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1. Introduction

Over the past decade, vision-based 3D sensing technology has been increasingly applied in
manufacturing industries. The 3D shape of a part, which can be represented by using a
point cloud, is usually required for two main purposes: reverse engineering or dimensional
inspection. On the other hand, vision-based 3D sensing techniques can be divided into
categories: passive stereo vision and active stereo vision.
Stereo vision based on no additional devices besides the cameras is known as passive stereo
vision, which works in a similar way as the human eyes. In this case, the passive stereo vision
can be very compact and low-cost without any extra components. The extensive application
of the passive vision benefits from the epipolar geometry, first introduced in (Longuet, 1981).
Epipolar geometry, which provides the geometric constraints between 2D image points in
the two cameras relative to the same 3D points with the assumption that the cameras can be
presented by using the pinhole model, has been utilized in camera calibration. However, it
still has some drawbacks for industrial inspection. The first difficulty is the correspondence
problem. In other words, determining the pixels of different views in terms of the same physic
point of the inspected part is not a trivial step, especially for a texture-less object, such as a
piece of white paper. Another problem is the sparse resolution of the reconstruction, usually
with a small number of points. Furthermore, the inappropriate ambient light condition would
also lead to the failure of the passive stereo vision.
In order to overcome the above drawbacks, active stereo vision, removing the ambiguity
of the texture-less part with a special projection device, is commonly used when dense
reconstructions are needed. For this technique, a special device (e.g. projector) is employed to
emit special patterns onto the identified object, which will be detected by the camera.
In a word, compared with the passive strategy, the active one is advantageous for robust and
accurate 3D scene reconstruction.
This chapter summarizes the coding strategy, 3D reconstruction, and sensor calibration for
active stereo vision, as well as the specific application in manufacturing industry. Our
contribution is to propose two pattern coding strategies and pixel-to-pixel calibration for
accurate 3D reconstruction in industrial inspection.
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2 Will-be-set-by-IN-TECH

2. Coding strategy

2.1 Related work

The key of the active stereo vision method is the encoding of the structured light pattern,
used to establish the correspondence between the camera and the projector, since it would
impact all the system performance, including measurement accuracy, the density of point
cloud, perception speed and reliability.
This chapter will focus on the fast 3D profile management. For this purpose we only
summarize the coding strategies with a single and a few patterns. A great variety of
different patterns have been addressed during the past decades(Salvi et al., 2010), e.g.,
temporal-coding patterns, direct-coding patterns, and spatial-neighborhood patterns, among
which the temporal-coding patterns are multi-shot and the other two patterns are one-shot.
For the temporal-coding approach, a group of patterns are sequentially illuminated onto the
measured surface. The codeword of each pixel is usually generated by its own intensity
variance over time. Therefore, this approach is usually regarded as a pixel-independent
and multiplexed approach. Because of the high accuracy and resolution performance, the
temporal patterns are the most extensively employed method in optical metrology.
At present, the phase-shifting method (PSM), which is a typical example of the above temporal
patterns, is the most commonly used pattern in 3D profile measurement for industrial quality
inspection. The reason is that this method could reach pixel-level resolution with high density.
Another benefit of this technique is its robustness to surface reflectivity and ambient light
variations. For this technique, the minimum number of patterns required is three. Hence, a
three-step phase shifting pattern is usually used, in which three sinusoidal patterns with 2π/3
phase shifting relative to each other are utilized (Huang & Zhang, 2006).
However, the calculated phase distribution is constricted in the rage of

[

−π +π
)

by means
of anti-tangent function due to the periodic property of the sinusoidal waveform, which is
named relative phase. Therefore, it is necessary to determine the order of phase shifting in the
camera image plane to eliminate the ambiguity, in order to obtain the absolute phase, which
refers to the continuous phase value relative to the standard phase.
The absolute phase ϕa is usually expressed using the relative phase ϕr as

ϕa = ϕr + 2kπ (1)

where k is the order of phase shifting. Furthermore, the relationship between the absolute
phase ϕa and the relative phase ϕr can be demonstrated as in figure 1.

Pixel 

Phase 

2

a

r

Fig. 1. The relationship between absolute phase and relative phase

To solve this problem, several unwrapping algorithms have been developed (Ghiglia & Pritt,
1998), among which a general unwrapping algorithm is to introduce a marker, i.e., a line in
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the perpendicular direction of the phase distribution. In this case, the absolute phase with
respect to the reference marker can be obtained by using the assumption of continuity of the
measured object. Several similar strategies have also been developed to solve this problem. It
should be pointed out that the proposed algorithms can only be used for smooth surfaces with
height variation no more than 2π within any adjacent pixels. Therefore, the 2π ambiguity
problem will arise when measuring surfaces with abrupt steps, resulting in inaccuracy of
the 3D measurement. Increasing the wavelength of phase shifting can solve this problem;
however, the measurement accuracy will be affected and the system will be susceptible to
noise.
One feasible solution is to take advantage of gray code and phase-shifting (GCPS) methods.
The gray code is essentially a binary code in which only two intensity levels are used.
Moreover, the constraint of Hamming distance is applied in the codeword formulation in
the gray code method. Thus, this technique is robust to noise. The basic idea of the GCPS
method is to divide the entire image plane into small patches by using the gray code method
to remove the 2π discontinuities; and then determine the fine relative phase in each patch (a
measured modulo 2π) by using the phase-shifting method. Thus, by integrating the gray code
and phase-shifting methods, the GCPS method achieves high accuracy and removes the 2π
ambiguity (Sansoni et al., 1999).
In addition to the GCPS method, an alternative way to resolve the above phase ambiguity
problem is the multiple-wavelength phase-shifting method (Towers et al., 2005; Reich et al.,
1997) as shown in figure 2. In this method, at least two different phase shifting patterns
with wavelengths λa and λb are used to distinguish the phase shifting order by comparing
the phase difference in an extended range with an equivalent wavelength λab, which can be
specified as:

λab =
λaλb

λb − λa
(2)

The extended wavelength leads to a unique phase distribution for the entire image without
loss of accuracy.

a

ab

b

Pixel 

Phase 

Fig. 2. Phase shifting with multiple-wavelength

However, both the GCPS method and the multiple-wavelength phase-shifting method require
more structured light patterns, which will sacrifice the measurement speed. Meanwhile, these
methods can only be used to measure stationary parts; otherwise, the sensor may capture
non-corresponding pattern codes due to the displacement of the inspected target, resulting in
inaccurate 3D shape measurement.
To reduce the number of patterns, a feasible solution is to integrate multiple phase shifting
patterns into a single composite pattern for real-time measurement (Guan et al., 2003), at
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the expense of measurement accuracy. Another commonly used one-shot pattern strategy is
based on the Fourier Transform Profilometry (FTP) (Takeda & Mutoh, 1983), in which a single
pattern is projected and analyzed in the spatial frequency domain. It should be noted that the
spectrum aliasing phenomena will affect the measurement accuracy. It should be mentioned
that a common problem of the phase shifting methods is their susceptibility to sensor and
environment noise.
In the direct-coding approach, to achieve a pixel level resolution, each pixel should have a
unique color value in the same pattern. Thus, a great number of colors are required. Moreover,
the captured color by the camera does not only depends on the color of the projected pattern,
but also relies on the color of the scanned surface. Thus, this direct-coding technique is very
susceptible to noise and ambient light and is inappropriate for quality inspection.
In the spatial-neighborhood approach, the codeword of the primitive is specified by its own
value and the values of its adjacent primitives. Thus, this technique can be implemented in
one-shot pattern for real-time 3D profile measurement. The most commonly used primitives
are color and geometry. Some of the color-based patterns are colored slit pattern, colored
stripe pattern, colored grid pattern, colored spot pattern, etc (Tehrani et al., 2008; Pages et al.,
2004; Je et al., 2004; Salvi, 1998; Payeur, 2009). The codeword of the each primitive is usually
formulated under the constraint of De Bruijn sequence(Pages et al., 2004), pseudorandom
sequence(Payeur, 2009) or M-arrays(Salvi, 1998). As a well-known type of mathematical
sequence, the De Bruijn sequence of order m with q different symbols is a circular sequence
with the length of qm, where each subsequence of length m exactly emerges once. Thus, each
subsequence can be uniquely identified in the entire sequence. Similarly, a pseudorandom
sequence is generated in the same way without the subsequence formed by 0. It is noted
that both of the above two methods are one-dimension spatial coding approaches, whereas
M-arrays are the two-dimension coding strategy. Assume that the total number of primitives
in the pattern is m × n, and then the sub-window of u × v appears only once for M-arrays
coding strategy. Examples of the geometry-based patterns are given in (Doignon, 2005).
Besides, the temporal monochromatic black/white stripe pattern is also usually adopted for
high speed 3D shape measurement. The black/white pattern has the following advantages:
first, the pattern identification is very easy and fast due to the simple image processing;
second, the measurement is very reliable because of the robustness to the varied reflection
property and ambient light. A temporal stripe coded pattern uses four different patterns for
binary boundary code, and generates 28 = 256 codes. Then, only 111 available codes are
employed to avoid decode error(Rusinkiewicz, 2002).
Recently, several other coding strategies for real-time measurement have been reported. The
black/white stripes combined with traversed color lines are used to form one-shot patterns.
In this method, the epipolar geometry constraint is used to decode the intersections between
the stripe boundaries and the color lines(Koninckx & Gool, 2006). A single stripe pattern is
proposed to reconstruct the 3D human face. To clarify the index of each stripe, an algorithm
based on the maximum spanning tree of a graph is used to identify the potential connectivity
and the adjacency in recorded stripes(Brink et al., 2008).
For accurate, reliable and fast measurements of industrial parts (e.g., automotive parts), the
projection pattern is supposed to meet the following requirements:
(a) high robustness to the reflectivity variance of the measured part;
(b) high consistence of the measurement performance;
(c) appropriate point cloud density to represent the 3D shape;
(d) accurate location of the primitives;
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(e) rapid decoding capability.
Motivated by these facts, we developed two novel structured light patterns for rapid 3D
measurement(Xu et al., 2010; 2011), inspired by previous research.
The first one, X-point pattern, is a one-shot pattern based on geometrical feature and
neighboring information. The primitive of this pattern is the corner of the black/white
chessboard pattern. Compared with traditional geometric primitives, such as disc and stripe,
the primitive of the X-point pattern is more reliable and accurate in detecting the primitive’s
location. The value of the primitive is represented by the direction of the X-point. This X-point
pattern can be used for real-time 3D shape measurement thanks to its one-shot nature.
The second one, the two-level binary pattern strategy, makes use of both the temporal and
spatial coding to reduce the number of required patterns. In this method, the value of the
stripe boundary (primitive) is determined by the intensity variance in time domain. Then,
the codeword of the primitive is calculated by using its own value and the values of the
neighboring primitives in space domain. This is the reason why this method is termed as
"two-level pattern" in this chapter.

2.2 X-point pattern coding strategy

The X-point pattern is based on the black/white binary pattern, through which the system
robustness can be enhanced by removing the influence of the color property of the inspected
parts. Only the geometrical feature can be used to distinguish different primitives in the
pattern when using this method. The concept of the X-point method is derived from the
chessboard, which is usually used in camera calibration due to the accurate positioning of
corner points. Thus, the X-point method is very accurate for 3D measurement. The value
of the primitive is represented by its orientation. As shown in figure 3, the corresponding
values of the four primitives are denoted as 0, 1, 2, and 3, respectively. The angle between the
orientation of the primitive and the horizontal line are 0, 45, 90, and 135 degrees, respectively.

horizontal line 

Fig. 3. The primitive design

Apparently, these four primitives are inadequate to remove the ambiguity in the pattern. To
solve this problem, the neighboring coding information should be integrated to obtain much
more amount of codeword. A straight-forward solution is to use both the value of a primitive
and those of its eight neighboring primitives, as shown in figure 4. In this case, the pattern
is able to recognize the 49 = 262, 144 unique primitives. Therefore, the maximum-allowable
number of points in the proposed pattern is 262,144 in theory.
Another benefit of the X-point method is to decrease occlusion influences. As shown in figure
5, a primitive located on the edge of the inspected part usually leads to partial loss of the
geometrical shape. However, it is evident that the primitive can still be detected by using the
proposed method, resulting in improved system performance.

Similarly, the two-level coding strategy is also based on the black/white pattern, to improve
reliability. Furthermore, the pattern is a three-step pattern, i.e. , the number of patterns is three
for 3D profile measurement. In this approach, the codeword of the primitive is determined by

2.3 Two-level binary pattern coding strategy 
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Fig. 4. The codeword based on 8 neighbor

Fig. 5. An example of occlusion

its own value and those of the neighboring primitives. The method to generate the boundary
value (represented by intensity variation in time domain) of two adjacent stripes is presented
as follows.
In theory, the maximum possible number of intensity variance for each stripe over time is
eight. In this chapter, the values are represented by 000, 001, 010, 011, 100, 101, 110, and 111,
respectively. The value 001 means that the intensity of the stripe is switched in the order of
white, black, and black over time. In this chapter, the values 000 and 111 are discarded to
remove the influence of the reflectivity of the inspected part. In other words, the intensity
of the stripe should change at least once during the measurement. Therefore, six remaining
values 001, 010, 011, 100, 101, and 110 are used for coding the stripe. In order to achieve
sub-pixel accuracy of stripe boundary detection, the location is specified by using the inverse
intensity stripe, as shown in figure 6. A, B, C and D represent the intensity values of the
successive pixels n and n + 1 around the stripe boundary. The accurate location of a stripe
boundary can be obtained as:

P = Pn+1 −
D − B

(A + D)− (B + C)
(3)

It is clear that the error is constrained within one pixel by using the above approach.

Intensity 

Coordinate n+1Pn

A C

B D

Fig. 6. The edge detection with inverse intensity

The above stripe boundary detection strategy imports another constraint for the configuration
of adjacent stripes, where the intensity is supposed to vary twice in the space domain. In
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this case, assuming that one stripe is 001, the next stripe can only be selected from 010, 100,
110. Thus, the possible number for the arrangement of connected stripes is 3 × 6 = 18. The
potential stripe boundaries are listed in figure 7

Time 

Space

Level 1 

Level 2 

frame 1

frame 2

frame 3

Fig. 7. The potential stripe boundaries

(a) Pattern 1 (b) Pattern 2

(c) Pattern 3

Fig. 8. The three two-level patterns

The second step is to form the codeword for each stripe boundary by using a series of
successive stripes in space. Thus, the two-level pattern is essentially a sequence of stripe
patterns. The codeword of each stripe boundary is determined by a successive subsequence.
To uniquely locate each stripe boundary in a single pattern, the subsequence length n should
be specified. Without loss of generality, we assume that the possible number of the first stripe
is 6 while the possible number of the second one is 3. Similarly, there are 3 options for each
stripe in the remaining adjacent stripes. Therefore, the number of unique subsequence is
6 × 3n−1. For instance, if the length of the subsequence is 4, then 162 unique subsequences
can be formulated under the above constraints. The subsequence can be generated by using
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Fleury’s algorithm, which is described in detail in (Xu et al., 2011). 128 unique subsequences
are selected to form the illuminated patterns for 3D profile measurement, The pattern
resolution is 768 × 1024 pixels, where the width of each strip is 6 pixels as shown in figure
8.

3. Phase-height mapping strategy

The phase-height mapping approach is the critical step of active vision, which converts the
phase distribution in the camera image plane to the corresponding coordinate of the inspected
object. The existing methods for transforming the phase to coordinate can be categorized into
two types: absolute height method and relative height method.
In a stereo vision sensor, the projector is considered as an inverse camera, thus, both the
camera and the projector can be represented by the pinhole model. When the distortion of the
lens is ignored, the relationship between a point of the scanned object in the world frame and
the corresponding pixels in the camera or projector image plane can be uniformly expressed:

sI = A
[

R t
]

X (4)

where I =
[

r c 1
]T

is the homogeneous coordinate of any arbitrary pixel in the image

frame of the camera or projector; X =
[

x y z 1
]T

is the homogeneous coordinate of the
corresponding point in the world frame; s is a scale factor;

[

R t
]

is the extrinsic parameters
representing the 3 × 3 rotation matrix and 3× 1 translation vector from the world frame to the
image frame; A is the intrinsic parameters matrix which is written as:

A =

⎡

⎣

α γ r0

0 β c0

0 0 1

⎤

⎦ (5)

Where r0 and c0 are the coordinates of the principle point; α and β are the focal length along
two image axes of the image plane; γ is the skew parameter of the two image axes. Further,
Eq.(4) can be represented by using the perspective projection matrix:

s

⎡

⎣

r
c
1

⎤

⎦ =

⎡

⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

⎤

⎦

⎡

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎦

(6)

where

⎡

⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

⎤

⎦ = A
[

R t
]

= M is is the perspective projection matrix, which is

utilized to map a 3D point in the word frame to a 2D point in the image plane.
Next, we eliminate the homogeneous scale s in Eq. (6) and obtain the general formula for both
the camera and projector as:

{

r =
m11 x+m12y+m13z+m14

m31 x+m32y+m33z+m34

c =
m21x+m22y+m23z+m24

m31x+m32y+m33z+m34

(7)

Without loss of generality, any pixel in the camera image plane generates a viewing ray-line
through the optical center of the camera in the world frame. Then, we can obtain the viewing
ray-line equation by using the following liner equation:
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⎧

⎨

⎩

rc =
mc

11x+mc
12y+mc

13z+mc
14

mc
31x+mc

32y+mc
33z+mc

34

cc =
mc

21x+mc
22y+mc

23z+mc
24

mc
31x+mc

32y+mc
33z+mc

34

(8)

Moreover, we can get the absolute phase distribution when the stripe pattern (i.e., two-level
binary pattern) or the phase shifting pattern is adopted. In this case, the corresponding pixel
in the projector image plane must lie on a line with the same phase value. To be specific, we
assume that the line is a horizontal line with coordinate cp, thus, the line forms a projecting
ray-plane through the optical center of the projector in the world frame, intersecting the
scanned surface.

cp =
m

p
21x + m

p
22y + m

p
23z + m

p
24

m
p
31x + m

p
32y + m

p
33z + m

p
34

(9)

Obviously, the scanned surface point is the intersection of the ray-plane and the ray-line as
shown in figure 9 by using linear equations bringing the Eq.(8) and Eq.(9) together. So this
method is referred to as the plane-line mapping approach in this chapter.

zc

xc

yc

yp

zp xp

op

oc

Ip

Ic

X

Fig. 9. The intersection of the plane and line

Actually, the projector is regarded as an inverse camera, since it projects images instead of
capturing them. Consequently, both the camera and the projector have the same mathematic
model such that the epipolar constraint is also satisfied by the projector and the camera. As
shown in figure 10, point X is a measured point of the distorted stripe boundary on the
inspected part. Point Ic is the projection of X in the camera image plane; while point Ip is
the corresponding point of X in the projector image plane. Thus, the point Ip is restricted to
lie on the epipolar line lp due to the constraint of the epipolar geometry in stereo vision:

lp = F · Ic (10)

where F is the fundamental matrix determined by calibration.

zc

xc

yc

yp

zp xp

op

oc

X

Ip

Ic

lp

ep

ec

Fig. 10. The intersection of the line and line

When the stripe pattern or the phase shifting pattern is used, the corresponding pixel Ip for
pixel Ic in the camera plane is the intersection the epipolar line lp and the line with the phase
equal to that of Ic in the projector plane.
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Similarly, if the two-dimension coding pattern (i.e, X-point pattern), providing the location in
the two axes of projector image plane, is adopted, then the pixel Ip can be directly obtained
without the help of epipolar geometry.
Once the corresponding pixels are determined, we can get the a projecting ray-line through
the optical center of the projector as:

⎧

⎨

⎩

rc =
mc

11x+mc
12y+mc

13z+mc
14

mc
31x+mc

32y+mc
33z+mc

34

cc =
mc

21x+mc
22y+mc

23z+mc
24

mc
31x+mc

32y+mc
33z+mc

34

(11)

In this case, the calculation of the 3D surface point is converted to a line-line intersection
problem. Combining Eq.(8) and Eq.(11), we can get the coordinate of the surface point. The
equation can be solved by using the least-squares method, however, due to errors in the
pinhole model of the camera and projector, the two ray-lines will not intersect in the 3D space.
A better way is to compute the closest approach of the two skew lines, i.e., the shortest line
segment connecting them. If the length of this segment is less than the threshold, we assign the
midpoints as the intersection of the two lines; if it is larger than the threshold, we assume that
there are some mistakes for the correspondence. The elaborated description for this method
can be found in (Shapiro, 2001).

AB

b

h

C

Projector Camera 

Reference plane
L

S

DE

Image plane 

Fig. 11. The relative height caculation

Instead of measuring the absolute coordinate, the relative height variation is more emphasized
in quality inspections. So another method is to obtain the relative height with respect to the
reference plane using the triangular similarity method. As shown in figure 11, from the similar
triangles ∆ABC and ∆CDE , the relative height h from the surface to the reference plane can
be calculated by

h =
L × S

b + L
(12)

where b denotes the baseline distance between the optical centers of the camera and projector;
S is the standoff distance between the reference plane and the optical center of the camera; L
is the distance of two corresponding pixels A and B. Eq.(12) can be further rewritten by using
the pixel coordinate as:

h =
res × m × S

b + res × m
(13)
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in which res is the resolution of the camera with a unit of mm/pixel and m signifies the number
of pixels from A to B.
Furthermore, a simplified calculation of the relative height can be directly expressed as the
production of a coefficient and the phase when the stand off distance S is much larger than
the relative height h. (Su et al., 1992)

4. Calibration

The key procedure to guarantee accurate profile reconstruction of the inspected object is the
proper calibration of the components of the active stereo vision, involving camera, projector,
and system calibration(Li & Chen, 2003). The fundamental difference between the passive
stereo vision and the active stereo vision is that one camera is replaced by a projector, leading
to time-consuming and complicated calibration procedure for the reason that the projector
cannot directly view the scene. To solve this problem, the projector is treated as an inverse
camera. Then, we can calibrate the camera and the projector separately. We fist calibrate
the camera and then determine the correspondence between the pixels in the projector and
those in the calibration gauge using the camera(Zhang & Huang, 2006). In this case, the
projector can be calibrated by using a similar technique as camera calibration. To be specific,
the calibration of intrinsic and extrinsic parameters of both camera and projector can be
implemented by using in the online Matalab toolbox.
Other methods involve neural networks, bundle adjustment, or absolute phase. However,
these traditional calibration methods for active stereo vision treat both the camera and the
projector as pin-hole models. A pinhole model is an ideal mathematical model where all the
incident light rays go through a single point. However, a calibration residual error always
exist when using a pinhole model, especially for affordable off-the-shelf equipment.
In this chapter, a pixel-to-pixel calibration concept has been adopted to improve system
accuracy. For this technique, pixel-wise correspondence between the projector and the
camera is established, instead of using the unique transformation matrix as in the approach
mentioned above. Therefore, the significant merit is to improve the measurement accuracy
because of the elimination of residual error of the sensor calibration. Additionally, another
advantage is to avoid the projector calibration, which appears more tedious and complicated
since the projector cannot view the calibration gauge in the scene.
From Eq. (13), the motivation of the active stereo vision sensor calibration is to obtain the
parameters S, b and res. First, we will explain how to calibrate the parameter (S, b) for each
couple of corresponding points in the pixel-to-pixel calibration approach.
In figure 12, the points Di and Ei are corresponding pixels belonging to the same
physical point Ci, where Ei, a virtual point, perhaps out of the image plane of the
camera, is the intersection of two lines: the reflective ray of light CiEi , and the baseline
DiEi parallel to the reference plane. In this case, a set of sensor parameter matrices
(

b(i,j), S(i,j), i = 1, 2 · · · m; j = 1, 2 · · · n
)

are required to be calculated for each point on the

projector image plane, where i, j are image coordinate indices of the correspondences in
camera. A group of Ln(i,j) can be calculated while the reference plane is moved to different
heights for n times. Consequently, the sensor parameters b(i,j) and S(i,j) are computed using a
linear least squares approach:

⎡

⎣

h1(i,j) −L1(i,j)

· · · · · ·

hn(i,j) −Ln(i,j)

⎤

⎦ ·

[

b(i,j)
S(i,j)

]

=

⎡

⎣

−h1(i,j) × L1(i,j)

· · ·

−hn(i,j) × Ln(i,j)

⎤

⎦ (14)
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Fig. 12. Calibration of parameter (S, b)

So, Eqn.(12) can be rewritten as

h(i,j) =
L(i,j) × S(i,j)

b(i,j) + L(i,j)
(15)

The remaining parameter res can be obtained by counting the pixels of a line with known
length in the image. Next, the distance L can be further determined by using the calibrated
parameter res.

Projector

Camera 

B

A’B’

C

P
M’

M

A

HC

Fig. 13. Calibration of the offset angle α

The previous discussion focuses on the calibration the baseline distance b and standoff S
provided that the L is accurately measured. However, inaccurate placement of the camera
and projector will generate a system offset angle α, resulting in error of L, As shown in figure
13, point C is the point on the surface of the inspected object, with relative height HC to
the reference plane. AB and A′B′ are the projected lines of MP and M′P on the reference
plane, respectively. The calculated line AB is perpendicular to the stripe boundary. The
angle between the calculated line AB and actual line A′B′ is called the offset angle α, which
has to be calibrated. When using a pixel-to-pixel calibration method, M is assumed point
corresponding to P. However actually M′ is the real point corresponding to point P. ∆M′CP
and ∆A′CB′ are similar triangles and hence the distance L′ between point A′ and B′ should be
used to compute HC. However, the patterns used are encoded along the image rows, which
means codes are identical in one dimension. If α is not calibrated, instead of L′, L will be
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utilized to calculate HC Therefore, the error ∆L between L′ and L causes the error ∆HC in
measuring HC.
To solve this problem, one way is to encode both horizontal and vertical stripes, which
requires much more time for image acquisition and processing. An alternative method is
to calibrate the offset angle ∆L in off-line mode, speeding up the real-time inspection process.
The real distance L′

(i,j) can be denoted by:

L′

(i,j) = L(i,j) sec
(

α(i,j)

)

(16)

where L(i,j) is the is the measured distance and α(i,j) is calibrated offset angle.
Similarly to the baseline and standoff distance calibration, the offset angle α(i,j) also can be
calibrated by pixel-to-pixel strategy. The calibration procedure can be divided into two steps:
(1)Determine a pair of corresponding points A′ and C′ from two sets of images
(2)Calculate the offset angle α(i,j)

5. Experimental results and discussion

A prototype of a 3D shape rapid measurement system, as shown in figure 14, has been
developed to verify the performance of the two proposed coding strategies, based on X-point
and two-level binary patterns. For the larger scale part measurement, in order to ensure
that the covered area for each pixel is not too big for the accuracy requirement, four
groups of area sensors are configured. Each area sensor consists of a commercial projector
(Hitachi CP-X253 Series LCD Projectors, with 768 × 1024 resolution) and a high resolution
commercial IEEE-1394 monochrome camera (Toshiba Monochrome Firewire Cameras with
2008 × 2044 resolution, Model: CSB4000F-10). The baseline distance (distance of the optical
centers between the camera and projector) of the area sensor is around 500 mm and the
standoff distance(distance between the reference plane and the optical center of the camera)
is approximate 1550 mm. The exact values of baseline distance and standoff distance are
calibrated using the proposed pixel-to-pixel method.

Fig. 14. The measurement system setup

The first experiment is to evaluate the accuracy of the measurement system, where a
known-height flat gauge is measured 10 times by the X-point pattern and the two-level
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binary pattern separately. The standard deviation shows the accuracy and consistency of
the measurement performance. For our measurement system, the standard deviations of the
X-point pattern and two-level binary pattern were 0.18 mm and 0.19 mm, respectively. The
results illustrate that the two proposed patterns have similar accuracy performances. It should
be stressed that the accuracy can be further improved if the baseline distance is extended.
However, the negative impact of this is that the measurement area is decreased because of the
reduction of the common field of view for the projector and camera.
The second experiment is to validate the efficiency of the proposed patterns for complicated
part measurements. To this end, two different automotive parts (a pillar with a size of around
700 × 550 mm and a door with a size of around 1500 × 750 mm) with different shapes were
used in our trials. The results as shown in figure 15 demonstrate that the proposed patterns
can handle the step of the pillar and the hole of the door even when occlusion arises.

(a) measured pillar

g

(b) point cloud of the pillar

(c) measured door (d) point cloud of the door

Fig. 15. The complicated part measurement

6. Conclusion

The purpose of this chapter has been to introduce the measurement system based on active
stereo vision. The pattern coding strategy is the most important for active stereo vision.
Therefore, we first summarized the existing strategies for the 3D rapid measurement. To
meet the requirements of industrial quality inspection, two black/white patterns, including
X-point and two-level stripe patterns, have been proposed in this chapter. Both patterns can
provide the absolute phase distribution, useful for the parts with complicated shapes(e.g., the
step and the hole ). The experimental results demonstrate that the proposed patterns promise
high speed, robustness and accuracy. To increase the accuracy of the measurement system
and avoid the need for projector calibration, a pixel-to-pixel calibration approach has been
employed in this chapter. The common shortcoming of our proposed patterns is the lack of
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pixel-wise resolution, which can be obtained by using phase shifting. In the future, a coding
strategy of higher resolution, requiring less patterns, will be studied.
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