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1. Introduction  

Recently, super-resolution reconstruction (SRR) method of low-dimensional face subspaces 
has been proposed for face recognition. This face subspace, also known as eigenface, is 
extracted using principal component analysis (PCA). One of the disadvantages of the 
reconstructed features obtained from the super-resolution face subspace is that no class 
information is included. To remedy the mentioned problem, at first, this chapter will be 
discussed about two novel methods for super-resolution reconstruction of discriminative 
features, i.e., class-specific and discriminant analysis of principal components; that aims on 
improving the discriminant power of the recognition systems. Next, we discuss about two-
dimensional principal component analysis (2DPCA), also refered to as image PCA. We suggest 
new reconstruction algorithm based on the replacement of PCA with 2DPCA in extracting 
super-resolution subspace for face and automatic target recognition. Our experimental 
results on Yale and ORL face databases are very encouraging. Furthermore, the performance 
of our proposed approach on the MSTAR database is also tested.  
In general, the fidelity of data, feature extraction, discriminant analysis, and classification 
rule are four basic elements in face and target recognition systems. One of the efficacies of 
recognition systems could be improved by enhancing the fidelity of the noisy, blurred, and 
undersampled images that are captured by the surveillance imagers.  Regarding to the 
fidelity of data, when the resolution of the captured image is too small, the quality of the 
detail information becomes too limited, leading to severely poor decisions in most of the 
existing recognition systems.  Having used super-resolution reconstruction algorithms (Park 
et al., 2003), it is fortunately to learn that a high-resolution (HR) image can be reconstructed 
from an undersampled image sequence obtained from the original scene with pixel 
displacements among images. This HR image is then used to input to the recognition system 
in order to improve the recognition performance. In fact, super-resolution can be considered 
as the numerical and regularization study of the ill-conditioned large scale problem given to 
describe the relationship between low-resolution (LR) and HR pixels (Nguyen et al., 2001). 
On the one hand, feature extraction aims at reducing the dimensionality of face or target 
image so that the extracted feature is as representative as possible.  On the other hand, 
super-resolution aims at visually increasing the dimensionality of face or target image. 
Having applied super-resolution methods at pixel domain (Lin et al., 2005; Wagner et al., 
2004), the performance of face and target recognition applicably increases. However, with 
the emphases on improving computational complexity and robustness to registration error 
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and noise, the continuing research direction of face recognition is now focusing on using 
eigenface super-resolution (Gunturk et al., 2003; Jia & Gong, 2005; Sezer et al., 2006).  
The essential idea of eigen-domain based super-resolution using 2D eigenface instead of the 
conventional 1D eigenface is to overcome the three major problems in face recognition 
system, i.e., the curse of dimensionality, the prohibited computing processing of the singular 
value decomposition at visually improved high-quality image, and natural structure and 
correlation breaking in the original data.  
In Section 2, the basic of super-resolution for low-dimensional framework is briefly 
explained. Then, discriminant approaches are detailed in Section 3 with the purpose of 
increasing the discrimination power of the eigen-domain based super-resolution. In Section 
4, the implement of the two dimensional eigen-domain based super-resolution is addressed. 
We also discuss the possibility of the extension of two dimensional eigen-domain based 
super-resolution with discriminant information in Section 5. Finally, Section 6 provides the 
experimental results on the Yale and ORL face databases and MSTAR non-face database.  

2. Eigenface-domain super-resolution 

The fundamental of the super-resolution for in low-dimensional face subspace is formulated 
here. The important of the image super-resolution model and its eigenface-domain based 
reconstruction is that they can be used for practical extensions of one- and two-dimensional 
super-resolved discriminant face subspaces in the next sections, respectively.  

2.1 Image super-resolution model 

According to the numerically computational SRR framework (Nguyen et al., 2001), the 
relationship between an HR image and a set of LR images can be formulated in matrix form 
as follows: 

 , 1k k k k kD B E k p= + ≤ ≤f x n  (1) 

where p is the number of available frame, kf and x are vectors extracted from the kth LR 

image frame and HR image in lexicographical order, respectively, and D is the down-
sampling operator, B is the blurring or averaging operator, and Ek is the affine transform, 
and nk is noise of the frame k, respectively. 
Thus, we can reformulate (1) as  

                                            
1 1 1 1 1

p p p p p

D B E

D B E

     
     
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     
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f n

x

f n

    (2) 

or 

       
.

k k kH= +

= +

f x n

f Hx n
 (3) 

The above equation can be solved as an inverse problem with a regularization term, or 

       λ −= +T T 1x H (HH I) f . (4) 
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It should be noted that the matrix H is a very large sparse matrix. As a result, the analytic 
solution of x is very hard to find. One of the popular methods used for finding the solution 
of this kind of the inverse problem is by using conjugate gradient method. 

2.1 Reconstruction algorithm  

Common preprocessing step used for pattern recognition and in compression schemes is 

dimensionality reduction of data. In image analysis, PCA is one of the popular methods 

used for dimensionality reduction. Let Φ be an optimal eigenface that removes the 

redundancy by decorrelating the image data x. The optimal eigenfaces are coded in its 

columns. Face image x is assumed to be vectored. Thus, the optimal image representation of 

x can be written as 

       x= +x Φa e , (5) 

where a is the 1L × dimensional feature that represents x, and ex is its representation error. 

Given that Ψ  is the 2 2N Lβ ×  matrix that contains eigenfaces of the kth LR image frame, 

where the scaling resolution factor β  is within the range 0 to 1 and N is the total face image 

pixels. We can formulate the low-resolution image representation as 

       ˆ
kk k f= +f Ψa e . (6) 

By substituting (5) and (6) in (3), we obtain 

       ˆ
kk f k k x kH H+ = + +Ψa e Φa e n . (7) 

Since 

       0
k

T
f =Ψ e  (8) 

and 

 1T =Ψ Ψ . (9) 

It is easy to derive the following equation 

       ˆ T T T
k k k x kH H= + +a Ψ Φa Ψ e Ψ n . (10) 

By considering the second and third terms as the observation noise with Gaussian 
distribution (Gunturk et al., 2003), we can obtain 

       ˆ T
k k kζ= Λ +a a Ψ , (11) 

where 

       k k x kHζ = +e n , (12) 

and 

       T
k kHΛ = Ψ Φ . (13) 
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Without loss of generality, we can numerically solve for the true super-resolution feature 
vector at the eigen-domain level as in (5), or 

       ˆγ −= +T T 1a Λ (ΛΛ I) a , (14) 

where γ is the regularization term. In particular, we introduce the notation p in (14) in order 

to differentiate the PCA-domain based super-resolution approach (Gunturk et al., 2003) 
from our proposed approaches which will be presented in the upcoming sections, 

       ˆT T
p p p p pγ −= + 1a Λ (Λ Λ I) a . (15) 

3. Discriminant face subspaces  

PCA and its eigenface extension are constructed around the criteria of preserving the data 
distribution. Hence, it is well suited for face representation and reconstruction from the 

projected face feature. However, it is not an efficient classification method because the 
between classes relationship has been neglected. Here, we discuss on the possibilities that 
how we can embed discriminant information into eigenface-domain based super-resolution.  

3.1 Face-specific subspace super-resolution 

As widely known, the eigen-domain based face recognition methods use the subspace 

projections that do not consider class label information. The eigenface's criterion chooses the 

face subspace (coordinates) as the function of data distribution that yields the maximum 

covariance of all sample data. In fact, the coordinates that maximize the scatter of the data 

from all training samples might not be so adequate to discriminate classes. In recognition 

task, a projection is always preferred to include discrimination information between classes. 

One of the extensions of eigenface, called face-specific subspace (FSS) (Shan, 2003), is 

proposed as an alternative feature extraction method to include class information for face 

recognition application. According to FSS, each reduced dimensional basis of class-specific 

subspace (CSS) is learned from the training samples of the same class. Actually, each 

individual set of CSS optimally represents the data within its own class with negligible 

error. As a result, large representation error occurs, when the input data is projected and 

then reconstructed using a reduced set with less maximum covariance coordinates (or 

equivalently, using a set of principal components that does not belong to the input class). 

This way, by using reconstruction error obtained from projection-reconstruction process 

between classes, also called distance from CSS (DFCSS), a new metric can be suitably used 

as the distance for classifying the input data. In other words, the smaller the DFCSS is, the 

higher the probability that the input data belongs to the corresponding class will be. Similar 

work based on FSS (Belhumeur, 1997) attacking wide attentions in face recognition society is 

also published recently. 

The original face-specific subspace (FSS) was proposed to manipulate the conventional 

eigenface in order to improve the recognition performance. According to FSS, the difference 

between FSS and the traditional method is that the covariance matrix of the pth class is 

individually evaluated from training samples of the pth class. Thus, the pth FSS is represented 

as a 4-tuple, i.e., the projection matrix, the mean of the pth class, the eigenvalues of 

covariance matrix, and the dimension of the pth CSS. For identification, the input sample is 
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projected using all CSSs and then reconstruct by those CSSs. If reconstruction error which 

obtained from the pth CSS is minimum then the input sample is belong to the pth class, also 

called distance from CSS (DFCSS).  

There are many advantages of using CSS in face and target recognition. For example, the 
transformation matrices are trained from samples within their own classes, thus it is more 
optimum (using fewer components) to represent each sample in its own class than a 
transformation matrix trained by samples in all classes. Additionally, since DFCSS is the 
distance between the original image and its reconstruction image obtained from CSS, the 
memory space needed is only for storing the C transformation matrices, where C is the 
number of classes. This is far less than the conventional subspace methods, where we need 
to store both a single all-classes transformation matrix and also its prototypes (a large set of 
feature vectors calculated for all training samples). Moreover, the number of distance 
calculation in CSS is less than the number of distance calculation in conventional methods, 
since the number of classes is usually less than the number of training samples. 
By combining super-resolution reconstruction approach with class-specific idea, a new 
method for face and automatic target recognition is proposed. 

3.2 Discriminant analysis of principal components  

The PCA's criterion chooses the subspace as the function of data probability distribution 
while linear discriminant analysis (LDA) chooses the subspace which yields maximal inter-
class distance, and at the same time, keeping the intra-class distance small. In general, LDA 
extracts features which are better suitable for classification task. Both techniques intend to 
project the vector representing face image onto lower dimensional subspace, in which each 
2D face image matrix must be first transformed into vector and then a collection of the 
transformed face vectors are concatenated into a matrix.  
The PCA and LDA implementation causes three major problems in pattern recognition. First 
of all, the covariance matrix, which collects the feature vectors with high dimension, will 
lead to curse of dimensionality. It will further cause the very demanding computation both in 
terms of memory and time. Secondly, the spatial structure information could be lost when 
the column-stacking vectorization and image resize are applied. Finally, especially in face 
recognition task, the available number of training samples is relatively small compared to 
the feature dimension, so the covariance matrix which estimated by these features trends to 
be singular, which is addressed ased singularity problem or small sample zize (SSS) problem. 
Especially, as a supervised technique, LDA has a tendency to overfitting because of the SSS 
problems. 
Various solutions have been proposed for solving the SSS problem. Among these LDA 
extensions, Fisherface and the discriminant analysis of principal components framework 
(Zhao, 1998) demonstrate a significant improvement when applying LDA over principal 
components subspace. Since both PCA and LDA can overcome the drawbacks of each other. 
It has also been noted that LDA faces two certain drawbacks when directly applied to the 
original input space. First of all, some non-face information such as image background has 
been regarded by LDA as the discriminant information. This causes misclassification when 
the face of the same subject is presented on different background. Secondly, the within-class 
scatter matrix trends to be singular when SSS problem has occurred. Projecting the high 
dimensional input space into low dimensional subspace via PCA first can solve the 
shortcomings of the LDA problems. In other words, class information should be included to 
PCA by incorporating LDA. 
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3.2.1 Proposed reconstruction algorithm 

Here, we can obtain a linear projection which maps the HR input image x first into the face 
subspace, and finally into the classification space z. Thus, we can modify the equation (5) to 
be 

       z dp x z= + +x WΦa e e , (16) 

where zW is the optimal discrimination projection obtained from solving the generalized 

eigenvalue problem:  

       z z=B wS W λS W , (17) 

and BS , WS are the between-class and within-class scatter matrices, respectively.  Similarly, we 

can find the optimal discriminant project of the LR image frame '
zW , by little manipulating 

on (16)-(17) with corresponding LR images. 

With little manipulations, we can reconstruct discriminant analysis of principal components 

based super-resolution as 

       ˆT T
dp dp dp dp dpγ −= + 1a Λ (Λ Λ I) a , (18) 

where 

       '
lp z z= TΛ W Ψ HW Φ , (19) 

and 

       z k= + +xζ He He n . (20) 

4. Two-dimensional eigen-domain based super-resolution 

Recently, Yang (Yang et al., 2004) proposed an original technique called two-dimensional 

principal component analysis (2DPCA), in which the image covariance matrix is computed 

directly on image matrices so the spatial structure information can be preserved. One of the 

benefits of this method is that the dimension of the covariance matrix just equals to the 

width of the face image or the height in case of 2DPCA variant.  This size is much smaller 

than the size of covariance matrix estimated in PCA. Therefore, the image covariance matrix 

can be better estimated with full rank in case of few training examples, like in face 

recognition.  

We now consider linear projection of the form 

       = + xx Θv e  , (21) 

where x  represents any face image in its original matrix form, { }1 , , dθ θ , be the d largest 

eigenvectors that can be form to beΘ ,and v is the projected HR feature of this image on 

Θ , called principal component matrix. The criterion used for obtaining the eigenvectors in 

(21) has been descriptively shown in Yang and Sanguangsat (Yang et al., 2004; 
Sanguangsat, 2006). 
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4.1 Alternative image super-resolution model 

LR and HR images can be simply related as (Vijay, 2008) 

 , 1k k k kL R k p= + ≤ ≤f x n   . (22) 

where p is the number of available frame; kL , kR are downsampling matrices, and kf
 , x are 

image matrices from the kth LR image frame and HR image, respectively. It should be 

noted that two-dimensional Gaussian blur can be represented by using together the two 

separate kL and kR . An extension to downsampling and affine transform can also be easily 

conducted by placing the elements of the matrices properly (Gsmooth, n.d.).  It should 

also be noted that both the input LR and HR image are represented in its original matrix 

form. We do not transform the LR and HR images to be vectors in lexicography order as 

in (1). 

4.2 Proposed reconstruction algorithm  

Thus, 

       ˆ
k

k k k k x k kf
L R L R+ = + +Γv e Θv e n  , (23) 

where { }1 , , dΓ Γ , be the d largest eigenvectors that can be form to be Γ ,and ˆ
kv is the 

projected LR feature of the image on Γ . 
Without loss of generality, 

       0
k

T
f =Γ e  (24) 

and 

 1T =Γ Γ . (25) 

It is easy to derive the following equation 

       ˆ T T T
k k k k x k kL R L R= + +v Γ Θv Γ e Γ n . (26) 

It should be noted that ˆ
kv is a feature matrix, unlike ˆ

ka which is a feature vector. Thus, it 

is a little more complicated to solve the inverse problem for super-resolution feature 

matrix kv . By applying vector operator as presented in Kumar and Schott (Kumar, 2008; 

Schott, 2005),  

(26) can be rewritten as 

       ˆ
k k kβ β η= Ξ + , (27) 

where ˆ ˆ( )k kvecβ = v , ( )k vecβ = v , T T
k k kR LΞ = ⊗Γ Θ and ( )T T

k k x k kvec L Rη = +Γ e Γ n . Here ⊗ is 

Kronecker operator. This way, we can solve for the two-dimensional feature matrix at the 

eigen-domain level similarly to (15) and (18), or 

 ˆγ −= +T T 1β Ξ (ΞΞ I) β , (28) 
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where γ is the regularization term. Thus, after we convert β back to matrix, we will obtain 

the desired super-resolution feature matrix. 

5. Extensions to two-dimensional linear discriminant analysis of principal 
component matrix 

Similarly to PCA, 2DPCA is more suitable for face representation than face recognition. For 
better performance in recognition task, LDA is necessary. Unfortunately, the linear 
transformation of 2DPCA reduces only the size of rows. However, if we apply LDA directly 
to 2DPCA, the number of the rows still equals to the height of original image.  As a result, 
we are still facing the singular problem in LDA. Thus, a modified LDA, called two-
dimensional linear discriminant analysis (2DLDA), based on the 2DPCA concept is proposed to 
overcome the SSS problem. Applying 2DLDA to 2DPCA not only can solve the SSS problem 
and the curse of dimensionality dilemma but also allows us to work directly on the image 
matrix in all projections. This way, the spatial structure information is still maintained. 
Moreover, the SSS problem has been remedy since the size of all scatter matrices cannot be 
greater than the width of face image. Our research group (Sanguangsat, 2006) are the first 
group that focus on the extension of discriminant analysis of principal component of Section 
3.1 by two-dimensional projection, called two-dimensional linear discriminant of principal 
component matrix 

6. Experimental results 

Having assumed that we can perfectly obtain the information regarding to frame to frame 

motion, hence we can use these information to form the proper super-resolution matrix 

equation in (5). In our experiment settings, evaluation images were shifted by a uniform 

random integer, blurred with 4 4×  Gaussian point spreading function with standard 

deviation 1, and downsampled by a factor of four to produce 16 low-resolution images for 

each high-resolution image. Using 9 (preselected) out of 16 complete set of frames of each 

image, we can construct the super-resolution subspaces and also super-resolution images, 

respectively.  Our super-resolution subspace approach is then compared with pixel-domain 

super-resolution approach using the class-specific subspace for face and automatic target 

recognition. Here, we conduct and show experiments according to the algorithm proposed 

in Subsection 3.1 only. Ongoing experiments on the other reconstruction algorithms, i.e., 
discriminant analysis of principal components, two-dimensional eigenface-domain based super-

resolution, and 2DLDA of 2DPCA, are conducting. Essentially, we expect very encouraging 

the recognition results. 

6.1 Evaluation databases 

Eigenface-domain super-resolution method is used as the baseline for comparison based on 

the well-known Yale and AR face databases (Yale, 1997; Martinez, 1998) and MSTAR non-

face database (Center, 1997), respectively.  

6.1.1 Yale database 

The Yale database contains 165 images of 15 subjects. There are 11images per subject, one for 

each of the following facial expressions or configurations: center-light, with glasses, happy, 
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left-light, without glasses, normal, right-light, sad, sleepy, surprised, and wink. All sample 

images of one person from the Yale database are shown in Fig. 1. Each image was manually 

cropped and resized to 100 80×  pixels. In all experiments, the five image samples 

(centerlight, glasses, happy, leftlight, and noglasses) are used for training, and the six 

remaining images (normal, rightlight, sad, sleepy, surprise and wink) for test. 

 

 
 

Fig. 1. The sample images of one subject in the Yale database 

 

 
 

 
 

Fig. 2. The sample images of one subject in the AR database 

6.1.2 AR database 

The AR face database was created by Aleix Martinez and Robert Benavente in the Computer 

Vision Center (CVC) at the U.A.B. It contains over 4,000 color images corresponding to 126 

people's faces (70 men and 56 women). Images feature frontal view faces with different 

facial expressions, illumination conditions, and occlusions (sun glasses and scarf). The 

pictures were taken at the CVC under strictly controlled conditions. No restrictions on wear 

(clothes, glasses, etc.), make-up, hair style, etc. were imposed to participants. Each person 

participated in two sessions, separated by two weeks (14 days) time. The same pictures were 

taken in both sessions. 

In our experiments, only 14 images without occlusions (sun glasses and scarf) are used for 

each subject, as shown in Fig. 2. All images were manually cropped and resized to 

112 92× pixels, and then convert to 256 level gray scale images. The first five images per 

subject are used to train, and the remaining images to test. 

6.1.3 MSTAR database 

The MSTAR public release data set contains high resolution synthetic aperture radar data 

collected by the DARPA/Wright laboratory Moving and Stationary Target Acquisition and 

Recognition (MSTAR) program. The data set contains SAR images with size 128 128× of 

three difference types of military vehicles, i.e., BMP2 armored personal carriers (APCs), 

BTR70 APCs, and T72 tanks. The sample images from the MSTAR database are shown in 

Fig. 3. Because the MSTAR database is large, at this time, all images were centrally cropped 

to 32 32×  pixels for evaluation purpose.  
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Fig. 3. Sample SAR images of MSTAR database: the upper row is BMP2 APCs, the middle 
row is BTR70 APCs, and the lower row is T72 tank. 

Tables 1 and 2 detail the training and testing sets, where the depression angle means the 
look angle pointed at the target by the antenna beam at the side of the aircraft. Based on the 
different depression angles SAR images acquired at different times, the testing set can be 
used as a representative sample set of the SAR images of the targets for testing the 
recognition performance.  
 

 Vehicle No. Serial No. Depression Angle Images 

BMP-2 
1 
2 
3 

9563 
9566 
C21 

17o 
233 
231 
233 

BTR-70 1 C71 17o 233 

T-72 
1 
2 
3 

132 
812 
S7 

17o 
232 
231 
228 

Table 1. MSTAR images comprising training set 

 

 Vehicle No. Serial No. Depression Angle Images 

BMP-2 
1 
2 
3 

9563 
9566 
C21 

15o 
195 
196 
196 

BTR-70 1 C71 15o 196 

T-72 
1 
2 
3 

132 
812 
S7 

15o 
196 
195 
191 

Table 2. MSTAR images comprising testing set  

6.2 Class-specific subspace results 
The class-specific super-resolution images reconstructed for classification with pixel-domain 
and eigen-domain based approaches are shown in Fig. 4 and 5, respectively. The first images 
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in the first column are the input testing images. The images from the second to the sixth 
columns are corresponding to the class-specific super-resolution reconstruction obtained 
from the corresponding five different set of class-specific eigenfaces. Here, we show five 
class-specific units. Thus, five reconstructed images are obtained from each input image. 
Image with least error at ith class-specific unit will be identified to ith class. It should be noted 
that the images reconstructed using pixel-domain based super-resolution approach give us 
good perceptual view. However, as shown for eigen-domain based approach, the fourth and 
fifth input images also give us good perceptual views, while others give comparable 
reconstruction results. Thus, the reconstruction images based on class-specific super-
resolution subspace are more dependent to its corresponding eigen-vectors.  
 

 

Fig. 4. Samples of class-specific pixel-domain based super-resolution reconstruction images  

 

Fig. 5. Samples of class-specific eigen-domain based super-resolution reconstruction images  
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 BMP-2 BTR-70 T-72 
Recognition 

Acc. 
 

BMP-2 526 0 61 89.61 

BTR-70 103 0 93 0 

T-72 19 0 563 96.74 

Average - - - 79.78 

Table 3. The pixel-domain super-resolution based class-specific subspace method: 
Recognition test of a three class problem for 32 x 32 images. 

 

 BMP-2 BTR-70 T-72 
Recognition 

Acc. 
 

BMP-2 526 0 61 89.61 

BTR-70 116 0 80 0 

T-72 41 0 541 92.96 

Average - - - 78.17 

Table 4. Our proposed method: Recognition test of a three class problem for 32 x 32 images. 

 

Database Pixel-Domain Eigen-Domain 

Yale 88.56 81.11 

AR 88.00 87.50 

MSTAR 79.78 78.17 

Table 5. Comparison Results for 32 x 32 images. 

Table 3 and 4 show the confusion matrices of the MSTAR target recognition. As shown in 
Table 5, the performance of the pixel-domain based super-resolution method is slightly 
better than our proposed method. However, our method is greatly benefits in term of 
computation. Additionally, we can derive principal component coefficients of the face 
databases using simple matrix inversion of very small size, which is 36 36×  only. This is 
because of the reason we use inner product approach to calculate the PCA coefficients. Thus, 
our algorithm is far faster than implementing super-resolution at pixel-domain. In pixel-
domain based super-resolution approach, they have to solve a very large and sparse matrix 
using conjugate gradient method. In the MSTAR database, we found that the class 2 target 
cannot be recognized at all. This may be because the size of the low-resolution test image is 
too small. If we increase the size of the test images to 48 48×  or larger, we think that we can 
have better recognition accuracy. 

7. Conclusion 

In this chapter we have conducted experiments on face and automatic target recognition by 
focusing on the eigenface-domain based super-resolution implementations. We have also 
presented an extensive literature survey on the subject of more advanced and/or 
discriminant eigenface subspaces. From our discussion, several new super-resolution 
reconstruction algorithms have been proposed here.   
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In particular, several new eigenface-domain super-resolution algorithms are suggested as 
follows 
1. Class-specific face subspace based super-resolution is proposed in Subsection 3.1 
2. Equation (18) is used for including discriminant analysis of principal components for 

extracting face feature for eigenface-domain super-resolution 
3. Equation (28) is used for two-dimensional eigenface-domain super-resolution 
4. Two-dimensional eigenface in Equation (28) is proposed to be replaced by two-

dimensional linear discriminant analysis of principal component matrix  
Current research in face and automatic target recognition is yet to utilize the full potential of 
these techniques. During preparing this chapter, we have just realized that there many 
aspects of studies and comparisons that should be conducted to gain more understanding 
on the variants of the eigenface-domain based super-resolution. For example, recognition 
accuracy should be compared between majority-voting using multiple low-resolution 
eigenfaces VS one super-resolved eigenface. This way, we can relate a set of LR face 
recognition with multiple classifier system. Furthermore, all of the proposed algorithms use 
a two-stage approach, that is, dimensionality reduction is first implemented, after that the 
super-resolution enhancement is performed. It may be a little more encouraging if we can 
further conduct the study on joint dimensionality reduction-resolution enhancement. This idea is 
quite similar to joint source-channel coding, which is a very popular approach studied for 
transmitting data over network. Evidently, we are thinking about computing certain desired 
eigenfaces and then super-resolve the computed eigenfaces on the fry. This approach trends 
to be quite a more biological plausible. 
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