. 

The operator Dα

  is named after Caputo (Caputo), who was among the first to use it in 

applications and to study some of its properties. It can be shown that the Caputo differential 
operator is a linear operator, i.e. that for arbitrary constants a and b,  

 ( )( ) ( ) ( ) ( )D af t bg t aD f t bD g t
α α α

+ = +    (14) 

that it commutes: 

 ( ) ( )D D f t D D f t
α β β α

=     (15) 

and that it possesses the desirable property that: 

 0D c
α

=  (16) 

for any constant c. 

Having defined D
α
 , we can now turn to fractional differential equations (FDE), and 

systems of FDE. A FDE of the Caputo type has the form 

 ( ) ( , ( )),D t t t
α

=y f y  (17) 

where y(t) is a vector of dependent state variables, and f(t,y(t)) a, dimensionally conforming, 

vector valued function, satisfying a set of (possibly inhomogeneous) initial conditions 

 ( ) ( )
0

0 ,      k=0,1, ,m-1
kkD =y y   (18) 

It turns out that under some very weak conditions placed on the function f of the right-hand 

side of Eq. (17) , a unique solution to Eqs. (17) and (18) does exist (Diethelm and Ford). 

A typical feature of differential equations (both classical and fractional) is the need to specify 

additional conditions in order to produce a unique solution. For the case of Caputo 

fractional differential equations, these additional conditions are just the static initial 

conditions listed in (18) which are similar required by classical ordinary differential 

equations, and are therefore familiar. In contrast, for Riemann–Liouville fractional 

differential equations, these additional conditions constitute certain fractional derivatives 

(and/or integrals) of the unknown solution at the initial point t=0 (Kilbas and Trujillo), 

which are functions of t. These initial conditions are not physical; furthermore, it is not clear 

how such quantities are to be measured from experiment, say, so that they can be 
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appropriately assigned in an analysis (Miller and Ross). If for no other reason, the need to 

solve fractional differential equations is justification enough for choosing Caputo’s 

definition for fractional differentiation over the more commonly used (at least in 

mathematical analysis) definition of Liouville and Riemann, and this is the operator that we 

choose to use in the following. 

3.1 Mittag-Leffler functions 

Mittag-Leffler functions are generalizations of the exponential function (Erdélyi, Magnus et 

al.). The solutions of fractional order linear differential equations are often expressed in 

terms of Mittag-Leffler functions in similar way that the solutions of integer order linear 

differential equations are expressed in terms of the exponential function. The single 

parameter Mittag-Leffler function takes the form: 

 ( )
( )0 1

i

i

z
E z

i
α

α

∞

=

=
Γ +

  (19) 

while the two-parameters Mittag-Leffler function is: 

 ( )
( ),

0

i

i

z
E z

i
α β

α β

∞

=

=
Γ +

  (20) 

The relationship with the exponential function is made clear by the relationships: 

 
( )

( )1

0 0! 1

i i

z

i i

z z
e E z

i i

∞ ∞

= =

= = =
Γ +

   (21) 

The Laplace transform of the Mittag-Leffler functions are given by: 

 ( ){ }
( )

1 ( )

, 1

!k k

k

k s
L t E t

s

α β
α β α

α β λ
λ

−

+ −

+
− =

+
 (22) 

where ( ) ( )( )

, ,

k

k

k

d
E z E z

dz
α β α β= . 

The solutions of fractional order linear differential equations are often expressed in terms of 

Mittag-Leffler functions in similar way that the solutions of integer order linear differential 

equations are expressed in terms of the exponential function. As shown in, e.g., (Bonilla, 

Rivero et al. ; Odibat) sums of Mittag-Leffler acquire a prominent role in the solutions of 

systems of fractional order differential equations, and, as we will see, compartmental 

models.  

In the following to evaluate the single and two-parameters Mittag-Leffler function we 

implemented a FORTRAN 90 version the algorithm reported in (Gorenflo, Loutchko et al.).  

Contrary to α , which has a strong influence on the overall shape of the curve for the case of 

the single parameter Mittag-Leffler function, the parameter β  for has its most pronounced 

influence on the value of the function at t = 0.  

The Mittag-Leffler function of the form ( )E tα λ−  is non-negative and strictly non-increasing 

for 0λ > , 0 1α< < , t > 0 (Podlubny), while for the function of the form ( ),
E t β

α β λ−  this is 
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not the case, as it can be seen in Figure 1 for 1λ = . However, a remarkable property, 

especially in view of the following applications to system of fractional order differential 

equations, is that the function: 

 ( )1

,
t E tβ β

α β λ− −  (23) 

is non-negative and strictly non-increasing when 0λ > , 0 1α< < , 0 1α β< ≤ ≤  (Gorenflo 

and Mainardi). 

Figure 1. shows the Mittag-Leffler function corresponding to choice of parameters α and β  

reported in (Diethelm, Ford et al.): 
 

 

Fig. 1. The Mittag-Leffler function for 1α =  and different values of .β  

4. Commensurate fractional order linear compartmental models 

Commensurate fractional order linear systems are described by a system of linear fractional 
differential equations (FDE) of the form (Bonilla, Rivero et al.): 

 

1 11 1

1

0

( ) ...

( ) ... ... ... ... ( )

( ) ...

(0)

m

m m mm

D x t k k

D t t

D x t k k

α

α

α

   
   

= =   
     

=

x x

x x






 (24) 

where now Dα

  indicates the Caputo fractional differential operator in respect to time 

( 1 ( ) ( ) /D t d t dt=x x ) (Caputo). These systems are called commensurate because all the 

differential equations are of the same fractional order, α , obtained, for 0 1α< ≤ , exactly as 

for a standard (ODE) compartmental system.  
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To construct the solution of the system (24) (see e.g. (Bonilla, Rivero et al. ; Odibat)), we 
apply the Laplace transform to both sides of the system, to obtain 

 

1

1 1 11 1 1

1

1

( ) (0) ... ( )

... ... ... ... ...

( ) (0) ... ( )

m

m m m mm m

s x s s x k k x s

s x s s x k k x s

α α

α α

−

−

 −   
    

=    
   −    

 (25) 

from which it follows that  

 
( )
( )

det ( )
( ) ,  1,...,

det ( )

j

j

B s
x s j m

B s
= =  (26) 

where 

 
11 1

1

...
( )

... ... ...

...

m

m mm

k s k
B s

k k s

α

α

 
− 

=  
 
 − 

 (27) 

and ( )
j
B s  is the matrix formed by replacing the j-th column of ( )B s  by the column 

( )1 1

1
(0),..., (0)

T

m
s x s xα α− − ( )1 1

1
(0),..., (0)

T

m
s x s xα α− − ; ( )1/det ( )B s α is a polynomial of degree m, that 

can be rewritten as ( )1/

1

1det ( ) ( ) ...( )
qq

l

lB s s sα λ λ= − − ; from equation (25) ( )det ( )
j
B sα  can be 

rewritten as ( )1

1 1
( ) (0) ... ( ) (0)j j

m m
s P s x P s xα − +  where 1/

1
( )jP s α  is a polynomial of order m-1. Thus, 

we obtain 

 
( )1

1 1

1

1

( ) (0) ... ( ) (0)
( )

( ) ...( )

j j

m m

j qq

l

l

s P s x P s x
x s

s s

α

α αλ λ

− +
=

− −
 (28) 

If we now apply a partial fraction decomposition to the j-th term of equation (28), we obtain: 

 1 1

1 11 1

1

1 1

( )
...

( ) ...( ) ( ) ( )

j kj kjqq

i il

q qq q
k kl l

m

l l

P s M M

s s s sα α α αλ λ λ λ= =

= + +
− − − −

   (29) 

Thus we can write: 

 11

1 1 11

1

1
( ) ...  (0)

( ) ( )

kj kjqqm

i il

j iqq
i k k l

m

l

M M
x s s x

s s

α

α αλ λ
−

= = =

 
= + +  − − 
    (30) 

Applying the inverse Laplace transform to equation (30) and taking into account the Laplace 
trasfrom , we obtain the desired solution as a sum of single parameter Mittag-Leffner 
functions: 

 
1 1

1 1 1

1

( ) ( ) ... ( )  (0)
qqm

kj kj

j i il l i

i k k

m

x t M E t M E t xα α

α αλ λ
= = =

 
= − + + − 

 
    (31) 

The solution to the initial value problem given by system of fractional order differential 
equations (24) represents the entire state of the system at any given time, is unique (as 
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remarked by (Odibat) for the case of a linear system), and is continuous since it is a sum of 
continuous functions. 

If the solution equation (34) is indicated by ( )1
( ),..., ( )

T

n
h t h t , then the initial value problem for 

the commensurate fractional order compartmental system, 

 
0

( ) ( ) ( )

(0)

D t t tα = +

=

x Ax f

x x

  (32) 

has the solution: 

 
0

( ) ( ) ( ) ( )
t

t t t dτ τ τ= + −x h h f  (33) 

Note that direct differentiation of terms of the form ( )( )t E tαα λ=x u , substitution in equation 

(24), followed by removing the non-zero term ( )E tαα λ  on both sides of the equation, and 

rearranging yields, ( ) 0λ − =u I A , where I  is the m × m identity matrix. Therefore, 

( )( )t E tαα λ=x u  is a solution of the system provided that λ is an eigenvalue and u an 

associated eigenvector of the characteristic equation associated with the matrix A, that is 

 (1) (2) ( )

1 1 1 2 2 2
( ) ( ) ( ) ... ( )m

m m m
t b E t b E t b E tα α α

α α αλ λ λ= + + +x u u u  (34) 

where b1, b2, … , bm are arbitrary constants, λ 1, λ 2, … , λ m and u1
( 1) ,u2

(2 ) ,...,um
(m)

are the 

eigenvalues and eigenvectors of the characteristic equation for (24).  
It is interesting, because of its wide range of applications, to consider the case when the 
eigenvalues of the characteristic equation are real and distinct. When this property holds the 
solution to equation (32) for a unit impulse input of a substance given in the j-th 
compartment and observations taken in the same compartment, takes the form: 

 
1 1 2 2

( ) ( ) ( ) ... ( )
jj m m
h t E t E t E tα α α

α α αθ λ θ λ θ λ= + + +  (35) 

where now ( )
jj
h t , with slight abuse of notation, is the unit-input response functions of 

compartment j for input in j. Equation (35) establishes a direct connection with the familiar 

multi-exponential response function corresponding to ordinary multi-compartment linear 

systems with distinct eigenvalues: 

 
1 2

1 2( ) ...
tt t

jj m

mh t e e e
λλ λθ θ θ= + + +  (36) 

In both cases the parameters 
1

θ ,…, 
m

θ , 
1
,...,

m
λ λ and α can be estimated from available 

input-output data, therefore effectively identifying the unit-impulse response corresponding 

to a m-order compartmental model that can be used to, e.g., predict the responses to 

arbitrary inputs making use of relationship (33) (Jacquez). 

We now give an example of a possible use of fractional compartmental models to 

approximate data obtained from a system of unknown structure. To do so we generated 

error corrupted data using an eight compartments mammillary system based on the drug 

thiopental distribution in rats (Stanski, Hudson et al. ; Verotta, Sheiner et al.). The rate 

constants from the central compartment (blood) to the 7 peripheral compartments are: 
1j
k = 

1.80, 0.116, 0.126, 0.171, 2.43, 0.275, and 0.348 1(min )− , for j=2,…,8, respectively; the rate 
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constants from the peripheral compartment to central are 
1j
k = 0.559, 0.172, 0.117, 0.0975, 

4.84, 0.411, and 0.0499 1(min )− , for j=2,…,8, respectively; the exit rate from the elimination 

compartment (liver) is 
02
k = 0.0258 1(min )− , and the volume of the central compartment (for a 

365 grams rat) is 9.89 (ml).  

Figure 2 shows the fit of models equation (35) (solid line), and (36) (dashed line) with m=2, 

to the simulated data (open circles) obtained adding a proportional normally distribute 

error (according to a constant plus proportional error model). The parameters 

1 2 1 2
, , , ,θ θ λ λ α are estimated from the data, with the constraints 

1 2
, 0θ θ > ,

1 2
, 0λ λ <  , and 

0 1α< ≤ , which guarantee that equation (35) (and (36)) is non-negative and non-increasing 

(strictly monotone) for 0t ≥ .  
 

 

Fig. 2. The fit of the response function corresponding to integer (solid line) and 
commensurate fractional order (dashed line) two compartments system (dashed line) to 
simulated data (open circles). The data are generated using an eight compartments integer 
order mammillary system. 

Note the added flexibility introduced by use of a sum Mittag-Leffler functions in respect to 
exponentials: the values of minus twice log-likelihood for the fit of the simulated data were -
668.45, and -731.43, for models (35)-(36), respectively, a drop in the objective function that is 
highly significant according to, e.g. the Akaike criterion (Akaike). (We remark that this is an 
example provided to show the added flexibility introduced by the use of fractional differential 
equations: for this simulation, a sum of exponentials would fit the simulated data perfectly 
well when the number of exponential terms in the fitted response function is increased.) 

5. Non-commensurate fractional order linear compartmental systems 

In a non-commensurate fractional order linear system (Bonilla, Rivero et al.), the fractional 

order for each equation of the system are distinct (real positive) numbers (
1
, ,

m
α α ). To 
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obtain a non-commensurate compartmental system it would appear that all is required is to 

allow for a distinct fractional orders of differentiation in equations (24), to obtain the system 

of fractional differential equations: 

 

1 11 1

1

0

1 ( ) ...

... ... ... ... ( )

( ) ...

(0)

m

m m mm

m

D x t k k

t

D x t k k

α

α

   
   

=   
     

=

x

x x




 (37) 

where 0 1, 1,...,
i

i mα< ≤ = . Note however that now the flux of mass from the j-th to the i-th 

compartment,
ij
R , appears inconsistently, since it is defined as am outgoing flux of fractional 

order 
j

α  in the j-th differential equation, and appears as an incoming flux into compartment 

i as a rate of fractional order 
i j

α α≠ . (As a consequence the equations in (37) do not 

necessarily satisfy mass-balance, even if the matrix A would guarantee mass balance in 

equation (24)). (The dimensions of the rate constants are also inconsistent in equation (37), 

since they change depending on the fractional differential equation they appear in.) 
An example will clarify the problem. Consider the following second order model: 

 
( )

( )
01 21 12 11

21 02 12 22

1

2

( )( )

( )( )

k k k x tD x t

k k k x tD x t

α

α

   − +  
=        − − +     





 (38) 

in this representation the fluxes from the compartment to the outside of the system pose 

no problem, but the fluxes between compartments are not balanced: the outgoing flux 

from compartment 1 to 2 is at rate 
1

α , but it appears as incoming flux in compartment 2 at 

rate 
2
,α and vice-versa. In addition the rate constants are not expressed consistently in 

terms of their dimensions. In the first differential equation the units for the rate constant 

01 12 21
, ,k k k are the fractional reciprocal of unit time (ut) of order 

1
α , while in the second the 

units for 
02 12 21

, ,k k k are ( ) 2
ut

α−

, which give inconsistent dimensions for the transfer rates 

between compartments 
12 21

,k k . ( )
1

ut
−

. Similarly to the suggestion reported in (Popovic, 

Atanackovic et al.), the problem of inconsistent units can be solved by normalizing the 

units of the rate constants in the system (that is left multiply equations (38), i.e. (37), by 

( )1,..., mdiag
αατ τ , where 1,..., mαατ τ  are the characteristic time for each compartment, so that 

the elements in the matrix A have all dimensions ( )
1

ut
−

, see also (Dokoumetzidis, Magin 

et al.). However, the problem of balancing the fluxes is more fundamental and need to be 

addressed if one has to provide a general representation that allows a physical 

interpretation of the system. 
We now describe three possible alternatives to represent non-commensurable fractional 

order compartmental systems. 

5.1 Reducible systems 

A possibility to solve the problem associated with equations (37) is to consider 

compartmental structures that include subsystems that do not transfer material to other 

parts of the system. For example if the matrix A in equation (37) can be put in the form: 
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11

21 22

A 0
A =

A A
 (39) 

where A11 and A22 are square matrices of order m1 and m2, respectively (
1 2
m m m+ = ), that is 

if the matrix A is reducible, the corresponding compartmental topology includes two 

subsystems, of which the first (of dimension m1) does not transfer material to the second. We 

can then consider a representation in which each subsystem is characterized by one 

fractional rate, 
1

α  and 
2

α  respectively, obtaining the representation: 

 ( ) 11

1 1

21 22

1 1 2 2
1 1 1 2

0
( ) ... ( ) ( ) ... ( ) ( )

T

m m m m
D x t D x t D x t D x t tα α α α

+ +

 
=  
 

A
x

A A
     (40) 

where T indicates matrix transpose. The physical interpretation is that of two sub-systems 
that operate at distinct fractional rates, with the first receiving inputs from the second sub-
system. A great number of situations can be modeled using reducible compartmental 
structures, for example cascades of chemical or metabolic reactions with one, or, multiple, 
irreversible steps; drug absorption, in which the intestine acts as a separated sub-system 
delivering substance/drug to the circulatory subsystem; administration o drugs using 
complex using external devices/formulation, e.g. nicotine patches or sustained release 
formulations (Pitsiu, Sathyan et al.) etc.. 

5.2 General representation 

A second, and more general, alternative is to start from the commensurate system, equation 

(24), and introduce additional fractional kinetics in the form of departures from a reference 

fractional rate. Continuing with the second order model example reported above, we write: 

 
( )

( )
01 21 121 1

21 02 122 2

2

( ) ( )

( ) ( )

k k kx t x t
D

k k kx t D x t

α

α α−

 − +   
=      − − +    




 (41) 

where 
1

α α=  . In this formulation the fluxes from compartment 1 to 2 (
21 1

( )k x t ) and from 

compartment 2 to 1 (
12 2

2 ( )k D x t
α α−

 ) now appear as incoming/outgoing fluxes in fractional 

differential equations of the same order α , so that mass balance is satisfied. The general 

case is (a representation for non-commensurate fractional differential equation models that 

is, to the best of our knowledge, novel) takes the form: 

 

1

11 1

2

1

0

1

2

( )
...

( )
( ) ... ... ...

...
...

( )

(0)

m

m mm

m

m

D x t
k k

D x t
D t

k k
D x t

α α

α α

α

α α

−

−

−

 
  
  =   
    

 
=

x

x x








 (42) 

where 
1

α α= , 0 1
i

α< ≤ , = 1,...,i m , and with no lack of generality, we order the indexes of 

the compartments so that 
2
,...,

m
α α α≥ . The representation is now balanced in term of fluxes, 

and it is now consistent in terms of the units for the rate constants in A, with the rates 

appearing in each column of the matrix now expressed with consistent dimensions 
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( )
( )

ij

j
k ut

α α− −  =  . Equation (42) reduces to the commensurate fractional order differential 

equation compartmental case equation (24) when 
2
,...,

m
α α α= . 

The main problem with this representation is that it seems to require a numerical 
approximation to its solution. That is, no analytical solution for equation (42), of a form 
similar to, e.g., equation (34), could be found at the time of this writing. 
The need to use numerical approximations has been present from the beginning of the 
modern investigation of fractional calculus, and analytical solutions to fractional differential 
and integral equations are known only for specific cases (see, e.g., the examples reported in 
(Magin ; Magin)). Algorithms dealing with fractional differential equations are reported in 
(Gorenflo ; Podlubny) but focus on solving Riemann–Liouville fractional differential 
equations and usually restrict the class of fractional differential equations to be linear with 
homogeneous initial conditions. The more general algorithms reported in (Diethelm, Ford et 
al. ; Diethelm, Ford et al.), could be adapted to solve the problem of integrating equation 
(42), and we have already adapted the algorithms to solve certain kinds fractional 
differential equations related to pharmacodynamics models (Verotta)).  

The main modification of the fractional differential equation solver, which is of the Predict-

Evaluate-Correct-Evaluate type, is to incorporate a fractional integrator to evaluate the terms 

of the form ( )
i

iD x t
α α−

  2,...,i m= , on the right hand-side of equation (42) (note that, by 

construction, 1 0
i

α α− < − <  , so that all terms of the form ( )
i

iD x t
α α−

  corresponds to fractional 

integrals); an algorithm for fractional integration can also be found in (Diethelm, Ford et al.)). 

5.3 Response function representation  

We return to the system of fractional differential equations (37) to show how certain 
analytical solutions can be used as response functions corresponding to compartmental 
systems.  

In general an analytical solution to (37) does not exist, however solutions can be obtained if 

it is assumed that the fractional orders of the differential equations are rational numbers: 

/
i i i
r qα =  where pi, qi are integers, i=1,…, m. (Note that any real number can be 

approximated arbitrarily closely by a rational number and therefore one can approximate 

any system of differential equations with multiple fractional derivatives by a system 

fractional differential equations with orders that are as close as we choose to the original 

orders, a property that will apply in any case as soon as the orders are stored in a computer.) 

The derivation of the solution follow the steps used for the commensurate case equations 

(25) – (31) (see (Diethelm and Ford ; Lakshmikantham and Vatsala ; Odibat), to arrive at the 

expression for ( )
j
x s  of the form: 

 11

1 1 11

1

1
( ) ...  (0)

( ) ( )

kj kjqqm

i il

j iqq
i k k l

m
i

l

M M
x s s x

s s

α

γ γλ λ
−

= = =

 
= + +  − − 
    (43) 

Applying the inverse Laplace transform to equation (30) and taking into account the Laplace 

trasfrom (22), we obtain the solution for the non-commensurate fractional order system as a 

sum of two parameters Mittag-Leffner functions: 

 ( ) ( )

1 1, 1 , 1

1 1 1

1

( ) ( ) ... ( )  (0)
qqm

kj k kj k

j i il l i

i k k

m
i

i m
x t t M E t M E t x

γ α γ γ

γ γ α γ γ αλ λ−

− + − +
= = =

 
= − + + − 

 
    (44) 
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where 1 / qγ = , ( )1
. . ,...,

m
q M C D q q=  and ( ) ( )( )

, ,

k

k

k

d
E z E z

dz
α β α β= . If the eigenvalues of the 

characteristic equation for the system are real and distinct the solution simplifies to: 

 ( )1 1, 1 , 1

1

( ) ( ) ... ( )  (0)
m

j j

j i il l i

i

i
i m

x t t M E t M E t x
γ α γ γ

γ γ α γ γ α
λ λ−

− + − +
=

= − + + −  (45) 

and in particular the unit-impulse response function for input/output in compartment j, 
takes the form:  

 
1 1 2 2, 1 , 1 , 1

( ) ( ) ( ) ... ( )
jj m m

j

j j j
h t t E t E t E t

γ α γ γ γ

γ γ α γ γ α γ γ αθ λ θ λ θ λ
−

− + − + − +
 = + + +   (46) 

which depends on γ , 
j

α  but not on the fractional orders associated to the other 

compartments. 

To show an application of this type of response functions we consider the same mammilary 

eight compartment model with input/output in compartment j. The input is now at a 

constant rate of 2 (um) for 0.5 (ut). As before we estimate 
1 2 1 2
, , , ,θ θ λ λ α  and in addition γ , 

with the constraints 
1 2
, 0θ θ > =,

1 2
, 0λ λ <  , and 0 , 1γ α< ≤ . 

 

 

Fig. 3. The fit of the response function corresponding to ODE (solid line), commensurate 
FDE (dashed line), and non-commensurate FDE (widely dashed line) two compartments 
system to simulated data (open circles) generated using an eight compartments ODE 
mammillary model and step function input. 

Note again the added flexibility introduced by use of a sum Mittag-Leffler functions in 
respect to a sum of exponentials: the decreases in objective function values (minus twice log-
likelihood) for model (36) (commensurate system response function) and (46) (non-
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commensurate system response function) vs. model (35) (ordinary system response 
function), were -39.3 and -58.22, respectively, values that are again highly significant 
according to the Akaike criterion (Akaike), and that would select the response function 
corresponding to the non-commensurate system. 

The response functions used above are of course not limited to input-output in the same 

compartment. The following figure shows the result of the fit to simulated data generated 

using the same mammillary model used in Figure 2 and 3 but with an added ninth 

compartment (gut) which receives the and delivers it to the central compartment (at a rate 

19
k =1 ( 1min− )), that is an example of a reducible system. The input consist now of two unit-

impulses at time 0 and 2.3 (min)  in the gut compartment. The competing models (for the 

response function in blood to a unit-input in the gut, 
19

( )h t ) are the convolutions of the same 

models used in the previous examples with the mono-exponential 
3

3te
λθ  (that is, the open-

loop unit-impulse response function for the gut). We estimate the same parameters as for 

the previous example, with the addition of 
3

λ (constrained to be negative), and 
3

θ  fixed to 

one since it is not identifiable from the experiment. 
Figure 4 shows the result of the fit of the models to the simulated data. 
 

 

Fig. 4. See legend to Figure 3. Simulated data (open circles) correspond to two unit-impulse 
inputs in a peripheral compartment (gut). 

The decreases in objective function for the commensurate and non-commensurate vs. the 
ordinary system response functions were -7.2 and -6.9, respectively. These values that are 
still significant according to the Akaike criterion (Akaike), and select the commensurate 
response function as “best” model. More importantly the narrowing distance between the 
likelihood of the models demonstrates how the choice of the input can influence model 
selection, and how a single unit-impulse input might result in the most informative model 
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selection test input to discriminate between ordinary and fractional (linear) compartmental 
models. 

6. Fractional order non-linear compartmental models  

The generalization of commensurate fractional order linear compartmental systems to non-
linear systems can be achieved simply by considering fluxes other than the linear case 
equation (4). For example a Michaelis-Menten compartmental model includes fluxes given 
by equations (5), and takes the form: 

 

1 1

0 1 1 1
1

1

01 1

0

...

( ) ... ... ... ( )

...

(0)

m
j m

j j m m
j

m
jmm

jm jm m
j m

a a

b x b x

D t t

aa

b x b x

α

=
≠

=
≠

 
− 

+ + 
 

=  
 
 −

+ + 
 

=





x x

x x


 (47) 

which is analogous to the ordinary differential compartmental model with Michelis-Menten 
elimination (Tong and Metzler). The non-commensurate case can be similarly be defined by 
the following representation: 

 

1 1

10 1 1 1
1

2

1

01 1

0

2

...
( )( )

( )
( ) ... ... ...

...

... ( )
( )

(0)

m
j m

j j m m
j

m
jmm

m

jm jm m
j m

m

m
m

a a

x tb x b D x t

D x t
D t

aa
D x t

b x b D x t

α α

α α

α

α α

α α

−
=
≠ −

−

−
=
≠

 
−  + +  
  =   
    −  + + 
 

=





x

x x









 (48) 

where 
1 2

,  ,...,
m

α α α α α= ≥ . This model is well defined in terms of flux balances, and the 

dimensions of the constants 
ij
a  and 

ij
b . The most general case of non-linear non-

commensurate fractional order compartmental structure can be obtained from the general 

case equation  

 
1

1 1

( ) ( ) ( ) ( ) ( )
n n

i o ij j ji i oi i

j j
j i j i

j i iD x t R t R D x R D x R D x
α α α α α αα − − −

= =
≠ ≠

= + − +      (49) 

where again all the differential equations are of the same fractional order, allowing of mass 
balance and units consistency across equations. 

7. Final remarks 

The main purpose of this chapter is to discuss the use of systems of fractional differential 
equations to represent compartmental models. We first considered commensurate fractional 
differential equations compartmental systems, and show how they have a direct 
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relationship with ordinary differential equation compartmental systems. We also showed 
how non-commensurate systems of fractional differential equations require special 
formulations to correspond to a compartmental system, and describe alternative way to 
represent such systems, including a novel general representation (equation (42)). 

For both commensurate and non-commensurate compartmental systems we give 

expressions for response functions that can be used to describe input-output experiments, 

and satisfy physical constraints (non-negativity in particular). We show how sums of 

Mittag-Leffler functions with a single parameter, equation (35), are solutions for the 

response of compartmental system of commensurate fractional differential to impulse-

inputs, while sums of two-parameters Mittag-Leffler functions, equation (46), are the 

corresponding solutions for a system of non-commensurate fractional differential equations. 

The corresponding unit-impulse response functions (sums of Mittag-Leffler functions, 

defined for each of the input/output possible combinations, ( )
ij
h t , , 1,...,i j m= ) can be used 

to represent the response of a fractional order compartmental system to arbitrary inputs by 

means of the ordinary convolution operator, e.g. equation (33). This is in direct analogy with 

the use of unit-impulse response functions (consisting of sum of exponentials) used for 

ordinary compartmental models. 
We also describe general formulations for fractional order non-linear kinetics 
compartmental models, and briefly discuss how such models could be implemented and 
solved using software algorithms.  
In conclusion, while insight into the physiological interpretability of fractional 
compartmental system remains open to discussion, the technology is becoming available to 
investigate the application of these models to data sets that might show complex fractional 
kinetics. The bottleneck to initiate this kind of investigation is the development of 
appropriate software. In particular, while the evaluation of (sums of) Mittag-Leffler 
functions can be considered (to some extent) solved, the stable and reliable integration of 
system of fractional differential equations of the form (37), and even more so of the form of 
(42) or (49), is not non-trivial task, especially taking into consideration that the 
corresponding software needs to be interfaced with a non-linear regression program. The 
author is actively working on a set of routines that will interface with the open source 
program R and allow the use of multi-term Mittag-Leffler response functions as well as the 
integration of fractional compartmental models. 
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