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1. Introduction 

High level of image content analysis is required for several applications. This is taking more 
significance as the number of digital images stored is growing exponentially. On the one 
hand the technology should help store these images, on the other, enable us to develop 
newer algorithmic models aimed at efficient and quick retrieval of images. The entire 
captured data may not be applicable for an application and hence deriving a subset of data 
to achieve objective function is desirable. 
Face detection and recognition are preliminary steps to a wide range of applications such as 
personal identity verification, video-surveillance, facial expression extraction, gender 
classification, advanced human and computer interaction. A face recognition system would 
allow user to be identified by simply walking past a surveillance camera. Research has been 
devoted to facial recognition for years and has brought forward algorithms in an attempt to 
be as accurate as humans are. 
A face recognition system is expected to identify faces present in images and videos 
automatically. It can operate in either or both of two modes:  
 

 

Fig. 1. Face Verification System 

 Face verification or authentication,(fig above) 

www.intechopen.com



 
Reviews, Refinements and New Ideas in Face Recognition 

 

142 

 Face identification or recognition.  
Face verification involves a one-to-one match that compares a query face image against a 
template face image whose identity is being claimed. Face identification involves one-to-
many matches that compare a query face image against all the template images in the 
database to determine the identity of the query face. Another face recognition scenario 
involves a watch-list check, where a query face is matched to a list of suspects (one-to-few 
matches). As per Hietmeyer, face recognition is one of the most effective biometric 
techniques for travel documents and scored higher on several evaluation parameters. 
Computational models of face recognition must address several difficult problems. This 
difficulty arises from the fact that faces must be represented in a way that best utilizes the 
available face information to distinguish a particular face from all other faces. The problem 
of dimensionality reduction arises in face recognition because an m X n face image is 
reconstructed to form a column vector of mn components, for computational purposes. As 
the number of images in the data set increases, the complexity of representing data sets 
increases. Analysis with a large number of variables generally consumes a large amount of 
memory and computation power. 

2. Dimensionality reduction 

Efforts are on for efficient storage and retrieval of images. Considerable progress has 
happened in face recognition with newer models especially with the development of powerful 
models of face appearance. These models represent faces as points in high-dimensional image 
spaces and employ dimensionality reduction to find a more meaningful representation, 
therefore, addressing the issue of the ”curse of dimensionality”. Dimension reduction is a 
process of reducing the number of variables under observation. The need for dimension 
reduction arises when there is a large number of univariate data points or when the data 
points themselves are observations of a high dimensional variable. The key observation is that 
although face images can be regarded as points in a high-dimensional space, they often lie on a 
manifold (i.e., subspace) of much lower dimensionality, embedded in the high-dimensional 
image space. The main issue is how to properly define and determine a low-dimensional 
subspace of face appearance in a high-dimensional image space.  
Dimensionality reduction techniques using linear transformations have been very popular 
in determining the intrinsic dimensionality of the manifold as well as extracting its principal 
directions. Dimensionality reduction is an effective approach to downsizing data.  In 
statistics, dimension reduction is the process of reducing the number of random variables 
under consideration, RN→RM (M<N) and can be divided into feature selection and feature 
extraction.  
Feature selection is choosing a subset of all the features 

[x1  x2 …  xn]       Feature selection          [ xi1 xi2 … xim ] 

 Feature extraction is creating new features from existing ones 

[x1  x2 …  xn]       Feature extraction         [ y1  y2 …  ym ]   

In either case, the goal is to find a low-dimensional representation of the data while still 
describing the data with sufficient accuracy.  
For reasons of computational and conceptual simplicity, the representation is often sought 
as a linear transformation of the original data. In other words, each component of the 
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representation is a linear combination of the original variables. Well-known linear 
transformation methods include principal component analysis, factor analysis, and 
projection pursuit. Independent component analysis (ICA) is a recently developed method 
in which the goal is to find a linear representation of nongaussian data so that the 
components are statistically independent, or as independent as possible. Such a 
representation seems to capture the essential structure of the data in many applications, 
including feature extraction and signal separation.  
Several techniques exist to tackle the curse of dimensionality out of which some are linear 
methods and others are nonlinear. PCA, LDA, LPP are some popular linear methods and 
nonlinear methods include ISOMAP & Eigenmaps. PCA and LDA are the two most widely 
used subspace learning techniques for face recognition. These methods project the training 
sample faces to a low dimensional representation space where the recognition is carried out. 
The main supposition behind this procedure is that the face space (given by the feature 
vectors) has a lower dimension than the image space (given by the number of pixels in the 
image), and that the recognition of the faces can be performed in this reduced space. PCA 
has the advantage of capturing holistic features but ignore the localized features. Fisher 
faces from LDA technique extracts discriminating features between classes and is found to 
perform better for large data sets. Its shortcoming is that of Small Sample Space (SSS) 
problem. LPPs are linear projective maps that arise by solving variational problem that 
optimally preserves the neighborhood structure of the data set. 
In many cases, face images may be visualized as points drawn on a low-dimensional 

manifold hidden in a high-dimensional ambient space. Specially, we can consider that a 

sheet of rubber is crumpled into a (high-dimensional) ball. The objective of a 

dimensionality-reducing mapping is to unfold the sheet and to make its low-dimensional 

structure explicit. If the sheet is not torn in the process, the mapping is topology-preserving. 

Moreover, if the rubber is not stretched or compressed, the mapping preserves the metric 

structure of the original space.  

PCA is guaranteed to discover the dimensionality of the manifold and produces a 
compact representation. Turk and Pentland use Principal Component Analysis to describe 
face images in terms of a set of basis functions, or “eigenfaces”. LDA is a supervised 
learning algorithm. LDA searches for the project axes on which the data points of 
different classes are far from each other while requiring data points of the same class to be 
close to each other. Unlike PCA which encodes information in an orthogonal linear space, 
LDA encodes discriminating information in a linear separable space using bases are not 
necessarily orthogonal. It is generally believed that algorithms based on LDA are superior 
to those based on PCA. However, some recent work shows that, when the training dataset 
is small, PCA can outperform LDA, and also that PCA is less sensitive to different training 
datasets. 
Recently, a number of research efforts have shown that the face images possibly reside on a 

nonlinear submanifold. However, both PCA and LDA effectively see only the Euclidean 

structure. They fail to discover the underlying structure, if the face images lie on a nonlinear 

submanifold hidden in the image space. Some nonlinear techniques have been proposed to 

discover the nonlinear structure of the manifold, e.g. Isomap, LLE and Laplacian Eigenmap. 

These nonlinear methods do yield impressive results on some benchmark artificial data sets. 

However, they yield maps that are defined only on the training data points and how to 

evaluate the maps on novel test data points remains unclear.  

www.intechopen.com



 
Reviews, Refinements and New Ideas in Face Recognition 

 

144 

3. Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) is an important factorization of a rectangular real or 
complex matrix, with many applications in signal processing and statistics. As applied to 
face recognition this technique is used to extract the holistic global features of the training 
set SVD is the best, in the mean-square error sense, linear dimension reduction technique. 
Being based on the covariance matrix of the variables, it is a second-order method. SVD 
seeks to reduce the dimension of the data by finding a few orthogonal linear combinations 
of the original variables with the largest variance.  
The basic idea behind SVD is taking a high dimensional, highly variable set of data points 

and reducing it to a lower dimensional space that exposes the substructure of the original 

data more clearly and orders it from most variation to the least. What makes SVD practical 

for pattern recognition applications is that one can simply ignore variation below a 

particular threshold to massively reduce the data but be assured that the main relationships 

of interest have been preserved. 

Singular value decomposition (SVD) can be looked at from three mutually compatible 

points of view. On the one hand, we can see it as a method for transforming correlated 

variables into a set of uncorrelated ones that better expose the various relationships among 

the original data items. At the same time, SVD is a method for identifying and ordering the 

dimensions along which data points exhibit the most variation. This ties into the third way 

of viewing SVD, which is that once we have identified where the most variation is, it's 

possible to find the best approximation of the original data points using fewer dimensions. 

Hence, SVD can be seen as a method for data reduction. 

As said earlier Singular Value Decomposition is a way of factoring matrices into a series of 

linear approximations that expose the underlying structure of the matrix.  If A is the input 

matrix, calculating the SVD consists of finding the eigenvalues and eigenvectors of AAT and 

ATA. This yields three matrices U,V & S where the eigenvectors of ATA make up the 

columns of V , the eigenvectors of AAT  make up the columns of U. and the singular values 

in S are square roots of eigenvalues from AAT or ATA.  The singular values are the diagonal 

entries of the S matrix and are arranged in descending order. The singular values are always 

real numbers. If the matrix A is a real matrix, then U and V are also real.  

In the factorization, the first principal component is s1, with the largest variance is the linear 

combination with T T . We have 1 1S XW , where the p-dimensional coefficient vector 

solves 1 11 1( ,...., )PW W W  where  

  1
1

arg max ,
w

W Var x w


     (1) 

The second PC is the linear combination with the second largest variance and orthogonal to 
the first PC, and so on. There are as many PCs as the number of the original variables. PCs 
explain most of the variance, so that the rest can be disregarded with minimal loss of 
information. Since the variance depends on the scale of the variables, it is customary to first 
standardize each variable to have mean zero and standard deviation one. After the 
standardization, the original variables with possibly different units of measurement are all 
in comparable units.  
  The mathematical model formulated is given below: 
Let A is m’ X n’ real matrix and N=ATA        
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Fig. 2. Range and Null space of matrix 

R denotes the range space and N denotes the null space of a matrix. Rank of A, AT, ATA, 
AAT is equal and is denoted by ρ orthonormal basis v i 1 ≤ i ≤  ρ are sought  for RAT  where ρ 
is the rank of RAT& ui 1 ≤ i ≤  ρ for RA such that,   

 j jAV S U  (2) 

  ,        1 jT
j j jA U S V     (3) 

Advantages of having such a basis are that geometry becomes easy and gives a 
decomposition of A into ρ one-ranked matrices. Combining the equations (2) & (3) 

 T
j j

 U     ,       1 jjA S V        (4) 

If Vj  is known then ,   j j1 /   S    AV  j j jU S AV   therefore ,sj≠0 , choosing  sj >0 ,    

 j j jAV S U   (5) 

 T T
j j jA AV S A U   (6) 

 2T
j j jA AV S V   (7) 

Let 2
j iS  , j i iNV V  is required Ui’s as orthonormal eigenvectors of N=ATA are found 

and j iS   Where i >0 are eigen values corresponding to Vj.  The resulting Ui span the 

Eigen subspace. When SVD is applied to the sample set below in figure 3, the corresponding 
eigen faces obtained are shown in figure 4. The figure is highlighting the holistic features 
from the given sample set. 
 

          

     
 

Fig. 3. Training set example faces 

RNT 

NA 

 RA 

NNT
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Fig. 4. Eigen faces from SVD 

Basis selection from SVD 

If A is the face Space, then x vectors are drawn from [X1…..Xx] =Π<1..x>(A-1UD)  Where U & D 
are the unitary and diagonal matrices of SVD of A. 

5. Linear Discriminant Analysis  

Fisher Linear Discriminant also referred as Linear Discriminant Analysis is a classical 
pattern recognition method, which was introduced by Fisher (1934). It is a very effective 
feature extraction method but facing issues for Small Sample Space problem.  
The Dimensionality Reduction technique SVD searches for directions in the data that have 
largest variance and subsequently project the data onto it. In this way, one can obtain a lower 
dimensional representation of the data, that removes some of the ”noisy” directions. There are 
many difficult issues with how many directions one needs to choose. It is an unsupervised 
technique and as such does not include label information of the data. For instance, if we 
imagine 2 clusters in 2 dimensions, one clusters has y = 1 and the other y = ¡1. The clusters are 
positioned in parallel and very closely together, such that the variance in the total data-set, 
ignoring the labels, is in the direction of the clusters. For classification, this would be a terrible 
projection, because all labels get evenly mixed and will destroy the useful information.  
A much more useful projection is orthogonal to the clusters, i.e. in the direction of least 
overall variance, which would perfectly separate the data-cases (obviously, we would still 
need to perform classification in this 1-D space). 
The conventional solution to misclassification for small sample size problem and large data 
set with similar faces is the use of PCA into LDA i.e. fisher faces. PCA is used for 
dimensionality reduction and then LDA is performed on the lower dimensional space. 
Discriminant analysis often produces models whose accuracy approaches complex modern 
methods. The target variable may have two or more categories. The following figure 5 
shows a plot of the two categories with the two predictors on orthogonal axes:  
 
 

 

Fig. 5. A plot of the two categories with the two predictors on orthogonal axes 
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A transformation function is found that maximizes the ratio of between-class variance to 

within-class variance as illustrated by this figure 6 produced by Ludwig Schwardt and 

Johan du Preez:  

 

 

Fig. 6. Output of applying transformation function  

The transformation seeks to rotate the axes so that when the categories are projected on the 

new axes, the differences between the groups are maximized. So the question is, how do we 

utilize the label information in finding informative projections?  

To that purpose Fisher-LDA considers maximizing the following objective: 

 ( )
T

B
T

w

w S wJ w
w S w

  (8) 

The second use of the term LDA refers to a discriminative feature transform that is optimal 

for certain cases [10]. This is what we denote by LDA throughout this paper. In the basic 

formulation, LDA finds eigenvectors of matrix 

 1
w bT S S  (9) 

Here bS is the between-class covariance matrix, that is, the covariance matrix of class means. 

Sw  denotes the within-class covariance matrix,  that is equal to the weighted sum of 

covariance matrices computed for each class separately. 1
wS  captures the compactness of 

each class, and bS represents the separation of the class means. Thus T captures both. The 

eigenvectors corresponding to largest k eigenvalues of T  form the rows of the transform 

matrix w, and new discriminative features kd  are derived from the original ones d  simply 

by 

 
k dd W  (10) 

The straightforward algebraic way of deriving the LDA transform matrix is both a strength 

and a weakness of the method. Since LDA makes use of only second-order statistical 

information, covariances, it is optimal for data where each class has a unimodal Gaussian 

density with well separated means and similar covariances. Large deviations from these 

assumptions may result in sub-optimal features.  
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Also the maximum rank of bS  in this formulation is 1cN  where cN the number of 

different classes is. Thus basic LDA cannot produce more than 1cN  features. This is, 

however, simple to remedy by projecting the data onto a subspace orthogonal to the 

computed eigenvectors, and repeating the LDA analysis in this space. 

However, the classification performance of traditional LDA is often degraded by the fact 

that their separability criteria are not directly related to their classification accuracy in the 

output space. A solution to the problem is to introduce weighting functions into LDA. 

Object classes that are closer together in the output space, and thus can potentially result in 

misclassification, should be more heavily weighted in the input space. This idea has been 

further extended in  with the introduction of the fractional-step linear discriminant analysis 

algorithm (F-LDA), where the dimensionality reduction is implemented in a few small 

fractional steps allowing for the relevant distances to be more accurately weighted. 

Although the method has can be applied on low dimensional patterns it cannot be directly 

applied to high-dimensional patterns, such as those face images due to two factors: (1) the 

computational difficult of the eigen-decomposition of matrices in the high-dimensional 

image space; (2) the degenerated scatter matrices caused by the small sample size, which 

widely exists in the FR tasks where the number of training samples is smaller than the 

dimensionality of the samples. 

The traditional solution to the SSS problem requires the incorporation of a PCA step into the 

LDA framework. In this approach, PCA is used as a pre-processing step for dimensionality 

reduction so as to discard the null space of the within-class scatter matrix of the training 

data set. Then LDA is performed in the lower dimensional PCA subspace. However, it has 

been shown that the discarded null space may contain significant discriminatory 

information. To prevent this from happening, solutions without a separate PCA step, called 

direct LDA (D-LDA) methods have been presented recently. In the D-LDA framework, data 

are processed directly in the original high-dimensional input space avoiding the loss of 

significant discriminatory information due to the PCA pre-processing step. 

Firstly dimensionality of the original input space is lowered by introducing a new variant of 

D-LDA that results in a low-dimensional SSS-free subspace where the most discriminatory 

features are preserved. The variant of D-LDA utilizes a modified Fisher’s criterion to avoid a 

problem resulting from the wage of the zero eigenvalues of the within-class scatter matrix as 

possible divisors. Also, a weighting function is introduced into the variant of D-LDA, so that 

a subsequent F-LDA step can be applied to carefully re-orient the SSS-free subspace 

resulting in a set of optimal discriminant features for face representation. 

The DF-LDA is a linear pattern recognition method. Compared with nonlinear models, a 
linear model is rather robust against noises and most likely will not over fit. Although it 
has been shown that distribution of face patterns is highly non convex and complex in 
most cases, linear methods are still able to provide cost effective solutions to the FR tasks 
through integration with other strategies, such as the principle of “divide and conquer,” 
in which a large and nonlinear problem is divided into a few smaller and local linear sub 
problems.  

Let BTWS and WTHS denote the between- and within-class scatter matrices of the training 

image set, respectively. LDA-like approaches such as the Fisherface method find a set of 

basis vectors, denoted by that maximizes the ratio between BTWS and WTHS is 
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  
 

arg max

T

BTW

T

WTH

S

S


 


 

 (10) 

The maximization process in (3) is not directly linked to the classification error which is the 
criterion of performance used to measure the success of the Face Recognition procedure. 
Thus, the weighted between-class scatter matrix can be expressed as:  

 
C

T

i iBTWS    (11) 

where  

       
1/2

1/2

1
,/

C

i i i j ii ijL wL Z Z Zd
   (12) 

is the mean of class iZ , iL  is the number of elements in iZ , and  

 
, ji j id Z Z   (13) 

is the Euclidean distance between the means of class i and j .  

Basis selection from DF-LDA 

The set Y vectors are chosen by the equation [y1…..yy] =Π<1..y>(UTSTOTUT) Where STOT is the 
sum of between and within class scatter matrices, U is a diagonal matrix from Eigen values 
and vectors. Fisher faces are shown in figure 7 below. 
 

 

 

Fig. 7. Fisher Faces from DF-LDA 

We can clearly see from fisher faces that more pronounced features are highlighted than the 
rest of the face point like hair, eyebrows etc. 

6. Locality preserving projections 

Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis 
(LDA) which effectively see only the Euclidean structure of face space, LPP finds an 
embedding that preserves local information, and obtains a face subspace that best detects 
the essential face manifold structure. The Laplacianfaces are the optimal linear 
approximations to the eigen functions of the Laplace Beltrami operator on the face manifold. 
In this way, the unwanted variations resulting from changes in lighting, facial expression, 
and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA and LPP 
can be obtained from different graph models. By using Locality Preserving Projections 
(LPP), the face images are mapped into a face subspace for analysis. 
LPP shares many of the data representation properties of nonlinear techniques such as 

Laplacian Eigen maps or Locally Linear Embedding. Yet LPP is linear and more crucially is 
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defined everywhere in ambient space rather than just on the training data points. It builds a 

graph incorporating neighborhood information of the data set. Using the notion of the 

Laplacian of the graph, transformation matrix is computed which maps the data points to a 

subspace.  

This linear transformation optimally preserves local neighborhood information in a certain 
sense. The representation map generated by the algorithm may be viewed as a linear 
discrete approximation to a continuous map that naturally arises from the geometry of the 
manifold. In the meantime, there has been some interest in the problem of developing low 
dimensional representations through kernel based techniques for face recognition. These 
methods can discover the nonlinear structure of the face images. However, they are 
computationally expensive. Moreover, none of them explicitly considers the structure of the 
manifold on which the face images possibly reside. 
While the Eigen faces method aims to preserve the global structure of the image space, and 
the Fisher faces method aims to preserve the discriminating information; our Laplacianfaces 
method aims to preserve the local structure of the image space. In many real world 
classification problems, the local manifold structure is more important than the global 
Euclidean structure, especially when nearest neighbor like classifiers are used for 
classification. 
LPP seems to have discriminating power although it is unsupervised. An efficient subspace 
learning algorithm for face recognition should be able to discover the nonlinear manifold 
structure of the face space. LPP shares some similar properties to LLE, such as a locality 
preserving character. However, their objective functions are totally different. LPP is 
obtained by finding the optimal linear approximations to the eigen functions of the Laplace 
Beltrami operator on the manifold. LPP is linear, while LLE is nonlinear. Moreover, LPP is 
defined everywhere, while LLE is defined only on the training data points and it is unclear 
how to evaluate the maps for new test points. In contrast, LPP may be simply applied to any 
new data point to locate it in the reduced representation space. LPP seeks to preserve the 
intrinsic geometry of the data and local structure.  

The objective function of LPP is as follows: 

  2min j iji
ij

yy S  (14) 

Where  

 
2

exp /
,         

0

ji
ij

x x tS

  
      




 
2

jix x    (15) 

7. Statistical view of LPP 

LPP can also be obtained from statistical viewpoint. Suppose the data points follow some 
underlying distribution. Let d be the number of non-zero Sij, and D be a diagonal matrix 
whose entries are column (or row, since S is symmetric) sums of S, Dii=∑j Sji. By the Strong 
Law of Large Numbers, E(zzT | ||z||< ε) can be estimated from the sample points as 
follows:  
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 TE ZZ z   

1 T

Z

ZZ
d 

   

   1

i j

T

i j i j

x x

x x x x
d  

    

   
,

1 T

i j i j ij
i j

x x x x S
d

    

, , , ,

1 T T T T
i i ij j j ij i j ij j i ij

i j i j i j i j

x x S x x S x x S x x S
d

 
     

 
     

, ,

2 T T
i i ii i j ij

i j i j

x x D x x S
d

 
   

 
   

 2 T TXDX XSX
d

   

 
2 TXLX
d

   (16) 

where L = D – S is the Laplacian matrix. The ith column of matrix X is xi.  

8. Theoretical analysis of LPP, PCA AND LDA 

In this section, we present a theoretical analysis of LPP and its connections to PCA and 
LDA. 

8.1 Connections to PCA 
It is worthwhile to point out that XLXT is the data covariance matrix, if the  Laplacian matrix 
L is 

 
2

1 1 TI ee
n n

  (17) 

where n is the number of data points, I is the identity matrix and e is a column vector taking 

1 at each entry. In fact, the Laplacian matrix here has the effect of removing the sample 

mean from the sample vectors. 
 In this case, the weight matrix S takes 1/n2 at each entry, i.e 

 21 / , ,ijS n i j    (18) 

 1 /ii jij
D S n    (19) 
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Hence the Laplacian matrix is  

 
2

1 1 TL D S I ee
n n

      (20) 

Let m denote the sample mean i.e.  

 1 / ii
m n x    (21) 

we have   

2

1 1T T TXLX X I ee X
n n

   
 

 

  2

1 1 TT
e eXX X X

n n
   

  2

1 1 TT
i i

i

x x nm nm
n n

   

1 1 1 1
( )( )T T T T T

i i i i
i i i i

x m x m x m mx mm mm
n n n n

           

[( )( )] 2 2T T TE x m x m mm mm      

 [( )( )]TE x m x m     (22) 

Where [( )( )] ,TE x m x m   is just the covariance matrix of the data set 

The above analysis shows that the weight matrix S plays a key role in the LPP algorithm. 

When we aim at preserving the global structure, we take ε (or k) to be infinity and choose 

the eigenvectors (of the matrix XLXT) associated with the largest eigenvalues. Hence the 

data points are projected along the directions of maximal variance. ε should be sufficiently 

small to preserve the local structure and choose the Eigen vectors associates with smallest 

Eigen values. 

Hence the data points are projected along the directions preserving locality. It is important 

to note that, when ε (or k) is sufficiently small, the Laplacian matrix is no longer the data 

covariance matrix, and hence the directions preserving locality are not the directions of 

minimal variance. In fact, the directions preserving locality are those minimizing local 

variance. 

8.2 Connections to LDA 
LDA seeks directions that are efficient for discrimination. The projection is found by solving 
the generalized Eigen value problem 

 B WS w S w   (23) 

www.intechopen.com



 
Dimensionality Reduction Techniques for Face Recognition 

 

153 

where BS  and WS  are between and within class scatter matrices. Suppose there are l classes. 

The ith  class contains ni sample points. Let m(i) denote the average vector of the ith class. Let 

x(i) denote the random vector associated tothe ith class and ) (i j x denote the jth sample point 

in the ith class. We can rewrite the matrix SW as follows: 

 ( ) ( )( ) ( )

1 1

nl i Ti ii i
j jW

i j
S x m x m

 
          

   

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 1

Tnl i T T Ti i ii i i i i
j j j

i j
x x m m x m m m

                                  
   

( )( ) ( ) ( )

1 1

nl i TT ii i i
ij j

i j
n mx x m

                    
   

   ( ) ( ) ( ) ( )
1 1

1
... ...

1

Ti i i iT
i i ni ni

i

l
X X x x x x

ni

 
      

 
  

 1

1

T T T
i i i i i i

i

l
X X X e e X

ni

 
  

 
  

            
1

T
i i i

l
X L X

i



  (24) 

Where, 
T

i i iX L X is the data covariance matrix of the ith class and  

iX = [ ( )
1
iX , ( )

2 ,iX ( )
3
iX ,…. ( )i

niX ] is a x id n  matrix.  

1 / T
i i i iL I n e e   is a x i in n matrix where I is the identity matrix and  1,1,1....1

T

ie is an ni 

dimensional vector. 
To further simplify the above equation, we define  

if xi and xj both belong to the kth class 

 otherwise,                                                           (25) 

It is interesting to note that we could regard the matrix W as the weight matrix of a graph 

with data points as its nodes. Specifically, Wij is the weight of the edge (xi, xj). W reflects the 

class relationships of the data points. The matrix L is thus called graph Laplacian, which plays 

key role in LPP.  

Similarly, we can compute the matrix SB as follows: 

 ( ) ( )

1

l Ti i
iB

i
S n m m m m

    
 

  

1 /

0
k

ij

n
W


 

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   ( ) ( ) ( ) ( )

1 1 1 1

T T
T T

l l l l
i i i im m mm

i i i i
i i i i

n m m n m n m n
       
          
                 
     

   ( ) ( ) ( ) ( )
1 1

1
... ... 2

1

Ti i i i T T
ni ni

i

l
x x x x nmm nmm

ni

 
       

 
  

 ( ) ( )1
2

1 , 1

i T
i i T T

j j

i

nl
x x nmm nmm

ni j k

 
   
   
   

2T T TXWX nmm nmm    

T TXWX nmm   

1T T TXWX X ee X
n

    
 

 

1 T TX W ee X
n

   
 

 

1 T TX W I I ee X
n

     
 

 

1T T TXLX X I ee X
n

     
 

 

 TXLX C      (26) 

where e = (1,1,…,1)T is a n dimensional vector and 
1 T TC X I ee X
n

   
 

 is the data covariance 

matrix. 

Thus, the generalized eigenvector problem of LDA can be written as follows: 

 B WS w S w   (27) 

 T TC XLX w XLX w    

 1 TCw XLX w    

1

1
TXLX w Cw


 


 

Thus, the projections of LDA can be obtained by solving the following generalized 
eigenvalue problem, 

 TXLX w Cw    (28) 
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The optimal projections correspond to the eigenvectors associated with the smallest 

eigenvalues. If the sample mean of the data set is zero, the covariance matrix is simply XXT 

which is close to the matrix XDXT in the LPP algorithm. Our analysis shows that LDA 

actually aims to preserve discriminating information and global geometrical structure. 

Moreover, LDA has a similar form to LPP. However, LDA is supervised while LPP can be 

performed in either supervised or unsupervised manner. 

8.3 Learning laplacian faces for representation 
LPP is a general method for manifold learning. It is obtained by finding the optimal linear 

approximations to the eigenfunctions of the Laplace Betrami operator on the manifold. 

Therefore, though it is still a linear technique, it seems to recover important aspects of the 

intrinsic nonlinear manifold structure by preserving local structure. Based on LPP, 

Laplacianfaces method for face representation is a locality preserving subspace. In the 

face analysis and recognition problem one is confronted with the difficulty that the matrix 

XDXT is sometimes singular. This stems from the fact that sometimes the number of 

images in the training set (n) is much smaller than the number of pixels in each image (m). 

In such a case, the rank of XDXT is at most n, while XDXT is an m×m matrix, which 

implies that XDXT is singular. To overcome the complication of a singular XDXT, we first 

project the image set to a PCA subspace so that the resulting matrix XDXT is nonsingular. 

Another consideration of using PCA as preprocessing is for noise reduction. This method, 

we call Laplacianfaces, can learn an optimal subspace for face representation and 

recognition. 

The algorithmic procedure of Laplacianfaces is formally stated below: 
1. PCA projection: We project the image set {xi} into the PCA subspace by throwing away 

the smallest principal components.  

2. Constructing the nearest-neighbor graph: Let G denote a graph with n nodes. The ith 

node corresponds to the face image xi. We put an edge between nodes i and j if xi and xj 

are “close”, i.e. xi is among k nearest neighbors of xi or xi is among k nearest neighbors 

of xj. The constructed nearest neighbor graph is an approximation of the local manifold 

structure. Note that, here we do not use the ε - neighborhood to construct the graph. 

This is simply because it is often difficult to choose the optimal ε in the real world 

applications, while k nearest neighbor graph can be constructed more stably. The 

disadvantage is that the k nearest neighbor search will increase the computational 

complexity of our algorithm. When the computational complexity is a major concern, 

one can switch to the ε -neighborhood. 

3. Choosing the weights: If node i and j are connected, put 

 

2

i j

ij

x x
S e

t


  (29) 

where t is a suitable constant. Otherwise, put Sij = 0. The weight matrix S of graph G models 

the face manifold structure by preserving local structure.  

4. Eigenmap: Compute the eigenvectors and eigenvalues for the generalized eigenvector 

problem: 
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 T TXLX w XDX w    (30) 

where D is a k-dimensional vector. W is the transformation matrix. This linear mapping best 

preserves the manifold’s estimated intrinsic geometry in a linear sense. The column vectors 

of W are the so called Laplacianfaces. 

9. Face representation using laplacianfaces  

As we described previously, a face image can be represented as a point in image space. A 
typical image of size m×n describes a point in m×n-dimensional image space. However, 
due to the unwanted variations resulting from changes in lighting, facial expression, and 
pose, the image space might not be an optimal space for visual representation, we have 
discussed how to learn a locality preserving face subspace which is insensitive to outlier 
and noise. The images of faces in the training set are used to learn such a locality 
preserving subspace. The subspace is spanned by a set of eigenvectors of equation (1), i.e. 
w0, w1, …, wk-1.  
Eigenmaps are obtained from the generalized eigenvector problem as  ALAT a = λADAT a 

where D is a diagonal matrix whose entries are column or row, since W is symmetric sums 

of W, Dii = ΣjWji.,  L = D -W is the Laplacian matrix is equivalent nonlinear Laplace Beltrami 

opearator. The ith column of matrix A is xi. Let the column vectors a0; _ _ _ ; al-1 be the 

solutions of equation (), ordered according to their eigenvalues, in ascending order Thus, the 

embedding is as follows: yi = ET xi; E = (a0; a1; _ _ _ ; al-1) where yi is a l-dimensional vector, 

and E is a n x l matrix.. The yi represent the Laplacian faces. 

9.1 Basis selection from LPP 
Locality information can be preserved by the following transformation on A, the input face 
space [z1 …. Zz] = Π<1..z(ATL A)  Where L =D-W gives the Laplacian matrix.  D is the 
diagonal matrix and W is the weight matrix of the K nearest neighbors clustering. 

Basis for the face space is obtained as, 1 2 1 2 1 2[ .... ...... ..... ]x y zB X X X Y Y Y Z Z Z , such that  

 
3

M
x y z          (31) 

and 

 
2

3

M
x y z       (32) 

where M is the dimension of the original face space    

9.2 Projection onto reduced subspace 

Each face in the training set i  can be represented as a linear combination of these vectors, 

Ui  ε B , 1 ≤ i ≤ K such that 
1

k

i j jj
w u


  , where ju ’s are Eigenfaces. These weights are 

calculated as: 1 2[ ... ]T
j j i i kw u w w w    i.e. the orthogonal projection of a face vector on 

each basis vector. 
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Fig. 8. Laplacian Faces from LPP 

10. Independent component analysis 

Independent component analysis (ICA) is a statistical method, the goal of which is to 
decompose multivariate data into a linear sum of non-orthogonal basis vectors with 
coefficients (encoding variables, latent variables, hidden variables) being statistically 
independent.  
ICA generalizes a widely-used subspace analysis method such as principal component 

analysis (PCA) and factor analysis, allowing latent variables to be non-Gaussian and basis 

vectors to be non-orthogonal in general. ICA is a density estimation method where a 

linear model is learned such that the probability distribution of the observed data is best 

captured, while factor analysis aims at best modeling the covariance structure of the 

observed data. 

The ICA model is a generative model, which means that it describes how the observed 

data are generated by a process of mixing the components si. The independent 

components are latent variables, meaning that they cannot be directly observed. Also the 

mixing matrix is assumed to be unknown. All we observe is the random vector X, and we 

must estimate both A and S using it. This must be done under as general assumptions as 

possible. The starting point for ICA is the very simple assumption that the components Si 

are statistically independent. It will be seen below that we must also assume that the 

independent component must have nongaussian distributions. However, in the basic 

model we do not assume these distributions known (if they are known, the problem is 

considerably simplified.) For simplicity, we are also assuming that the unknown mixing 

matrix is square, but this assumption can be sometimes relaxed. Then, after estimating the 

matrix A, we can compute its inverse, say W, and obtain the independent component 

simply by: s=Wx 

ICA is very closely related to the method called blind source separation (BSS) or blind signal 

separation. A “source” means here an original signal, i.e. independent component, like the 

speaker in a cocktail party problem. “Blind” means that we know very little, if anything, on 

the mixing matrix, and make little assumptions on the source signals. ICA is one method, 

perhaps the most widely used, for performing blind source separation. 

The task of ICA is to estimate the mixing matrix A or its inverse W = A−1 such that elements 
of the estimate y = A−1x =Wx are as independent as possible. For the sake of simplicity, we 
often leave out the index t if the time structure does not have to be considered.  
PCA makes one important assumption: the probability distribution of input data must be 
Gaussian. When this assumption holds, covariance matrix contains all the information of 
(zero-mean) variables. Basically, PCA is only concerned with second-order (variance) 
statistics. The mentioned assumption need not be true. If we presume that face images have 
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more general distribution of probability density functions along each dimension, the 
representation problem has more degrees of freedom. In that case PCA would fail because 
the largest variances would not correspond to meaningful axes of PCA. 

 xi(t) = ai1*s1(t) +ai2*s2(t) + ai3*s3(t) +  ai4*s4(t) ... (33) 

Here, i =1:4. 
In vector-matrix notation, and dropping index t, this is  

 x A s    (34) 

 1s A x   (35) 

 s W x   (36) 

 1W A   (37) 

 
 
 

 

Fig. 9. Mixture Matrix forming face 

 

 

 

 

Fig. 10. Different Principal Component(PC) directions & PCA vs. ICA Projections  
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Fig. 11. x=As (Blind Source Separation) 

 

 

Fig. 12. Construction of face from Basis 

 

 

Fig. 13. Basis Images from ICA 

11. Random projections  

There has been a strong trend lately in face processing research away from geometric 
models towards appearance models. Appearance-based methods employ dimensionality 
reduction to represent faces more compactly in a low-dimensional subspace which is found 
by optimizing certain criteria. Recently, Random Projection (RP) has emerged as a powerful 
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method for dimensionality reduction. It represents a computationally simple and efficient 
method that preserves the structure of the data without introducing significant distortion. 

D  2log /n   dimensional subspace such that the distances between the points are 

approximately preserved. 

Transforms 
i to a lower dimension d, with d<<p via the following transformation: 

ii R  where R is orthonormal and its columns are realizations of independent and 

identically distributed (i.i.d.) zero-mean normal variables, scaled to have unit length. RP is 
motivated by the Johnson-Lindenstrauss lemma that states that a set of M points in a high 
dimensional. 

Euclidean space can be mapped down onto a   2/log nd   dimensional subspace 

such that the distances between the points are approximately preserved. 
The main reason for orthogonalizing the random vectors is to preserve the similarities 

between the original vectors in the low-dimensional space. In high enough dimensions, 

however, it is possible to save computation time by avoiding the orthogonalization step 

without affecting much the quality of the projection matrix. This is due to the fact that, in 

high-dimensional spaces, there exist a much larger number of almost orthogonal vectors 

than orthogonal vectors. Thus, high-dimensional vectors having random directions are very 

likely to be close to orthogonal. 

12. Mixture of components 

One can use different ratios of feature vectors drawn from SVD, DF-LDA & LPP Techniques. 

The first step can be normalizing the images in the training set to compensate for the 

illumination effects. These processed images should be subjected to dimensionality 

reduction using each of the methods mentioned in the chapter. Basis selection can be carried 

out using these independent sets of dimension reduced vectors in different proportions 

aimed at enhancing the efficiency and accuracy of recognition task. Below is a sample 

example mentioned with two trials, one with for 1/3rd dimensionality reduction and 

another with 2/3rd reduction. In each of the trials, several iterations are performed by taking 

different combinations of the feature vectors. The iterations will converge when the desired 

precision of recognition rate is obtained. 

12.1 Example 
12.1.1 Preprocessing  
The Face Space: For the recognition task , each m X n Ii image in the training set is 
transformed into a column vector of mn components. A matrix S (mn X M) is constructed 
such that    S =[ I1 I2   . . .  IM] , where M is number of face images in training set It is found that 
all N vectors are linearly independent, which implies that the range space of matrix S is the 
entire region spanned by the columns of S. i.e  Range space of S  R(S)=[ S] 
Normalization: Normalize the images ,to reduce illumination effects and lighting conditions 
as,  

   '
'



  XAi i

 (40) 
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For i=1,2,3….., M 
Where, 

 



2

1
2

1 N

j

ji x
N

  (41) 

  



2

11
2

' 11 N

j

ij

M

i

i A
NM

  (42) 

  2

1
2

2

1

1 






N

j

iji x
N

  (43) 

  
 


2 2

1

2

1
22

'

1

11 N

i

N

j

jii A
NN

  (44) 

12.1.2 Basis selection 

Recognition Task: Unknow probeface is normalized ()  and projected on to the subspace to 

get weight for the probe image  T

ji uw  Euclidean Distance measure is used in 

classification given by  
ire  min  .  And if  re   where   is a threshold chosen 

heuristically, then we the probe image is recognized as the image with which it gives the 

lowest score. If however re  then the probe does not belong to the database.  

Deciding on the Threshold: A set of 150 known images other than the ones in the data set is 

used in the computation of threshold  given by    . Where, 

 





1

0

1 N

i

ix
N

  (45) 

  








1

0

22

1

1 N

i

jx
N

  (46) 

I   is chosen according to level of precision required in the results.  xi Є γ 

The method of choosing right combination of right proportion of feature vectors has been 

applied on a large database consisting of a variety of still images with illumination, 

expression variations as well as partially occluded images. The ratio 3:2:5:: SVD:DF-

LDA:LPP has yielded highest accuracy in recognition. The example is tried on a total test set 

of 165 images drawn from YALE dataset and the training set consisting 15 classes having a 

class count of five images.  

An ROC graph is plotted to visualize and analyze the working of face recognition 

efficiency. It is a two dimensional graph in which TP rate, true positive rate, is plotted on 

the Y axis and FP rate, false positive rate, is plotted on the X axis. Given a set of test 

images a two by two contingency table is constructed representing the dispositions of the 

set of images.  
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SVD 
(no. of vectors) 

DFLDA 
(no. of vectors) 

LPP 
(no. of vectors) 

EFFICIENCY 
(in %) 

15 5 5 80.00 

5 5 15 81.21 

8 9 8 81.81 

15 5 15 87.27 

5 15 5 81.21 

Table 1. Iterations for subspace of dimension M/3 

 

Graph No. True Positive False Negative False Positive True Negative 

1 122 28 5 10 

2 123 27 4 11 

3 125 15 5 10 

4 132 18 3 12 

5 122 28 3 12 

Table 2. Comparative results with Iteration Trial of M/3 

 

 

Fig. 14. ROC’s Indicating the True Positive VS False Positive for M/3 

 

SVD 

(no. of vectors) 

DFLDA 

(no. of vectors) 

LPP 

(no. of vectors) 

EFFICIENCY 

(in %) 

30 10 10 84.24 

10 10 30 85.45 

20 15 15 86.67 

25 15 10 84.84 

15 10 25 92.12 

Table 3. Iterations for subspace of dimension 2M/3 
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Graph No. True Positive False Negative False Positive True Negative 

1 129 21 5 10 

2 132 18 4 11 

3 133 17 5 10 

4 128 32 4 11 

5 140 10 3 12 

Table 4. Comparative results with Iterartion Trial of M/3 

 
 

 
 

Fig. 15. ROC’s Indicating the True Positive VS False Positive for 2M/3 

13. Summary 

In this chapter several linear and non linear dimensionality reduction techniques were 

discussed from the perspective of face recognition. Since the face images contain several 

characteristic features both global and local, using any one method alone may not yield 

better recognition accuracy. It may be good to have combinations of the basis vectors from 

several approaches to achieve higher accuracy. Underlying manifold structure in image 

space will get face subspace and is possible with LPP, ICA methods. More pronounced 

features can be drawn from the space in case of LDA based algorithms. Random and PCA 

projections give appearance models which are holistic in nature.  

Future of face recognition can also look at increase in dimension like depth information  

for recognition purposes. Algorithmic models should aim at addressing scale invariance 

feature vectors which can hopefully solve recognition task even under extreme variations in 

images. 

The approach to face recognition was motivated by information theory, leading to the idea 

of basing face recognition on a small set of image features that best approximate the set of 

known face images, without requiring that they correspond to our intuitive notions of facial 

parts and features. The approach does provide a practical solution to the problem of face 

recognition and is relatively simple and has been shown that it can work well in a 
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constrained environment. Anecdotal experimentation with acquired image sets indicates 

that profile size, complexion, ambient lighting and facial angle play significant parts in the 

recognition of a particular image.  
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