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1. Introduction 

Composite materials are multi-phased combinations of two or several components, which 

acquire new characteristic properties that the individual constituents, by themselves, cannot 

obtain. A composite material typically consists of a certain matrix containing one or more 

fillers which can be made up of particles, sheets or fibers. When at least one of these phases 

has dimensions less than 100 nm, the material is named a nanocomposite and offers in 

addition a higher surface to volume ratio. There are natural composite materials, like wood 

and plant leaves, in the vegetal kingdom and bird feathers, silky threads spun by the spider 

and shells, in the animal kingdom. Also, connective tissues from animal and human body 

are natural composite materials due to their composition and structure. Connective tissues 

are the major supporting tissues of the body. They are named after their main function, i.e. 

packing and binding other structures together, and also providing a framework for the 

body. Connective tissues are generally soft tissues (e.g., skin, cartilage, cornea, etc), 

excepting bone which is a dense connective tissue.  

Similar to other natural composite materials, bone consists of an organic part that forms the 

matrix and an inorganic part representing the filler. Bone matrix is a framework mainly 

composed of collagen fibers which together with small quantities of other non-collagenous 

proteins, proteoglycans, lipids, peptides and water form a hydrogel (~ 30 % from bone dry 

weight). The filler, that reinforces bone matrix, is formed of nano-sized crystals of 

carbonated calcium phosphate apatite (~ 70 % from bone dry weight). This natural 

nanocomposite material has superior strength and toughness than its individual 

components. Bone matrix is a source for nourishing bone cells, such as osteoclasts, 

osteoblasts and osteocytes, which grow inside it. It also increases cell biological activities 

like adhesion, proliferation and differentiation. Bone has key functions as skeletal tissue of 

the body, including support of softer tissues, mechanical protection for many internal 

organs and storage of minerals. In the development phase, bone attains the most suited 

structure to resist the forces acting upon it. During life time, bone is subjected to various 

diseases that are inherited (osteogenesis imperfecta) or caused by metabolism disturbances, 

such as osteoporosis, osteosarcoma, osteoarthritis. Bone is also affected by traumas, i.e. 

fractures, micro-fractures. Each year, millions of people are treated in hospitals for fractures 

presenting risk of developing into delayed union or nonunion. Also, progressive aging of 

www.intechopen.com



  
Nanocomposites and Polymers with Analytical Methods 

 

310 

population and the related pathologies lead to loss of variable quantities of bone that have 

to be replaced. The demand for bone substitutes is extremely large in orthopedic clinics 

from all over the world. That is why a growing interest in different aspects of creation, 

characterization, testing and application of composite materials for biomedical applications 

is registered.  

Composite materials for medical application are developed for pathologies of osseous 
tissues from different parts of the body, like long bones, vertebrae, cartilage and teeth. Two-
dimensional and three-dimensional structures are fabricated and commercialized as 
composite materials or combined with therapeutic organic substances (drugs, growth 
factors, etc) (table 1). There are several treatments for bone repairing: patching, replacing the 
missing tissue using allografts or xenografts, or self-healing initiated by materials containing 
signal molecules for tissue remodelling. The existing methods and techniques for treatment 
of large bone defects, as a result of trauma or tumor, do not satisfactory restore bone tissue. 
The classic technique for bone repair consists in autologous bone implantation, but is 
limited by the availability of transplanted material, the morbidity of the donor, difficulties in 
harvesting, longer hospitalization period and higher treatment costs. The last decade, 
initiated the utilization of resorbable materials, tailored with structures having controlled 
porosity, as medical devices for in vivo tissue regeneration (Silva et al., 2005; Patterson et al., 
2008). The structure of the composite material has a role in the transport of nutrients, 
metabolites and regulator molecules towards and from the cells. New rapid prototyping 
techniques, like 3-D printing, selective laser sintering, stereolithography, allow the 
development of desired structures, similar to natural bone, having reproducible, well-
defined shapes and controlled pore morphology and density. Composite material has a 
microporosity referring to the free spaces remaining between ceramic material particles 

bound on the polymer and a macroporosity meaning the pores larger than 100 µm from its 
structure. The morphological characteristics have a direct impact on the uniform 
distribution of cells within the porous material. An optimal pore size and interconnectivity 
facilitate cell colonization into the construct and influence the geometry of the new 
developed tissue. As for material properties, there is a need to improve its mechanical 
characteristics, in order to obtain a controlled biodegradability and good biocompatibility.  
The main constituent of bone matrix – collagen, can be prepared using standardized 
techniques and purified at high levels (>90 %, w/w). For better mimicking natural bone 
composition, chondroitin sulfate is added into the collagen matrix. Chondroitin sulfate 
represents the glycanic part of the small proteoglycan, named biglycan, found in bone. It is a 
glycosaminoglycan having a linear chain of repeating units of anionic, acidic sugars. 
Chondroitin sulfate plays an important role in the regulation of mineralization process and 
in repair of bone defects in animals (Douglas et al., 2008). Also, chondroitin sulfate carries 
negative charges which are known to enhance osseous cell proliferation (Ohgaki et al., 2001).  
The other main component of composite materials intended for bone substitution is one of 
the several constituents of calcium phosphate minerals class (Barrere et al, 2006). Calcium 
hydroxyapatite, (Ca10(PO4)6(OH)2) and tricalcium phosphate (TCP), (Ca3(PO4)2) are the most 
commonly investigated ceramics for biomedical applications because they possess the 
ability to improve new bone formation, showing osteoconductive properties (Laurencin et 
al, 2006). When their crystal size is similar to the nanometer size of the apatite from the 
natural bone, an increase in protein adsorption and osteoblast adhesion is expected 
(Webster et al., 1999). Both ceramics are thoroughly used in bone substitutes, but it is 
demonstrated a better conductivity, osteocompatibility and resorption rate for tricalcium 
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phosphate than for highly crystalline, sintered hydroxyapatite (Vaccaro, 2002). The latter is 
limited in use because of its brittleness and difficult processing (Fujita et al, 2003). Bone 
apatite also contains various trace elements, such as magnesium, copper, zinc, silicate, 
fluoride, which are showed to have an effect on bone quality. Magnesium ion is the most 
abundant in the development phase of cartilage and bone tissues and sharply decreases 
when the bone is mature. Magnesium depletion alters bone and mineral metabolism which 
results in bone loss and is a risk factor for osteoporosis (Rude et al., 2009).  
 

Product 
Conditioning 

form 
Composition 

Delivered 
substance 

Target 
tissue 

Reference 

MinerOss Powder Bone allograft - Periodontal Gapski et al., 2008 

Cortoss Injectable 
Resin with glass ceramic 
particles 

- Spinal Bae et al., 2010 

rh-BMP-2 
(development) 

Sponge 
Collagen and titanium 
mesh 

rhBMP-2 Spinal 
Mulconrey et al., 
2008  

Healos Sponge 
Collagen type I with 
hydroxyapatite coating 

rhGDF-5, 
gentamicin, 
marrow aspirate 

Bone 

Magit et al., 2006 
Carter et al., 2009 
Furstenberg et al., 
2010 

ProOsteon Sponge 
Sea coral with 
hydroxyapatite 

- Bone Jensen et al., 2007 

Immix Microsphere 
Polylactic acid/glycolic 
acid 

- Bone 
Chenite & 
Chaput, 2010 

Carticel Hydrogel 
Synthetic and natural 
polymers  

growth factors, 
cells 

Cartilage De Bie, 2007 
 

(rh-BMP-2 is recombinant human bone morphogenetic protein-2, rhGDF-5 is recombinant human 
growth and differentiation factor-5) 

Table 1. Several composite products for bone repair 

A series of collagen-calcium phosphate composite materials are tailored and used as 

temporary scaffolds in studies on animals and humans for tissue regeneration (Wang et al., 

2004; Chen et al., 2009). The addition of collagen to a ceramic material provides many 

advantages for medical applications: shape control, spatial adaptation and ability for clot 

formation (Scabbia & Trombelli, 2004). Collagen could also serve as efficient bonding agent 

for ceramic particles. Conversely, the addition of calcium phosphates to collagen scaffolds 

improves the osteoconductive properties of the material (Takahashi et al., 2005; Kretlow et 

al., 2007). Composite properties are strongly dependent on synthesis conditions, like the 

calcium phosphate/collagen ratio, temperature and pH. The cohesion between the two 

materials is based on the interaction of calcium ions from ceramic material and the carboxyl 

groups from collagen (Zou et al., 2005). 

The main advantage of a composite material tailored from collagen and calcium phosphate 

is the excellent biocompatibility property, due to collagen and its ability to allow bone cell 

attachment and differentiation. The crystals of synthetic calcium phosphate remain 

undistorted, for a long period after material implantation, sustaining the formation of new 

tissue.  

The main difficulty in using these devices is that they are easily degraded and reabsorbed 
by the body. After hydration, they don’t possess strength and their mechanical properties 
are relatively low in comparison to bone (Matsuno et al., 2006). The problem to be solved is 
to obtain a controlled degradation of the composite material so that to ensure as long as 
possible a scaffold where cells could deposit new bone tissue. Cross-linking could be used in 
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order to control composite biodegradation rate and its mechanical characteristics, but it 
might compromise the biocompatibility.  
Several bone regeneration therapies use a combination of collagen-ceramic composite 
materials, cell population and signal substance delivery to initiate more rapidly the healing 
process (Arinzeh et al., 2005; Guo et al., 2006). It were tested various growth factors, like 
transforming growth factor-beta, basic fibroblast growth factor or bone morphogenetic 
proteins (McKay et al., 2007; Evans, 2010).  
This chapter describes the design of bio-inspired composite materials, as bone substitutes, 
choosing the most appropriate composition and structure to fulfill the unique 
morphological characteristics and biological properties of natural bone. Several aspects 
regarding the fabrication of a composite material that mimic porous bone structure are 
discussed in this chapter. A key aspect is composite cross-linking and a discussion on 
carbodiimide advantages is presented. In vitro experimental models on cell cultures are used 
for composite material biocompatibility evaluation. A bioactive implant consisting of 
osteoblast cells injected into the composite material and cultivated in vitro is analyzed for 
osteogenic properties by cell adhesion assay and osteoblast-specific marker expression. 

2. Preparative methods 

At present, there are known 29 types of collagen, having various structural and functional 

properties, depending on the connective tissue where they are found. Therefore, collagen 

extraction from different tissues it is not a standard procedure. Collagen can be obtained in its 

insoluble form, acid soluble form, neutral salt soluble form or its denatured form – gelatin 

using three types of extraction methods with neutral salt solutions, dilute acid solvents, 

chemical agents (acids or bases) with proteolytic enzymes. The neutral salt and dilute acid 

extraction methods are efficiently applied only to extract collagen from young animal tissues. 

For mature tissues, chemical reagents and proteolytic enzymes are used together to yield 

triple-helical molecules of collagen. Collagen type I can be extracted from animal tissues like 

skin, tendon and cornea and is commercialized in its insoluble form as an acidic solution. 

Tendon contains a high quantity of collagen (86 % from dry weight mass) which is made up of 

97 % collagen type I. There are technologies applied for collagen extraction that aim to obtain 

soluble, but non-denatured collagen molecules with an intact triple-helix conformation. The 

chemical and enzymatic processes used in these technologies remove the non-helical 

polypeptidic ends (telopeptides) from the collagen molecule and break up the intermolecular 

cross-links. The enzymatic reaction does not succeed in completely cleavage of these chemical 

bonds present in all the three-dimensional structure of collagen. Therefore, a collagenous 

extract containing more than 70 % intact atelocollagen macromolecules is obtained. When 

natural conditions are induced (temperature 37 °C, pH 7.4), these intact triple-helical 

macromolecules are able to spontaneously aggregate to form fibers. 

2.1 Tissue processing 

Bovine tendons were obtained from the local abattoir after animal slaughtering. They were 
immediately rinsed in cooled water (4 °C) or phosphate-buffered saline (PBS) (pH 7.4). After 
transportation to the lab, in a cooler box (4 °C), they were peeled from adherent tissues with 
a scalpel and washed in cold tap water. The tendons were minced in 1-2 mm3 pieces, and 
kept at -18 °C until processing.  
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2.2 Collagen extraction 

Small pieces of tissue were put in a one-liter Berzelius glass and 0.5 M acetic acid containing 
pepsin (E.C. 3.4.23.1, Sigma), in a weight ratio of 1:10 (w/w) enzyme:dry tissue was added. 
The extraction process was conducted at 4 °C, with gentle stirring, for 24 h. The obtained gel 
was filtered and the remaining tissue was again extracted as above. The two viscous 
solutions were combined in the same glass and a precipitation-step was achieved by slowly 
adding 0.7 M NaCl in the gel and leaving the mixture at 4 °C, for 20 h. The precipitate was 
separated by centrifugation at 4000 rpm, for 20 min and it was dissolved in acetic acid 0.5 M 
by homogenizing on a magnetic stirrer at 500 rpm, for 2 h. The purified collagen type I 
solution was dialyzed against distilled water using cellulose tubes (molecular mass cut-off 
12,400) for one week, renewing the outer solution three times a day. All extraction steps 
were performed at 4 °C in order to prevent denaturation of collagen. 
The obtained collagen solution was characterized by analytical techniques and the results 
indicated 9.98 % hydroxyproline content, 84.94 % collagen, 88.40 % total protein content, 
10.80 % hexosamines and pH 6.0. The value of its average molecular weight, determined by 
viscosimetry (Turkovski et al., 2008) was 308 kDa, comparable to that of tropocollagen (300 
kDa). This observation indicates that the used enzymatic extraction is a non-denaturing 
method, which preserves the native triple helix structure of collagen. At the same time, the 
method eliminates collagen telopeptides to yield a non-immunogenic polymer. The purity 
analysis, conducted by SDS-polyacrylamide gel electrophoresis (Miller & Rhodes, 1982), 
revealed the presence of five distinct bands, corresponding to ǂ constituent chains of 
collagen type I (ǂ1 and ǂ2), two ǃ dimers and a Ǆ trimer, having identical mobilities to the 
control collagen (Biocolor, UK) (fig. 1). The ratio between the specific ǂ1(I) and ǂ2(I) chains 
was very close to the natural value of 2:1, that confirmed the native structure of extracted 
collagen type I, [ǂ1(I)]2ǂ2(I). It was showed by electron microscopy that collagen obtained by 
this method and used to prepare composite scaffolds is mostly organized as fibril aggregates 
and a few fibers having the 67-nm characteristic banding pattern (Zarnescu et al., 2010). 
 

 

  

 

γ-chain 
 
β11(I)-chain 
β12(I)-chain 
 
 

 
α1(I)-chain 
 

α2(I)-chain 
 

(a)                      (b) 

 

Fig. 1. SDS-polyacrylamide gel electrophoresis of collagen type I from control (a) and 
extracted from bovine tendon (b) showing the presence of two constituent ǂ-chains, ǂ1(I) 
and ǂ2(I), small quantities of dimer (ǃ) and trimer (Ǆ) chains, clearly separated 
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2.3 Collagen/n-β-TCP composite material preparation 
Several ceramics were investigated for their role in bone regeneration, but they lack 
structural stability and it is difficult to maintain them at the defect site. Therefore, TCP must 
be included into a polymeric scaffold of collagen. 
Nanopowder of ǃ-TCP (n-ǃ-TCP) was obtained from the Ceramic lab of INCDIE ICPE-CA 
Bucharest, Romania. The particles had unit cell parameters similar to ASTM data and their 
diameter was lower than 84 nm. Nano-sized ǃ-TCP powder presented a good in vitro 
biocompatibility in cell culture (Tardei et al., 2010). The dimension of ceramic crystals is an 
important factor involved in the first phase of cell-biomaterial interactions. 
A nanocomposite material, collagen/n-ǃ-TCP, consisting of the two main components of 
natural bone was prepared from a 0.8 % (w/w) collagen type I solution and ǃ-TCP 
nanopowder mixed in a ratio of 50:50 (w/w) and homogenized with a manual speed-stirrer 
(Xenox, Germany) at 6000 rpm, at room temperature. In the next step, the mixtures were 
poured into glass molds (15 mm diameter) and were frozen at – 20 °C, overnight.  
The polymeric matrix of natural collagen was not only used to achieve a stable composite, 
but to prevent rapid release of calcium ions in surrounding medium and to improve the 
interaction with osteoblast cells. Both components, collagen type I and calcium phosphate 
stimulate osteoblastic differentiation in cell cultures (Xie et al., 2004) and together, in 
composite materials, accelerate osteogenesis and allow the achievement of mechanical and 
biological properties, superior to their individual ones (Wahl and Czernuszka, 2006). Fang et 
al. (2009) showed that nanocomposites containing biomimetic HA deposited from simulated 
body fluid facilitate adhesion and spreading of human mesenchymal stem cells. The 
majority of temporary bone substitutes developed in the last decade are resorbable 
composite materials consisting of fibrils of collagen type I and calcium phosphate crystals, 
mimicking the composition and tissue structure (Yamauchi et al., 2004).  

3. Composite material design 

Designing an artificial bone substituent involves a process of optimizing its composition and 
structure that influence the osteoconductive properties and interaction with cells. Recent 
scientific progress in material science and engineering evolved in a biomimetic approach for 
bone substitute fabrication. A biomimetic composite material can be any artificial material 
designed to mimic one or several features of the natural one. Natural bone biomimetism 
implies using collagen type I and apatite in the form of nanoparticles. The osteoinductive 
property of collagen combined with the bioactivity and osteoconductive property of calcium 
phosphates give a high biocompatibility to the composite material and favor cell growth 
(John et al., 2001).  
A collagen sponge prepared by freeze-drying (fig. 2A) is similar in structure to trabecular 
bone, where mineralized fibrils are arranged in a network of trabeculae and voids which are 
filled by bone marrow in vivo (Fantner et al., 2006). Attachment of calcium phosphate 
particles doesn’t significantly modify collagenous network porosity as they are tightly bond 
to the collagen fibrils, wrapping the skeleton with a fine layer (fig. 2B).  
Collagen-calcium phosphate composites can be conditioned in various shapes and forms. 
Sheets are obtained by mixture drying at room temperature or electrospinning, a technique 
that yields nanostructures. Cells could adhere to these two-dimensional materials, but 
proliferation is restricted in comparison to three-dimensional constructs. Composites 
conditioned as hydrogels are preferred as injectable form for tissue repair in order to avoid 
complicated operation; they are three-dimensional structures, but they lack mechanical 
strength (Hunt & Grover, 2010).  
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Fig. 2. Scanning electron micrograph of a freeze-dried collagen material presenting a 
network of fibrils and voids (A) and a detail of a freeze-dried collagen/TCP 50/50 (w/w) 
composite material showing the collagenous skeleton wrapped with a fine layer of 
tricalcium phosphate particles (B)  

Collagen-calcium phosphate composites can be conditioned in various shapes and forms. 

Sheets are obtained by mixture drying at room temperature or electrospinning, a technique 

that yields nanostructures. Cells could adhere to these two-dimensional materials, but 

proliferation is restricted in comparison to three-dimensional constructs. Composites 

conditioned as hydrogels are preferred as injectable form for tissue repair in order to avoid 

complicated operation; they are three-dimensional structures, but they lack mechanical 

strength (Hunt & Grover, 2010).  

Selection of bone substituent composition indicates an optimum ratio between collagen and 

calcium phosphate of 50:50 (w/w). A higher calcium phosphate concentration in a 

composite with 50:100 (w/w) ratio between the two components led to an intense loaded 

collagenous network having less strength, a lower value of porosity and decreased 

biocompatibility (Moldovan et al., 2009).  

3.1 Freeze-drying of composite material 

Freeze-drying technique is based on two processes: first, a solution is frozen and then, the 

solvent, which is usually water, is removed under vacuum, at low temperatures by 

sublimation. The solvent crystals formed during freezing have the same size and 

morphology as the pores of the material after drying. Therefore, parameters like the rate and 

temperature of freezing, concentration and pH of the solution, and the presence or absence 

of other macromolecules influence pore morphology and size in the final product.  

The mixture, consisting of collagen type I and n-ǃ-TCP particles, was subjected to freeze-

drying using a freezing temperature of -35 °C. The programme of the freeze-dryer (Christ, 

Germany) continued with a 0 °C-step, at 0.26 mbar, for 17 h and drying at + 30 °C. This 

process yielded a nanocomposite material, conditioned as porous scaffold, which was sealed 

in a plastic bag and exposed to UV-radiation, for 8 h, in a sterilization cabinet (Scie-Plas, 

UK). A collagen solution was identically processed and used as control material.  

All the operations for collagen/n-ǃ-TCP composite material fabrication are summarized in 
fig. 3. 

A B 
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Bovine tendon 
Tissue was minced and washed in cold water 

Collagen preparation 
Minced tissue was extracted in 0.5 M acetic acid containing 

pepsin (1:10, w/w), at 4 °C, for 24 h 

 

Collagen gel 
After NaCl precipitation and dialysis, the extracted gel 

has pH 5.5 and 9.98 % hydroxyproline content 

Composite mixture 
Collagen gel is mixed with β-TCP nanopowder, 
50:50 (w/w) and is homogenized with a stirrer 

Collagen/n-β-TCP composite material 
The composite mixture is freeze-dried to obtain 3D, 

porous composite material 

 

Fig. 3. Schematic diagram showing the experimental procedures used to prepare 
collagen/n-ǃ-TCP nanocomposite material from collagen type I solution and ǃ-TCP 
nanopowder by freeze-drying technique 
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Freeze drying is a technique used for the fabrication of porous materials (Schoof et al., 2001). 
The final porosity of three-dimensional composites can be controlled by varying the freezing 
temperature at -20 °C, -78 °C or -196 °C, respectively; namely, the lower the temperature, the 
smaller the pore size (Karageorgiou & Kaplan, 2005). Still, a temperature of -196 °C gives too 
small pores for a medical implant and its mechanical properties are altered. Porous materials 
having pores in the range of 50-1500 µm can be obtained by freeze-drying (Li, 2000).  
The materials having high porosity are preferred because they have a high void volume 
within cells can grow and form new tissue. A network formed from well defined and 
interconnected pores is necessary in view of viable implant development. The porosity 
value for a composite material used in bone tissue engineering must be above 70 % in order 
to allow cell growth and proliferation (Boland et al., 2004). The size of the pores from bone 
substitutes used as cell scaffolds must have at least 100 µm because osteoblast cells have 
sizes in the range of 10-60 µm, depending on the species and cell line (Xu & Simon, 2004).  

3.2 Cross-linking of composite material  

Collagen-based composite materials used in bone repair mimic the ultrastructure of native 

extracellular matrix, but possess high sensitivity to enzymatic degradation. Therefore, new 

covalent bonds must be introduced in collagen structure in order to register less 

biodegradability. Cross-linking of collagen-based composite materials must be a 

compulsory step in their fabrication in order to control collagen biodegradation rate and 

their mechanical characteristics. However, depending on the used reagent, composite 

material biocompatibility might be compromised.  

Chemical cross-linking is a technique that involves the formation of covalent bonds between 

two different or identical protein molecules. It uses bifunctional reagents, containing 

reactive groups that react with functional groups present on the side chains of amino acid 

residues, such as the amino group of lysine, arginine, glutamine and asparagine, or 

sulfhydryl from cysteine. The commonly used cross-linking agents for collagen-based 

materials, including glutaraldehyde, formaldehyde and epoxy compounds can be used by 

directly mixing with the protein or in a vapour chamber. They are cytotoxic owing to 

reactive moieties covalently coupled between neighbour collagen fibrils (Badylak, 2002). A 

neutralization of the cytotoxic residues after cross-linking is achieved using 10 mM sodium 

borohydride, at 4 0C, for 24h prior to implantation. Glutaraldehyde is also involved in 

development of calcification that occurs subsequently to implantation (Schoen & Levy, 

2005). An efficient cross-linking method uses the heterobifunctional carbodiimide, 1-ethyl-3-

(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), so-called zero-length agent 

because it does not incorporate itself into the polymer macromolecules, thus improving the 

biocompatibility of the material. This is an important advantage over other chemical cross-

linking agents. EDC reagent is suited for use with collagen type I materials as showed 

Pieper et al. (1999) and electrospun collagen type II materials as showed Barnes et al. (2007). 

At present, EDC is used to cross-link composites like collagen-glycosaminoglycan skin 

substitutes (Powell & Boyce, 2006), collagen-elastin-glycosaminoglycan vascular scaffolds 

(Daamen et al., 2008) or gelatin-hydroxyapatite for bone repair (Chang & Douglas, 2007). 

Polyethylene glycol is used in biomedicine as dispersing agents, solvents, ointment, and 

suppository bases and is currently tested as cross-linking agent (Popescu et al., 2009). 

Physical methods of cross-linking, such as ultraviolet irradiation (Lee et al., 2001), photo-
oxidation (Turek & Cwalina, 2010) and dehydrothermal treatment (Haugh et al., 2009) have 
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a mild effect on collagenous materials, but they obtain an improved enzymatic resistance 
and biocompatibility.  
Recently, natural plant polyphenolic compounds, like tannic acid (Isenburg et al., 2005), 
genipin (Bi et al., 2011), proanthocyanidins (Chen et al., 2008), catechin (Madhan et al., 2005), 
and riboflavin (Ashwin & McDonnell, 2010) have been shown to stabilize collagen structure 
through hydrogen bonding and hydrophobic interactions, while preserving its 
cytocompatibility.  
Enzymatic cross-linking using transglutaminase (EC 2.3.2.13) is applied to denatured 
collagen-based composite materials, conditioned as films or gels, leading to formation of 
covalent amidic bonds between carboxyl group of glutamine residues and ε-amino group of 
lysine residues (Chen et al., 2003). The process results in irreversible network junctions, 
similar to that formed by chemical agents. Microbial transglutaminase, a calcium-
independent enzyme, has a higher specific activity that stimulated new applications, 
especially in food industry (Collighan et al., 2002; Garcia et al., 2007).  
Three cross-linking protocols using different agents (EDC, glutaraldehyde and catechin) 
were comparatively evaluated in terms of efficiency on collagen porous material. First, the 
cross-linking process was carried out in ethanolic solution of EDC, at pH 5.5, by slowly 
shaking on a platform, at room temperature, for 18 h (Pieper et al., 2002). Alternatively, 
collagen sample was treated with EDC/N-hydroxysuccinimide (NHS) solution, in the same 
conditions and was shaken for 4 h. After cross-linking, several washing steps of the samples 
were carried out in order to eliminate any unreacted intermediates. The samples were 
washed in solutions of 0.1 M sodium phosphate (pH 9.1), 1 M and 2 M NaCl. After the final 
washing in distilled water, samples were once again lyophilized.  
The second cross-linking process used glutaraldehyde and took place in a special chamber 
in which the solution does not contact the material sample. A solution of 3 % (w/w) 
glutaraldehyde was put at the bottom of the chamber and collagen material was exposed to 
the vapors, at room temperature, for 18 h. The sample was then washed in distilled water, 
renewed every 1 h.  
The third method of cross-linking used catechin, a natural polyphenol from green tea and 
was carried out by simply immersion of collagen sample in 10 mM catechin solution and 
shaking at 300 rpm, at room temperature, for 18 h. 
The cross-linking degree can be assayed using physical or chemical methods for the 
determination of shrinkage and denaturation temperature, content in amino free groups, in 

vitro enzymatic digestion or mechanical properties. In order to compare the cross-linking 
degree of collagen materials, it was calculated the percentage of free amino groups lost 
during the process by spectrophotometric assay using 2,4,6-trinitrobenzene sulfonic acid 
(TNBS) (Barnes et al., 2007). The degree of cross-linking was expressed as percentage loss in 
free amino groups after cross-linking and was calculated as follows:  

 ( ) ( )CL CL NCL NCL% Cross linking degree  1  ABS /MASS  /  ABS /MASS− = −  (1) 

where ABS is absorbance at 346 nm, MASS is sample weight, CL is the cross-linked sample 
and NCL is the non-cross-linked sample. 
The results showed that there is a similar cross-linking degree of collagen materials treated 
with 30 mM EDC and EDC/NHS, compared to 3 % glutaraldehyde vapors and 10 mM 
catechin (fig. 4). The cross-linking of collagen porous material was achieved at a rate above 
50 % for all used agents. 
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Fig. 4. Variation of cross-linking degree for porous collagen material treated with EDC, 
EDC/NHS, glutaraldehyde (GA) and catechin (CA)  

EDC cross-linker has a mechanism of action consisting of reaction with carboxyl groups 
converting them into O-acylisourea intermediates that further react with lysine residues or 
other available primary amines. The amines exert a nucleophilic attack on the intermediate, 
resulting in a stable amide bond (see reaction on Thermo Fisher Scientific). EDC is released as 
a soluble urea derivative and can be removed by several washings (Pieper et al., 1999, 2002).  
NHS is often included in EDC coupling protocols to improve efficiency. The reaction of 
NHS with carboxyl groups is mediated by EDC and results in formation of an NHS ester 
intermediate. The advantage of NHS is the higher stability of its intermediate, compared to 
EDC intermediate. This property allows a more efficient conjugation to the primary amines. 
The amide bond is formed in shorter periods of time, compared to EDC cross-linking and 
NHS is released.  
EDC cross-linking is an efficient process when takes place in acidic conditions (pH 5.5) and a 
suitable buffer for carbodiimide reaction is 4-morpholinoethanesulfonic acid buffer. A 
higher pH (up to 7.2) could lower the efficiency of the reaction but can be compensated by 
increasing the amount of EDC. Still, a high quantity of EDC could prevent cross-linking 
reaction. The optimum molar ratio between protein and EDC reactive groups is 1:1, as 
earlier established in studies on collagenous materials (Olde Damink et al., 1996). NHS 
cross-linking reaction is optimal at physiologic or slightly alkaline pH (up to 8.5); thus, 
phosphate, bicarbonate or carbonate, HEPES or borate buffers are commonly used. The 
optimal temperature for EDC reaction is room temperature and higher than 40 °C for NHS 
reaction. The final washings are important to eliminate intermediary products formed 
during the reaction and to avoid cytotoxicity.  
In the particular case of collagen cross-linking, there are aspartic and glutamic acid available 
residues within the ǂ chains that interact with lysine and hydroxylysine residues from the 
same chain, the neighbor chain or from other collagen molecule/fibril, forming intra- or 
intermolecular covalent cross-links. When cross-linking is applied to porous collagenous 
structure, ethanol is recommended to prevent pore morphological changes. Ethanol reduces 
dipolar forces and allows bond changes due to its lower dielectric constant of 35, compared 
to 81 for water (Barnes et al., 2007). Also, ethanol molecules could act as proton donors in 
reaction with EDC, improving cross-linking yield.  
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The first study on applying EDC and EDC/NHS cross-linking methods to collagen/n-ǃ-
TCP 50/50 (w/w) composite material was performed to compare their efficiency. The 
protocols were identical to those applied to collagen material (see above). The results 
showed that the cross-linking process resulted in a decrease of the free amine group content 
relative to non-cross-linked composite material. The value for the composite cross-linking 
degree was 25.64 % using EDC. A stronger capability of cross-linking was registered for 
EDC/NHS agent, 28.01 % (fig. 5). An increase in TCP quantity (50/100 ratio, w/w) resulted 
in a decrease of composite cross-linking degree to values of 20.76 % for EDC and 24.34 % for 
EDC/NHS. According to TNBS assay, the cross-linking degree for collagen material was 
significantly higher than for composite material, taking into account that the same quantity 
of collagen was used to prepare simple and composite materials. This result might indicate 
that the presence of ǃ-TCP nanoparticles on collagen fibril surface partially hindered lysine 
interactions with aspartic and glutamic acid residues within the three ǂ-chains of collagen 
fibrils. A similar action was reported for 1,4-butanediol diglycidyl ether used as cross-
linking agent, namely the process was more evident for collagen without mineral phase than 
for the composite (Tampieri et al., 2008).  
Composite material cross-linking influences its structure, biodegradability, calcium release 
and biocompatibility.  
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Fig. 5. Micrographs of scanning electron microscopy of collagen/n-ǃ-TCP 50/50 (w/w) 
composite material before and after cross-linking with EDC and EDC/NHS and their 
percentage of cross-linking degree assayed with TNBS 

4. Morphological characterization of cross-linked composite material 

4.1 Scanning electron microscopy of cross-linked composite material 

The microstructure of the obtained composite material before and after cross-linking was 
examined by environmental scanning electron microscopy. The sample was mounted on 
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carbon pads attached to aluminium stubs and visualized at an ESEM apparatus (Quanta 
400, FEI, Philips, Holland) using the low vacuum mode. Micrographs showed white 
deposits of ǃ-TCP nanoparticles disposed on the surface of collagen fibrils (fig. 5). Images of 
non-cross-linked composite variant showed a typical structure of lyophilized collagenous 
materials, with regular pores, which favor a good biological behavior. Pore morphology was 
affected by the cross-linking process. The ordered structure with interconnected pores of 
non-cross-linked composite material was replaced by a structure with unevenly sized pores, 
ranging from 20 to 200 µm in the EDC and EDC/NHS cross-linked materials. Sample 
rehydration and the additional lyophilization process that occur during the cross-linking 
treatment could induce a slightly collapse of pore network and led to a dense material. 

4.2 Porosity of cross-linked composite material 

The porosity (ε) of composite materials was measured by water displacement method 
(Zhang et al., 2003). The following equation was used to calculate the porosity value: 

 ( ) ( )1 3 2 3 v v  /  v v  x 100ε = − −  (2) 

where v1 is a known volume of water in a graded test tube, v2 is the total volume of water 
plus the water-impregnated composite material sample, after 3h of incubation to allow 
water to penetrate and fill the pores, v3 is the residual volume of water after removing the 
water-impregnated composite material from the test tube.  
In comparison to the non-cross-linked composite material, having a porosity of 94.83 %, the 
values for cross-linked composite materials decreased according to the used method of 
cross-linking and the degree of cross-linking. Thus, the porosity value for the EDC-treated 
material was 83.76 % and 78.25 % for the EDC/NHS-treated material. Composite material 
porosity decrease, registered after EDC or EDC/NHS cross-linking could be due to the 
newly formed cross-links. Results showed that the used freeze-drying process, with freezing 
temperatures of -35 °C, led to composites with a porosity of at least 78 %, a value that allows 
a good infiltration of cells.  

5. Biochemical and biological properties of cross-linked composite material 

5.1 Collagenase degradation of cross-linked composite material 
Bone regeneration takes place over duration of several months. It is important for a 
composite material used for tissue repair to degrade in a controlled fashion while new tissue 
is formed. An in vitro experimental model using bacterial collagenase mimics the enzymatic 
attack on the collagenous composite material implanted in vivo. This enzyme acts specific on 
the amino bond of glycine from the peptidic repetitive sequence, -X-Gly-Pro-, from the 
helical region of collagen. This model shows if the covalent cross-links introduced in the 
collagen molecule by carbodiimide treatment could hinder and protect the cleavage site, 
block bacterial collagenase action and reduce material degradability.  
To quantify collagen/n-ǃ-TCP composite degradation, each sample of material was 
weighed and pre-incubated in TES buffer, pH 7.4, containing 50 mM CaCl2, at 37 °C, for 30 
min. In the next step, 100 µl bacterial collagenase type IA (Sigma-Aldrich) in TES buffer 
were added and the degradation took place in a water bath, at 37 °C, for different periods of 
time (6h, 12h, 18h and 24 h). At the end of each incubation period, the reaction was stopped 
with EDTA, at 0 °C and the protein content of the supernatant was assayed by ninhydrin 
method. The percentage of biodegradation was calculated using the equation: 
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( ) ( )CL CL NCL NCL% biodegradation  µM aminoacids / w  /  µM aminoacids /w  x 100=  (3) 

where w is the material weight in grams, CL is the cross-linked sample and NCL is the non-
cross-linked sample which is completely degraded after 6h of incubation (control).  
Fig. 6 compares the biodegradability of collagen/n-ǃ-TCP composite before and after the 

cross-linking treatment. The non-cross-linked composite material had been thoroughly 
degraded after incubation in collagenase solution for only 6 h (100 % biodegradability). 
After cross-linking treatment, the biostability of the material was enhanced according to the 

cross-linking agent. The EDC-cross-linked material was only 58.17 % degraded in 24 h. The 
EDC/NHS-cross-linked material had a better ability to resist collagenase degradation (max. 
43.41 %) due to its higher cross-linking degree. These results reveal that both cross-linking 
methods improve collagen/n-ǃ-TCP material biostability, but EDC/NHS treatment is faster 

and more efficient. The cross-linking treatment lowered the biodegradability of the 
composites which were less susceptible towards collagenase attack. It was observed a good 
correlation between the cross-linking degree and the biodegradability of each sample. 

Composites with a higher degree of cross-linking yielded a smaller quantity of degraded 
collagen. These results indicated a better stability of EDC/NHS cross-linked composite 
material over EDC cross-linked one and both values over untreated sample. 
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Fig. 6. The biodegradation degree of collagen/n-ǃ-TCP 50/50 (w/w) composite material 
before and after cross-linking with EDC and EDC/NHS, after incubation with bacterial 
collagenase, for 24 h  

5.2 In vitro calcium release from cross-linked composite material 

In vivo dissolution of ceramic particles takes place by a decrease in crystal size and increase 
in macroporosity and microporosity (LeGeros et al., 2003). When ceramics are soaked in 
buffer solution, a dissolution reaction leads to increasing calcium and phosphate ion 
concentrations in the solution. A decrease of calcium concentration in the medium is 
registered when the reprecipitation reaction occurs (Wang et al., 2004).  
The dissolution of ǃ-TCP nanoparticles attached to collagen fibrils in composite material 
was analyzed by assessment of calcium ions released in solution, in physiological 
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conditions. Samples of material were incubated in phosphate buffer saline, pH 7.4, for 5 
days. At each 24 h, 5 µl of supernatant were transferred to a 96-well plate and the same 
volume of fresh PBS was added to the reaction tube. The calcium content of the supernatant 
was determined using the QuantiChrom Calcium Assay kit (BioAssay Systems, USA), 
according to the instructions. After 3 min of incubation with reaction reagent, the optical 
density was read at 612 nm using a plate-reader (Tecan, Austria). The concentration of 
calcium was calculated using a standard curve in the range 0-200 µg/ml. The dynamic of the 
dissolution behavior of n-ǃ-TCP particles from non-cross-linked and cross-linked material 
variants is shown in fig. 7. The calcium quantity released from the non-cross-linked material 
increased in the first 48 h and was higher than the value for the cross-linked ones after 5 
days. The cross-linked composite materials had a similar pattern for calcium release, 
regardless of the cross-linking method, having a maximum value of calcium ions after 24 h 
of incubation. It was concluded that the cross-linking process is beneficial for collagen/n-ǃ-
TCP composite materials because the calcium release takes place in a controlled-fashion, in 
comparison to the non-treated composite materials. 
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Fig. 7. Variation of calcium ion concentration released from non-cross-linked and EDC/NHS 
cross-linked collagen/n-ǃ-TCP composite materials in 0.1 M PBS, pH 7.4 

All the above tested properties and the obtained results lead us to conclude that EDC/NHS 
cross-linking protocol allows to fabricate a stable collagen/n-ǃ-TCP composite material, 
with a controlled release of calcium and a porous microstructure adequate for cell 
infiltration and proliferation. 

5.3 Preliminary in vitro biological testing of cross-linked composite material 

In the last decade, porous composite materials prepared from synthetic and/or natural 
polymers combined with a ceramic component are tailored and tested for their efficacy in 
regeneration of wounded tissue (Ge et al., 2008). These composites serve as scaffolds for cell 
cultivation in vitro or as temporary bone substitutes in vivo guiding cell proliferation and 
new extracellular matrix formation (Leong et al., 2003). Composite materials designed for 
medical applications must be first tested for in vitro cytotoxicity on cell cultures, before in 
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vivo pre-clinical and clinical trials. According to the International Standard ISO 10993-5, 
there are several specific methods to analyze the cytotoxicity of medical devices, which 
involves different aspects of cell function, like viability and proliferation, loss of membrane 
integrity, decrease in cell adhesion, cell morphology. The viability of cells cultured in the 
presence of a medical device could be assayed using MTT assay (Mossman, 1983). This is a 
colorimetric assay based on the reduction of yellow soluble salts of 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple insoluble formazan crystals by 
dehydrogenases from cell mitochondria. Since conversion of MTT takes place only in 
metabolically active cells, the level of enzymatic activity measured as optical density is 
directly proportional to the viability of the cells.  
The standard extract protocol consisted in sterile samples of cross-linked and non-cross-linked 
collagen/n-ǃ-TCP composite material immersed in the culture medium DMEM supplemented 
with 10 % fetal calf serum (FCS) and incubated in a humidified atmosphere of 5 % CO2 and 95 
% air, for 24 h. The used ratio between the surface area of the composite and the volume of 
culture medium was 1 cm2/ml, ranging between 0.5-6.0 cm2/ml, the values from ISO 
standard. The conditioned medium, named extract, was used for MTT assay.  
Fibroblasts from NCTC cell line (ECACC) were seeded in the wells of a 24-well culture plate, 
at a density of 5x104 cells/ml and cultivated in DMEM containing 10 % FCS and 1% antibiotic 
mixture. The plate was placed into an incubator, with 5 % CO2 atmosphere, at 37 °C, for 24h, to 
allow cell adhesion. The culture medium was, then, replaced with the same volume of extract 
and the plates were incubated in humidified atmosphere with 5 % CO2, at 37 °C, for 48h. 
In order to assay the viable cells after in vitro culture with the extracts, the medium was 
removed and fresh medium with MTT solution, in a 10:1 (v/v) ratio was added. The plates 
were incubated at 37 °C, for 3h. The medium was removed and 500 µl isopropanol were 
added to each well and the plate was gently shaken on a platform, for 3 h, to dissolve the 
formazan crystals. The colored solution was transferred to another 96-well plate and the 
optical density was read at 570 nm, with reference settled at 630 nm, using a microplate 
reader (Sunrise Tecan, Austria). The cells cultured with complete culture medium were 
negative control (nontoxic) and cells cultured in the presence of hydrogen peroxide were 
positive control (toxic). The experiment was performed with three samples per each group 
(n=3). The results were calculated as mean values ± standard deviation for cells cultured 
with the control or the material extract, respectively and expressed as percentage from the 
negative control, considered to be 100 % viable cells.  
The extract method allows the evaluation of possible toxic compounds released from the 
material in the medium and that could modulate the cellular activity. As shown in fig. 8, the 
viability of cells cultured with composite material extracts was superior approx. 1.2-fold to 
the negative control, after 48h of cultivation. The extract of cross-linked material induced a 
higher viability to NCTC fibroblasts in comparison to the non-cross-linked material extract. 
These values indicated that cross-linked composite was a bioactive material, able to control 
and stimulate the cellular activity, better than the non-cross-linked variant. Other collagen-
based composite materials were shown to modulate fibroblast activity in culture (Zhang et 
al., 2003; Jantova et al., 2009). 
Other 24-well plate was seeded with NCTC fibroblasts and cultivated in the presence of 
composite extract using the same protocol as for the extract method (described above). After 
48 h of incubation, cells cultured on polystyrene plate were fixed in methanol and Giemsa 
stained. The morphology of cells grown in extract medium was observed by light 
microscopy. The micrographs showed that cells maintained their normal phenotype, 
presenting euchromatic nuclei with 1-2 nucleoli and a clear cytoplasm (fig. 8, right). 
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Fig. 8. Cell viability measured by MTT assay after 48h in culture with DMEM (negative 
control), DMEM containing hydrogen peroxide (positive control) and collagen/n-ǃ-TCP 
composite extract. On the right a light micrograph showing fibroblast cell morphology after 
48h of cultivation in extract of collagen/n-ǃ-TCP cross-linked composite material.  

The culture media removed from the MTT test was analyzed by lactate dehydrogenase 
(LDH) assay. LDH assay is based on the reduction of nicotinamide adenine dinucleotide 
(NAD) by LDH. The resulting NADH is used to convert a tetrazolium salt to a colored 
formazan, which strongly absorbs in the visible range 490-520 nm. The quantified LDH 
activity is an indicator of cell viability as only lysed cells are able to release this enzyme from 
the cytosol into the medium. The NCTC fibroblast membrane integrity was assayed in this 
experiment as a function of the amount of cytoplasmic LDH released into the culture 
medium, according to the instructions of the kit (Cayman Chemical Co., USA). After an 
incubation of the centrifuged culture medium with reagent mixture with gentle shaking, at 
room temperature, for 30 min, the optical density was measured at 490 nm using a 
microplate reader (Sunrise Tecan, Austria). LDH activity (mU/ml) was calculated from the 
standard curve plotted with standard LDH in the range 0-1 mU. Results were reported in 
arbitrary units, the negative control being considered equal to 1.  
No increase in LDH leakage was observed for cells cultivated with composite material 
extracts for 48 h (non-cross-linked-0.95; cross-linked-1) when compared to the negative 
control. This indicates that composites have no cytotoxicity related to NCTC fibroblasts. The 
LDH analysis in the culture medium from the same experiment with cells analyzed by MTT 
allows meaningfully comparison of the results. Both experiments confirmed a high in vitro 
biocompatibility of collagen/n-ǃ-TCP that is an important property for a polymeric 
composite material of medical utility, intended to support tissue repair. 

5.4 Osteogenic properties of cross-linked composite material 

Many cell types need an appropriate adhesion surface in order to maintain their 
proliferation ability and specific or differentiated functions. Cell adhesion is an important 
factor influenced by the surface characteristics of the material. Material efficacy in fullfilling 
these requirements depends mainly on the chemical characteristics of the surface, that 
determines cell-substrate interaction, but also on cell morphology and the relation between 
the cells and the material.  
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It was demonstrated that this organizatoric role can be successfully played by porous 
composite materials using an in vitro experimental model, i.e. rat osteoblasts from a primary 
culture cultivated into the three-dimensional, porous collagen/n-ǃ-TCP 50/50 composite 
material. The cell-composite construct, cultured for different periods of time, yield a 
bioactive implant that can be used in tissue repair. In order to assess its medical utility, cell 
proliferation and adhesion was evaluated by total DNA quantification. The primary cell 
culture of rat osteoblasts was established from parietal and frontal bones by enzymatic 
method, as described by Gu et al. (2002), according to the international guidelines for care 
and use of laboratory animals. Cells were cultivated in DMEM supplemented with 0.05 mM 
ascorbic acid (Sigma) and 10 mM ǃ-glycerophosphate (Sigma), for 21 days and alkaline 
phosphatase activity and calcium phosphate deposits were histochemically detected, to 
confirm cell osteoblast phenotype (Oprita et al., 2008).  
Sterile samples of collagen/n-ǃ-TCP cross-linked composite material (5x5x5 mm3) were placed 

into the wells of a 24-well culture plate. Rat osteoblasts in 200 µl DMEM supplemented with 10 

% FCS, at a density of 4x106 cells/cm3, were injected into the samples and the plates were 

incubated in humidified atmosphere, with 5 % CO2, at 37 °C. After 4h, 0.5 ml of the same 

medium were added into each well to cover the cell-composite construct and they were 

incubated at 37 °C, for 6 days. Cell culture medium was renewed twice a week.  

Total DNA content was fluorimetrically assayed in cell lysate. After 1 day and 6 days of 

cultivation, respectively, each cell-composite construct was washed three times in 

phosphate-buffered solution and was frozen at -80 °C until analysis. After thawing, the 

constructs were cut in very small pieces and the fragments were incubated with saline-

sodium citrate buffer, pH 8.5 containing 0.02 % SDS, at 37 °C, with occasional stirring, for 1 

h. After centrifugation at 10000 g, an aliquot of 10 µl of cell lysate was transferred to a test 

tube to determine the DNA content, with Quant-iT dsDNA HS Assay kit (InVitrogen, USA) 

on a Qubit fluorometer (InVitrogen, USA). Results were reported as cell number, assuming a 

standard quantity of 8 pg DNA per cell (Ahlfors & Billiar, 2007).  

The number of adhered cells after 1 day of cultivation was approx. 54 % related to the 
seeded cell number. An approx. 1.4-fold increase in cell number was observed from 2.7x105 
cells in day 1 to 3.8x105 cells in day 6. The cross-linked composite material allowed 

osteoblast adhesion and proliferation. As Anselme (2000) reported, rat osteoblast adhesion 
does not occur preferentially to ceramic crystals or to collagen fibrils and it is independent 
of the roughness of the material surface. Other authors demonstrate that collagen-based 
composites, organized as three-dimensional scaffolds, enhance the contact guidance process 

of osteoblasts inoculated onto the material surface (Rodrigues et al, 2003). It is known that 
collagen has binding sites that promote cell attachment through focal contacts and adhesion 
plaques, providing an increased cell adhesion to composites designed for tissue 

regeneration (Douglas et al., 2008).  
In another experiment, osteoblast-composite constructs were cultivated in normal medium 
(DMEM) and osteogenic medium (DMEM supplemented with 0.05 mM ascorbic acid, 10 
mM ǃ-glycerophosphate and 100 nM dexamethasone), for 21 days. After 7, 14 and 21 days of 
cultivation, the constructs were washed twice in PBS and frozen at -80 °C. After thawing, 
cell lysis was conducted as described above. The alkaline phosphatase activity was analyzed 
using an artificial substrate, p-nitrophenylphosphate reagent, pH 9.8, freshly prepared. The 
color developed after incubation of the lysate with substrate reagent was read at 410 nm, 
using a microplate reader (Sunrise Tecan, Austria). The standard curve was constructed 
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using p-nitrophenol in the range of 0-1.0 mM concentration, as the resulting product from 
the enzymatic reaction. The results were expressed as micromoles of p-nitrophenol per min 
reported to the total protein content.  
Rat osteoblasts injected into composite materials expressed alkaline phosphatase during the 
3 weeks of cultivation. Temporal expression of alkaline phosphatase showed a gradually 
increase in the first 14 days of culture, peaked around day 14 and then, a decrease to day 21 
(fig. 9). Comparing the culture conditions, it were registered higher values of alkaline 
phosphatase activity for constructs cultured in DMEM than in osteogenic medium.  
Expression of alkaline phosphatase activity demonstrated maintenance of the osteoblastic 
phenotype after cell cultivation into collagen/n-ǃ-TCP cross-linked composite material and 
its osteogenic properties. The increase in alkaline phosphatase activity indicates the 
presence of mature osteoblasts and its decrease corresponds to their differentiation into 
osteocytes (Heinemann et al., 2008). 
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Fig. 9. Temporal expression of alkaline phosphatase (ALP) activity by rat osteoblasts 
injected into collagen/n-ǃ-TCP cross-linked composite material and cultured in DMEM 
(straight line) and osteogenic medium (dot line), for 21 days  

6. Applications 

Bone is the second most transplanted tissue in the body after blood transfusions. 
Autologous bone transplantation is limited by the transplantable quantity and the damages 
produced in healthy body parts after harvesting. The cell-composite constructs cultured in 

vitro for different periods of time yield bioactive implants that can be used in tissue-
engineered bone transplantation, a new medical technology used for the regeneration of 
bone and joints. Therefore, cooperation between a human or veterinary clinic and a research 
institution with experienced cell culture laboratory and biomaterial engineers must be 
established. A flow of clinical application research was verified as showed in fig. 10.  
The bone tissue of new born rats was transferred from a veterinary clinic to the clean room 
of the cell culture facility where was processed in culture flasks using cell culture medium to 
obtain a primary osteoblast culture that multiplied. These cells were seeded into a three-
dimensional, porous collagen/n-ǃ-TCP cross-linked composite material, biomimetic to bone 
and cell biocompatible. The construct was cultured for three weeks in cell culture medium 
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to achieve a bioactive implant. The cells maintained their osteogenic phenotype during in 

vitro culture into the composite material, as indicated by osteoblast specific marker 
identification. This tissue-engineered artificial bone has to be transferred back to the clinic 
for implantation in adult rats to test its inflammatory response. Implant ability to induce 
new bone formation is verified in animal defect experimental models and comparison to 
existent treatments is necessary. 
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Fig. 10. Biotechnological research of a cell culture facility in collaboration with a veterinary 
clinic for achievement of a bioactive implant after osteoblast cell seeding into collagen/n-ǃ-
TCP cross-linked composite material and in vitro cultivation for three weeks 

7. Conclusions and future research 

A composite material mimetic to trabecular bone was prepared by freeze-drying a mixture 
of ǃ-TCP nanopowder and collagen type I solution. It was reported a fast and efficient 
chemical cross-linking method using EDC/NHS. The cross-linked composite material had a 
porosity near 80 %. It was 50 % more stable than the non-cross-linked variant in the 
presence of bacterial collagenase and released calcium ions in a controlled manner. The 
cross-linked composite material was tested in a cell line of NCTC fibroblasts and showed a 
good biocompatibility after 48h of cultivation. An in vitro experimental model using rat 
osteoblasts from a primary cell culture showed that collagen/n-ǃ-TCP cross-linked 
composite material allowed cell adhesion to its walls and cell proliferation. It was also 
observed that osteoblasts from the three-dimensional cell-composite construct maintained 
their phenotype after 21 days in culture. All these results demonstrate that collagen/n-ǃ-
TCP cross-linked composite material designed as a three-dimensional porous scaffold is 
useful in cell culture studies or bioactive implant development for bone tissue engineering.  
These observations supply a basis for future studies regarding osteoblast activity and 
differentiation when cultivated in collagen/n-ǃ-TCP composite material to achieve bioactive 
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implants for bone repair. The evaluation is associated with the synthesis of extracellular 
matrix components (collagen type I, osteocalcin, etc). In order to examine collagen/n-ǃ-TCP 
cross-linked composite material ability to induce bone repair, in vivo experimental models 
are necessary. 
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